Discovery of nostatin A, an azole-containing proteusin with prominent cytostatic and pro-apoptotic activity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39576263
PubMed Central
PMC11583998
DOI
10.1039/d4ob01395f
Knihovny.cz E-zdroje
- MeSH
- apoptóza * účinky léků MeSH
- cytostatické látky farmakologie chemie izolace a purifikace chemická syntéza MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- Nostoc chemie metabolismus MeSH
- objevování léků MeSH
- proliferace buněk * účinky léků MeSH
- protinádorové látky * farmakologie chemie izolace a purifikace chemická syntéza MeSH
- screeningové testy protinádorových léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytostatické látky MeSH
- protinádorové látky * MeSH
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are intriguing compounds with potential pharmacological applications. While many RiPPs are known as antimicrobial agents, a limited number of RiPPs with anti-proliferative effects in cancer cells are available. Here we report the discovery of nostatin A (NosA), a highly modified RiPP belonging among nitrile hydratase-like leader peptide RiPPs (proteusins), isolated from a terrestrial cyanobacterium Nostoc sp. Its structure was established based on the core peptide sequence encoded in the biosynthetic gene cluster recovered from the producing strain and subsequent detailed nuclear magnetic resonance and high-resolution mass spectrometry analyses. NosA, composed of a 30 amino-acid peptide core, features a unique combination of moieties previously not reported in RiPPs: the simultaneous presence of oxazole/thiazole heterocycles, dehydrobutyrine/dehydroalanine residues, and a sactionine bond. NosA includes an isobutyl-modified proline residue, highly unusual in natural products. NosA inhibits proliferation of multiple cancer cell lines at low nanomolar concentration while showing no hemolysis. It induces cell cycle arrest in S-phase followed by mitochondrial apoptosis employing a mechanism different from known tubulin binding and DNA damaging compounds. NosA also inhibits Staphylococcus strains while it exhibits no effect in other tested bacteria or yeasts. Due to its novel structure and selective bioactivity, NosA represents an excellent candidate for combinatorial chemistry approaches leading to development of novel NosA-based lead compounds.
Institute for Developmental Immunology Medical University of Innsbruck Biocenter Innsbruck Austria
Institute of Molecular Genetics Czech Academy of Sciences Vídeňská 1083 142 20 Praha
Institute of Pharmacy Freie Universität Berlin Königin Luise Str 2 4 14195 Berlin Germany
Institute of Pharmacy Martin Luther University Halle Wittenberg Hoher Weg 8 06120 Halle Germany
Zobrazit více v PubMed
Arnison P. G. Bibb M. J. Bierbaum G. Bowers A. A. Bugni T. S. Bulaj G. Camarero J. A. Campopiano D. J. Challis G. L. Clardy J. Cotter P. D. Craik D. J. Dawson M. Dittmann E. Donadio S. Dorrestein P. C. Entian K. D. Fischbach M. A. Garavelli J. S. Göransson U. Gruber C. W. Haft D. H. Hemscheidt T. K. Hertweck C. Hill C. Horswill A. R. Jaspars M. Kelly W. L. Klinman J. P. Kuipers O. P. Link A. J. Liu W. Marahiel M. A. Mitchell D. A. Moll G. N. Moore B. S. Müller R. Nair S. K. Nes I. F. Norris G. E. Olivera B. M. Onaka H. Patchett M. L. Piel J. Reaney M. J. T. Rebuffat S. Ross R. P. Sahl H. G. Schmidt E. W. Selsted M. E. Severinov K. Shen B. Sivonen K. Smith L. Stein T. Süssmuth R. D. Tagg J. R. Tang G. L. Truman A. W. Vederas J. C. Walsh C. T. Walton J. D. Wenzel S. C. Willey J. M. van der Donk W. A. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013;30:108–160. doi: 10.1039/C2NP20085F. PubMed DOI PMC
Cao L. Do T. Link A. J. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs) J. Ind. Microbiol. Biotechnol. 2021;48 doi: 10.1093/jimb/kuab005. https://dx.doi.org/10.1093/jimb/kuab005 PubMed DOI PMC
Russell A. H. Truman A. W. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput. Struct. Biotechnol. J. 2020;18:1838–1851. doi: 10.1016/j.csbj.2020.06.032. PubMed DOI PMC
Repka L. M. Chekan J. R. Nair S. K. van der Donka W. A. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem. Rev. 2017;117:5457–5520. doi: 10.1021/acs.chemrev.6b00591. PubMed DOI PMC
