Comprehensive Transcriptional Profiling and Mouse Phenotyping Reveals Dispensable Role for Adipose Tissue Selective Long Noncoding RNA Gm15551
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
675014
European Research Council - International
00000
Danish Diabetes Academy
NNF18OC0033444
Novo Nordisk Foundation
PubMed
35645339
PubMed Central
PMC9149892
DOI
10.3390/ncrna8030032
PII: ncrna8030032
Knihovny.cz E-zdroje
- Klíčová slova
- adipose tissue remodelling, brown adipose tissue, long noncoding RNAs,
- Publikační typ
- časopisecké články MeSH
Cold and nutrient-activated brown adipose tissue (BAT) is capable of increasing systemic energy expenditure via the uncoupled respiration and secretion of endocrine factors, thereby protecting mice against diet-induced obesity and improving insulin response and glucose tolerance in men. Long non-coding RNAs (lncRNAs) have recently been identified as fine-tuning regulators of cellular function. While certain lncRNAs have been functionally characterised in adipose tissue, their overall contribution in the activation of BAT remains elusive. We identified lncRNAs correlating to interscapular brown adipose tissue (iBAT) function in a high fat diet (HFD) and cold stressed mice. We focused on Gm15551, which has an adipose tissue specific expression profile, is highly upregulated during adipogenesis, and downregulated by β-adrenergic activation in mature adipocytes. Although we performed comprehensive transcriptional and adipocyte physiology profiling in vitro and in vivo, we could not detect an effect of gain or loss of function of Gm15551.
Zobrazit více v PubMed
NCD Risk Factor Collaboration (NCD-RisC) Trends in Adult Body-Mass Index in 200 Countries from 1975 to 2014: A Pooled Analysis of 1698 Population-Based Measurement Studies with 19·2 Million Participants. Lancet Lond. Engl. 2016;387:1377–1396. doi: 10.1016/S0140-6736(16)30054-X. PubMed DOI PMC
Angelantonio E.D., Bhupathiraju S.N., Wormser D., Gao P., Kaptoge S., de Gonzalez A.B., Cairns B.J., Huxley R., Jackson C.L., Joshy G., et al. Body-Mass Index and All-Cause Mortality: Individual-Participant-Data Meta-Analysis of 239 Prospective Studies in Four Continents. Lancet. 2016;388:776–786. doi: 10.1016/S0140-6736(16)30175-1. PubMed DOI PMC
Prospective Studies Collaboration Body-Mass Index and Cause-Specific Mortality in 900 000 Adults: Collaborative Analyses of 57 Prospective Studies. Lancet. 2009;373:1083–1096. doi: 10.1016/S0140-6736(09)60318-4. PubMed DOI PMC
Rosen E.D., Spiegelman B.M. What We Talk About When We Talk About Fat. Cell. 2014;156:20–44. doi: 10.1016/j.cell.2013.12.012. PubMed DOI PMC
Cannon B., Nedergaard J. Brown Adipose Tissue: Function and Physiological Significance. Physiol. Rev. 2004;84:277–359. doi: 10.1152/physrev.00015.2003. PubMed DOI
Betz M.J., Enerbäck S. Targeting Thermogenesis in Brown Fat and Muscle to Treat Obesity and Metabolic Disease. Nat. Rev. Endocrinol. 2018;14:77–87. doi: 10.1038/nrendo.2017.132. PubMed DOI
Klepac K., Georgiadi A., Tschöp M., Herzig S. The Role of Brown and Beige Adipose Tissue in Glycaemic Control. Mol. Aspects Med. 2019;68:90–100. doi: 10.1016/j.mam.2019.07.001. PubMed DOI
Scheele C., Wolfrum C. Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocr. Rev. 2020;41:53–65. doi: 10.1210/endrev/bnz007. PubMed DOI PMC
Zhang B., Yang Y., Xiang L., Zhao Z., Ye R. Adipose-Derived Exosomes: A Novel Adipokine in Obesity-Associated Diabetes. J. Cell. Physiol. 2019;234:16692–16702. doi: 10.1002/jcp.28354. PubMed DOI
Nedergaard J., Bengtsson T., Cannon B. Unexpected Evidence for Active Brown Adipose Tissue in Adult Humans. Am. J. Physiol. Endocrinol. Metab. 2007;293:E444–E452. doi: 10.1152/ajpendo.00691.2006. PubMed DOI
Djebali S., Davis C.A., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F., et al. Landscape of Transcription in Human Cells. Nature. 2012;489:101–108. doi: 10.1038/nature11233. PubMed DOI PMC
Gil N., Ulitsky I. Regulation of Gene Expression by Cis -Acting Long Non-Coding RNAs. Nat. Rev. Genet. 2019;21:102–117. doi: 10.1038/s41576-019-0184-5. PubMed DOI
Yao R.-W., Wang Y., Chen L.-L. Cellular Functions of Long Noncoding RNAs. Nat. Cell Biol. 2019;21:542–551. doi: 10.1038/s41556-019-0311-8. PubMed DOI
Nguyen T.C., Zaleta-Rivera K., Huang X., Dai X., Zhong S. RNA, Action through Interactions. Trends Genet. TIG. 2018;34:867–882. doi: 10.1016/j.tig.2018.08.001. PubMed DOI PMC
Yi W., Li J., Zhu X., Wang X., Fan L., Sun W., Liao L., Zhang J., Li X., Ye J., et al. CRISPR-Assisted Detection of RNA–Protein Interactions in Living Cells. Nat. Methods. 2020;17:685–688. doi: 10.1038/s41592-020-0866-0. PubMed DOI
Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., et al. The GENCODE v7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression. Genome Res. 2012;22:1775–1789. doi: 10.1101/gr.132159.111. PubMed DOI PMC
Bai Z., Chai X., Yoon M.J., Kim H.-J., Lo K.A., Zhang Z., Xu D., Siang D.T.C., Walet A.C.E., Xu S., et al. Dynamic Transcriptome Changes during Adipose Tissue Energy Expenditure Reveal Critical Roles for Long Noncoding RNA Regulators. PLoS Biol. 2017;15:e2002176. doi: 10.1371/journal.pbio.2002176. PubMed DOI PMC
Schmidt E., Dhaouadi I., Gaziano I., Oliverio M., Klemm P., Awazawa M., Mitterer G., Fernandez-Rebollo E., Pradas-Juni M., Wagner W., et al. LincRNA H19 Protects from Dietary Obesity by Constraining Expression of Monoallelic Genes in Brown Fat. Nat. Commun. 2018;9:3622. doi: 10.1038/s41467-018-05933-8. PubMed DOI PMC
Bast-Habersbrunner A., Kiefer C., Weber P., Fromme T., Schießl A., Schwalie P.C., Deplancke B., Li Y., Klingenspor M. LncRNA Ctcflos Orchestrates Transcription and Alternative Splicing in Thermogenic Adipogenesis. EMBO Rep. 2021;22:e51289. doi: 10.15252/embr.202051289. PubMed DOI PMC
Alcalá M., Calderon-Dominguez M., Bustos E., Ramos P., Casals N., Serra D., Viana M., Herrero L. Increased Inflammation, Oxidative Stress and Mitochondrial Respiration in Brown Adipose Tissue from Obese Mice. Sci. Rep. 2017;7:16082. doi: 10.1038/s41598-017-16463-6. PubMed DOI PMC
Galarraga M., Campión J., Muñoz-Barrutia A., Boqué N., Moreno H., Martínez J.A., Milagro F., Ortiz-de-Solórzano C. Adiposoft: Automated Software for the Analysis of White Adipose Tissue Cellularity in Histological Sections. J. Lipid Res. 2012;53:2791–2796. doi: 10.1194/jlr.D023788. PubMed DOI PMC
Martin M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Alvarez-Dominguez J.R., Bai Z., Xu D., Yuan B., Lo K.A., Yoon M.J., Lim Y.C., Knoll M., Slavov N., Chen S., et al. De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Novel Long Non-Coding RNAs That Regulate Brown Adipocyte Development. Cell Metab. 2015;21:764–776. doi: 10.1016/j.cmet.2015.04.003. PubMed DOI PMC
Pradas-Juni M., Hansmeier N.R., Link J.C., Schmidt E., Larsen B.D., Klemm P., Meola N., Topel H., Loureiro R., Dhaouadi I., et al. A MAFG-LncRNA Axis Links Systemic Nutrient Abundance to Hepatic Glucose Metabolism. Nat. Commun. 2020;11:644. doi: 10.1038/s41467-020-14323-y. PubMed DOI PMC