Melby J. O. Nard N. J. Mitchell D. A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 2011;15:369–378. doi: 10.1016/j.cbpa.2011.02.027. PubMed DOI PMC
Dunbar K. L. Melby J. O. Mitchell D. A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 2012;8:569–575. doi: 10.1038/nchembio.944. PubMed DOI PMC
Sivonen K. Leikoski N. Fewer D. P. Jokela J. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 2010;86:1213–1225. doi: 10.1007/s00253-010-2482-x. PubMed DOI PMC
Kim M. Y. Vankayalapati H. Kazuo S. Wierzba K. Hurley L. H. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J. Am. Chem. Soc. 2002;124:2098–2099. doi: 10.1021/ja017308q. PubMed DOI
Duquesne S. Petit V. Peduzzi J. Rebuffat S. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J. Mol. Microbiol. Biotechnol. 2007;13:200–209. PubMed
Onaka H. Tabata H. Igarashi Y. Sato Y. Furumai T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes - I. Purification and characterization. J. Antibiot. 2001;54:1036–1044. doi: 10.7164/antibiotics.54.1036. PubMed DOI
Haft D. H. Basu M. K. Mitchell D. A. Expansion of ribosomally produced natural products: a nitrile hydratase-and Nif11-related precursor family. BMC Biol. 2010;8 doi: 10.1186/1741-7007-8-70. https://dx.doi.org/10.1186/1741-7007-8-70 PubMed DOI PMC
Bösch N. M. Borsa M. Greczmiel U. Morinaka B. I. Gugger M. Oxenius A. Vagstad A. L. Piel J. Landornamides: Antiviral Ornithine-Containing Ribosomal Peptides Discovered through Genome Mining. Angew. Chem., Int. Ed. 2020;59:11763–11768. doi: 10.1002/anie.201916321. PubMed DOI
Nguyen N. A. Cong Y. Hurrell R. C. Arias N. Garg N. Puri A. W. Schmidt E. W. Agarwal V. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase. ACS Chem. Biol. 2022;17:1577–1585. doi: 10.1021/acschembio.2c00251. PubMed DOI PMC
Hamada T. Matsunaga S. Yano G. Fusetani N. Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoeiii. J. Am. Chem. Soc. 2005;127:110–118. doi: 10.1021/ja045749e. PubMed DOI
Freeman M. F. Vagstad A. L. Piel J. Polytheonamide biosynthesis showcasing the metabolic potential of sponge-associated uncultivated ‘Entotheonella’ bacteria. Curr. Opin. Chem. Biol. 2016;31:8–14. doi: 10.1016/j.cbpa.2015.11.002. PubMed DOI
Evan G. I. Vousden K. H. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–348. doi: 10.1038/35077213. PubMed DOI
Rayan A. Raiyn J. Falah M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One. 2017;12 doi: 10.1371/journal.pone.0187925. https://dx.doi.org/10.1371/journal.pone.0187925 PubMed DOI PMC
Butler M. S. Robertson A. A. B. Cooper M. A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014;31:1612–1661. doi: 10.1039/C4NP00064A. PubMed DOI
Pucci B. Kasten M. Giordano A. Cell cycle and apoptosis. Neoplasia. 2000;2:291–299. doi: 10.1038/sj.neo.7900101. PubMed DOI PMC
Shi Y. G. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell. 2002;9:459–470. doi: 10.1016/S1097-2765(02)00482-3. PubMed DOI
Voracova K. Paichlova J. Vickova K. Hrouzek P. Screening of cyanobacterial extracts for apoptotic inducers: a combined approach of caspase-3/7 homogeneous assay and time-lapse microscopy. J. Appl. Phycol. 2017;29:1933–1943. doi: 10.1007/s10811-017-1122-6. DOI
Freeman M. F. Helf M. J. Bhushan A. Morinaka B. I. Piel J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 2017;9:387–395. doi: 10.1038/nchem.2666. PubMed DOI
Wang Z. Q. Forelli N. Hernandez Y. Ternei M. Brady S. F. Lapcin, a potent dual topoisomerase I/II inhibitor discovered by soil metagenome guided total chemical synthesis. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-28292-x. PubMed DOI PMC
Opekar S. Zahradnícková H. Vodrázka P. Rimnácová L. Simek P. Moos M. A chiral GC-MS method for analysis of secondary amino acids after heptafluorobutyl chloroformate & methylamine derivatization. Amino Acids. 2021;53:347–358. doi: 10.1007/s00726-021-02949-1. PubMed DOI
Zahradnícková H. Opekar S. Rimnácová L. Simek P. Moos M. Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids. 2022;54:687–719. doi: 10.1007/s00726-022-03136-6. PubMed DOI
Benjdia A. Berteau O. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes. Front. Chem. 2021;9 doi: 10.3389/fchem.2021.678068. PubMed DOI PMC