Alexa A., Rahnenführer J., Lengauer T. Improved Scoring of Functional Groups from Gene Expression Data by Decorrelating GO Graph Structure. Bioinformatics. 2006;22:1600–1607. doi: 10.1093/bioinformatics/btl140. PubMed DOI
Yu G., He Q.-Y. ReactomePA: An R/Bioconductor Package for Reactome Pathway Analysis and Visualization. Mol. Biosyst. 2016;12:477–479. doi: 10.1039/C5MB00663E. PubMed DOI
Wang L., Park H.J., Dasari S., Wang S., Kocher J.-P., Li W. CPAT: Coding-Potential Assessment Tool Using an Alignment-Free Logistic Regression Model. Nucleic Acids Res. 2013;41:e74. doi: 10.1093/nar/gkt006. PubMed DOI PMC
Doench J.G., Hartenian E., Graham D.B., Tothova Z., Hegde M., Smith I., Sullender M., Ebert B.L., Xavier R.J., Root D.E. Rational Design of Highly Active SgRNAs for CRISPR-Cas9-Mediated Gene Inactivation. Nat. Biotechnol. 2014;32:1262–1267. doi: 10.1038/nbt.3026. PubMed DOI PMC
Konermann S., Brigham M.D., Trevino A.E., Joung J., Abudayyeh O.O., Barcena C., Hsu P.D., Habib N., Gootenberg J.S., Nishimasu H., et al. Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex. Nature. 2015;517:583–588. doi: 10.1038/nature14136. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Zhu A., Ibrahim J.G., Love M.I. Heavy-Tailed Prior Distributions for Sequence Count Data: Removing the Noise and Preserving Large Differences. Bioinformatics. 2018;35:2084–2092. doi: 10.1093/bioinformatics/bty895. PubMed DOI PMC
Henriques F., Bedard A.H., Guilherme A., Kelly M., Chi J., Zhang P., Lifshitz L.M., Bellvé K., Rowland L.A., Yenilmez B., et al. Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Rep. 2020;32:107998. doi: 10.1016/j.celrep.2020.107998. PubMed DOI PMC
Natoli G., Andrau J.-C. Noncoding Transcription at Enhancers: General Principles and Functional Models. Annu. Rev. Genet. 2012;46:1–19. doi: 10.1146/annurev-genet-110711-155459. PubMed DOI
Anderson D.M., Anderson K.M., Chang C.-L., Makarewich C.A., Nelson B.R., McAnally J.R., Kasaragod P., Shelton J.M., Liou J., Bassel-Duby R., et al. A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance. Cell. 2015;160:595–606. doi: 10.1016/j.cell.2015.01.009. PubMed DOI PMC
Lundh M., Pluciñska K., Isidor M.S., Petersen P.S.S., Emanuelli B. Bidirectional Manipulation of Gene Expression in Adipocytes Using CRISPRa and SiRNA. Mol. Metab. 2017;6:1313–1320. doi: 10.1016/j.molmet.2017.07.001. PubMed DOI PMC
Rui L. Brown and Beige Adipose Tissues in Health and Disease. Compr. Physiol. 2017;7:1281–1306. doi: 10.1002/cphy.c170001. PubMed DOI PMC
Matsui M., Corey D.R. Perspectives: Noncoding RNAs as Drug Targets. Nat. Rev. Drug Discov. 2017;16:167–179. doi: 10.1038/nrd.2016.117. PubMed DOI PMC
Wahlestedt C. Targeting Long Non-Coding RNA to Therapeutically Upregulate Gene Expression. Nat. Rev. Drug Discov. 2013;12:433–446. doi: 10.1038/nrd4018. PubMed DOI
Sun L., Lin J.D. Function and Mechanism of Long Noncoding RNAs in Adipocyte Biology. Diabetes. 2019;68:887–896. doi: 10.2337/dbi18-0009. PubMed DOI PMC
Seale P., Kajimura S., Yang W., Chin S., Rohas L.M., Uldry M., Tavernier G., Langin D., Spiegelman B.M. Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metab. 2007;6:38–54. doi: 10.1016/j.cmet.2007.06.001. PubMed DOI PMC
Seale P., Conroe H.M., Estall J., Kajimura S., Frontini A., Ishibashi J., Cohen P., Cinti S., Spiegelman B.M. Prdm16 Determines the Thermogenic Program of Subcutaneous White Adipose Tissue in Mice. J. Clin. Investig. 2011;121:96–105. doi: 10.1172/JCI44271. PubMed DOI PMC
Siersbæk M.S., Loft A., Aagaard M.M., Nielsen R., Schmidt S.F., Petrovic N., Nedergaard J., Mandrup S. Genome-Wide Profiling of Peroxisome Proliferator-Activated Receptor γ in Primary Epididymal, Inguinal, and Brown Adipocytes Reveals Depot-Selective Binding Correlated with Gene Expression. Mol. Cell. Biol. 2012;32:3452–3463. doi: 10.1128/MCB.00526-12. PubMed DOI PMC
Ji Z., Song R., Regev A., Struhl K. Many LncRNAs, 5′UTRs, and Pseudogenes Are Translated and Some Are Likely to Express Functional Proteins. eLife. 2015;4:e08890. doi: 10.7554/eLife.08890. PubMed DOI PMC
Gil N., Ulitsky I. Production of Spliced Long Noncoding RNAs Specifies Regions with Increased Enhancer Activity. Cell Syst. 2018;7:537–547. doi: 10.1016/j.cels.2018.10.009. PubMed DOI PMC
Maffei M., Barone I., Scabia G., Santini F. The Multifaceted Haptoglobin in the Context of Adipose Tissue and Metabolism. Endocr. Rev. 2016;37:403–416. doi: 10.1210/er.2016-1009. PubMed DOI
Sommer G., Weise S., Kralisch S., Scherer P.E., Lössner U., Blüher M., Stumvoll M., Fasshauer M. The Adipokine SAA3 Is Induced by Interleukin-1β in Mouse Adipocytes. J. Cell. Biochem. 2008;104:2241–2247. doi: 10.1002/jcb.21782. PubMed DOI
Sommer G., Weise S., Kralisch S., Lossner U., Bluher M., Stumvoll M., Fasshauer M. Lipocalin-2 Is Induced by Interleukin-1β in Murine Adipocytes in Vitro. J. Cell. Biochem. 2009;106:103–108. doi: 10.1002/jcb.21980. PubMed DOI
Guerra C., Navarro P., Valverde A.M., Arribas M., Brüning J., Kozak L.P., Kahn C.R., Benito M. Brown Adipose Tissue–Specific Insulin Receptor Knockout Shows Diabetic Phenotype without Insulin Resistance. J. Clin. Investig. 2001;108:1205–1213. doi: 10.1172/JCI13103. PubMed DOI PMC
Lowell B.B., S-Susulic V., Hamann A., Lawitts J.A., Himms-Hagen J., Boyer B.B., Kozak L.P., Flier J.S. Development of Obesity in Transgenic Mice after Genetic Ablation of Brown Adipose Tissue. Nature. 1993;366:740–742. doi: 10.1038/366740a0. PubMed DOI
Sun L., Goff L.A., Trapnell C., Alexander R., Lo K.A., Hacisuleyman E., Sauvageau M., Tazon-Vega B., Kelley D.R., Hendrickson D.G., et al. Long Noncoding RNAs Regulate Adipogenesis. Proc. Natl. Acad. Sci. USA. 2013;110:3387–3392. doi: 10.1073/pnas.1222643110. PubMed DOI PMC
Hughes M.R., Canals Hernaez D., Cait J., Refaeli I., Lo B.C., Roskelley C.D., McNagny K.M. A Sticky Wicket: Defining Molecular Functions for CD34 in Hematopoietic Cells. Exp. Hematol. 2020;86:1–14. doi: 10.1016/j.exphem.2020.05.004. PubMed DOI
Qian W., Liao B.-Y., Chang A.Y.-F., Zhang J. Maintenance of Duplicate Genes and Their Functional Redundancy by Reduced Expression. Trends Genet. 2010;26:425–430. doi: 10.1016/j.tig.2010.07.002. PubMed DOI PMC
Goudarzi M., Berg K., Pieper L.M., Schier A.F. Individual Long Non-Coding RNAs Have No Overt Functions in Zebrafish Embryogenesis, Viability and Fertility. eLife. 2019;8:e40815. doi: 10.7554/eLife.40815. PubMed DOI PMC
Han X., Luo S., Peng G., Lu J.Y., Cui G., Liu L., Yan P., Yin Y., Liu W., Wang R., et al. Mouse Knockout Models Reveal Largely Dispensable but Context-Dependent Functions of LncRNAs during Development. J. Mol. Cell Biol. 2018;10:175–178. doi: 10.1093/jmcb/mjy003. PubMed DOI
Palazzo A.F., Lee E.S. Non-Coding RNA: What Is Functional and What Is Junk? Front. Genet. 2015;6:2. doi: 10.3389/fgene.2015.00002. PubMed DOI PMC
Sanchez-Gurmaches J., Hung C.-M., Guertin D.A. Emerging Complexities in Adipocyte Origins and Identity. Trends Cell Biol. 2016;26:313–326. doi: 10.1016/j.tcb.2016.01.004. PubMed DOI PMC