Travin D. Y. Watson Z. L. Metelev M. Ward F. R. Osterman I. A. Khven I. M. Khabibullina N. F. Serebryakova M. Mergaert P. Polikanov Y. S. Cate J. H. D. Severinov K. Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition. Nat. Commun. 2019;10 doi: 10.1038/s41467-019-12589-5. PubMed DOI PMC
Suzuki M. Komaki H. Kaweewan I. Dohra H. Hemmi H. Nakagawa H. Yamamura H. Hayakawa M. Kodani S. Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl. Microbiol. Biotechnol. 2021;105:93–104. doi: 10.1007/s00253-020-11016-w. PubMed DOI
Naidu B. N. Sorenson M. E. Connolly T. P. Ueda Y. Michael addition of amines and thiols to dehydroalanine amides: A remarkable rate acceleration in water. J. Org. Chem. 2003;68:10098–10102. doi: 10.1021/jo034762z. PubMed DOI
Chen Y. L. Wang J. X. Li G. Q. Yang Y. P. Ding W. Current Advancements in Sactipeptide Natural Products. Front. Chem. 2021;9 doi: 10.3389/fchem.2021.595991. PubMed DOI PMC
Mahanta N. Hudson G. A. Mitchell D. A. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis. Biochemistry. 2017;56:5229–5244. doi: 10.1021/acs.biochem.7b00771. PubMed DOI PMC
Golakoti T. Yoshida W. Y. Chaganty S. Moore R. E. Isolation and structure determination of nostocyclopeptides A1 and A2 from the terrestrial cyanobacterium Nostoc, sp ATCC53789. J. Nat. Prod. 2001;64:54–59. doi: 10.1021/np000316k. PubMed DOI
Fewer D. P. Jokela J. Rouhiainen L. Wahlsten M. Koskenniemi K. Stal L. J. Sivonen K. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 2009;73:924–937. doi: 10.1111/j.1365-2958.2009.06816.x. PubMed DOI
Tomek P. Hrouzek P. Kuzma M. Sykora J. Fiser R. Cerny J. Novák P. Bártová S. Simek P. Hof M. Kavan D. Kopecky J. Cytotoxic Lipopeptide Muscotoxin A, Isolated from Soil Cyanobacterium Desmonostoc muscorum, Permeabilizes Phospholipid Membranes by Reducing Their Fluidity. Chem. Res. Toxicol. 2015;28:216–224. PubMed
Janata J. Kamenik Z. Gazak R. Kadlcik S. Najmanova L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat. Prod. Rep. 2018;35:257–289. doi: 10.1039/C7NP00047B. PubMed DOI
Hoffmann D. Hevel J. M. Moore R. E. Moore B. S. Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp GSV224. Gene. 2003;311:171–180. doi: 10.1016/S0378-1119(03)00587-0. PubMed DOI
Jiraskova P. Gazak R. Kamenik Z. Steiningerova L. Najmanova L. Kadlcik S. Novotna J. Kuzma M. Janata J. New Concept of the Biosynthesis of 4-Alkyl-L-Proline Precursors of Lincomycin, Hormaomycin, and Pyrrolobenzodiazepines: Could a γ-Glutamyltransferase Cleave the C-C Bond? Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00276. PubMed DOI PMC
Spaller B. L. Trieu J. M. Almeida P. F. Hemolytic Activity of Membrane-Active Peptides Correlates with the Thermodynamics of Binding to 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine Bilayers. J. Membr. Biol. 2013;246:257–262. doi: 10.1007/s00232-013-9525-z. PubMed DOI PMC
Hudson G. A. Mitchell D. A. RiPP antibiotics: biosynthesis and engineering potential. Curr. Opin. Microbiol. 2018;45:61–69. doi: 10.1016/j.mib.2018.02.010. PubMed DOI PMC
Di Cesare E. Verrico A. Miele A. Giubettini M. Rovella P. Coluccia A. Famiglini V. La Regina G. Cundari E. Silvestri R. Lavia P. Mitotic cell death induction by targeting the mitotic spindle with tubulin-inhibitory indole derivative molecules. Oncotarget. 2017;8:19738–19759. doi: 10.18632/oncotarget.14980. PubMed DOI PMC
Kingston D. G. I. Tubulin-Interactive Natural Products as Anticancer Agents. J. Nat. Prod. 2009;72:507–515. doi: 10.1021/np800568j. PubMed DOI PMC
Martano G. Delmotte N. Kiefer P. Christen P. Kentner D. Bumann D. Vorholt J. A. Fast sampling method for mammalian cell metabolic analyses using liquid chromatography-mass spectrometry. Nat. Protoc. 2015;10:1–11. doi: 10.1038/nprot.2014.198. PubMed DOI
Moos M. Korbelova J. Stetina T. Opekar S. Simek P. Grgac R. Kostal V. Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Chymomyza costata. Metabolites. 2022;12 doi: 10.3390/metabo12020163. https://dx.doi.org/10.3390/metabo12020163 PubMed DOI PMC
Nordlund N. Reichard P. Ribonucleotide reductases. Annu. Rev. Biochem. 2006;75:681–706. doi: 10.1146/annurev.biochem.75.103004.142443. PubMed DOI
Nocentini G. Ribonucleotide reductase inhibitors: New strategies for cancer chemotherapy. Crit. Rev. Oncol. Hematol. 1996;22:89–126. doi: 10.1016/1040-8428(95)00187-5. PubMed DOI