Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Chymomyza costata
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-13381S
Czech Science Foundation
17-22276S
Czech Science Foundation
PubMed
35208237
PubMed Central
PMC8877510
DOI
10.3390/metabo12020163
PII: metabo12020163
Knihovny.cz E-zdroje
- Klíčová slova
- betaine, cryoprotectant metabolites, metabolic pathways, metabolomics, proline, transcriptomics, trehalose,
- Publikační typ
- časopisecké články MeSH
Many cold-acclimated insects accumulate high concentrations of low molecular weight cryoprotectants (CPs) in order to tolerate low subzero temperatures or internal freezing. The sources from which carbon skeletons for CP biosynthesis are driven, and the metabolic reprogramming linked to cold acclimation, are not sufficiently understood. Here we aim to resolve the metabolism of putative CPs by mapping relative changes in concentration of 56 metabolites and expression of 95 relevant genes as larvae of the drosophilid fly, Chymomyza costata transition from a freeze sensitive to a freeze tolerant phenotype during gradual cold acclimation. We found that C. costata larvae may directly assimilate amino acids proline and glutamate from diet to acquire at least half of their large proline stocks (up to 55 µg per average 2 mg larva). Metabolic conversion of internal glutamine reserves that build up in early diapause may explain the second half of proline accumulation, while the metabolic conversion of ornithine and the degradation of larval collagens and other proteins might be two additional minor sources. Next, we confirm that glycogen reserves represent the major source of glucose units for trehalose synthesis and accumulation (up to 27 µg per larva), while the diet may serve as an additional source. Finally, we suggest that interconversions of phospholipids may release accumulated glycero-phosphocholine (GPC) and -ethanolamine (GPE). Choline is a source of accumulated methylamines: glycine-betaine and sarcosine. The sum of methylamines together with GPE and GPC represents approximately 2 µg per larva. In conclusion, we found that food ingestion may be an important source of carbon skeletons for direct assimilation of, and/or metabolic conversions to, CPs in a diapausing and cold-acclimated insect. So far, the cold-acclimation- linked accumulation of CPs in insects was considered to be sourced mainly from internal macromolecular reserves.
Zobrazit více v PubMed
Somero G. Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1986;251:R197–R213. doi: 10.1152/ajpregu.1986.251.2.R197. PubMed DOI
Yancey P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 2005;208:2819–2830. doi: 10.1242/jeb.01730. PubMed DOI
Yancey P.H., Siebenaller J.F. Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 2015;218:1880–1896. doi: 10.1242/jeb.114355. PubMed DOI
Hochachka P., Somero G. Biochemical Adaptation. Mechanism and Process in Physiological Evolution. Oxford University Press; Oxford, UK: 2002. p. 478.
Lee R.E.J. A primer on insect cold-tolerance. In: Denlinger D.L., Lee R.E.J., editors. Low Temperature Biology of Insects. Cambridge University Press; Cambridge, UK: 2010.
Toxopeus J., Sinclair B.J. Mechanisms underlying insect freeze tolerance. Biol. Rev. 2018;93:1891–1914. doi: 10.1111/brv.12425. PubMed DOI
Teets N.M., Denlinger D.L. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 2013;38:105–116. doi: 10.1111/phen.12019. DOI
Storey K.B. Organic solutes in freezing tolerance. Comp. Biochem. Physiol. A. 1997;117:319–326. doi: 10.1016/S0300-9629(96)00270-8. PubMed DOI
Salt R. Principles of insect cold-hardiness. Annu. Rev. Entomol. 1961;6:55–74. doi: 10.1146/annurev.en.06.010161.000415. DOI
Lee R.E. Insects at Low Temperature. Springer; Berlin/Heidelberg, Germany: 1991. Principles of insect low temperature tolerance; pp. 17–46.
Zachariassen K.E. Physiology of cold tolerance in insects. Physiol. Rev. 1985;65:799–832. doi: 10.1152/physrev.1985.65.4.799. PubMed DOI
Holmstrup M., Westh P. Dehydration of earthworm cocoons exposed to cold: A novel cold hardiness mechanism. J. Comp. Physiol. B. 1994;164:312–315. doi: 10.1007/BF00346448. DOI
Hayakawa Y., Chino H. Temperature-dependent interconversion between glycogen and trehalose in diapausing pupae of Philosamia cynthia ricini and pryeri. Insect Biochem. 1981;11:43–47. doi: 10.1016/0020-1790(81)90039-1. DOI
Storey J.M., Storey K.B. Winter survival of the gall fly larva, Eurosta solidaginis: Profiles of fuel reserves and cryoprotectants in a natural population. J. Insect Physiol. 1986;32:549–556. doi: 10.1016/0022-1910(86)90070-3. DOI
Rickards J., Kelleher M.J., Storey K.B. Strategies of freeze avoidance in larvae of the goldenrod gall moth, Epiblema scudderiana: Winter profiles of a natural population. J. Insect Physiol. 1987;33:443–450. doi: 10.1016/0022-1910(87)90024-2. DOI
Koštál V., Tollarova M., Šula J. Adjustments of the enzymatic complement for polyol biosynthesis and accumulation in diapausing cold-acclimated adults of Pyrrhocoris apterus. J. Insect Physiol. 2004;50:303–313. doi: 10.1016/j.jinsphys.2004.01.006. PubMed DOI
Storey J.M., Storey K.B. Triggering of cryoprotectant synthesis by the initiation of ice nucleation in the freeze tolerant frog, Rana sylvatica. J. Comp. Physiol. B. 1985;156:191–195. doi: 10.1007/BF00695773. DOI
Calderon S., Holmstrup M., Westh P., Overgaard J. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: Cryoprotection and fuel for metabolism. J. Exp. Biol. 2009;212:859–866. doi: 10.1242/jeb.026864. PubMed DOI
Koštál V., Zahradníčková H., Šimek P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. USA. 2011;108:13041–13046. doi: 10.1073/pnas.1107060108. PubMed DOI PMC
Rozsypal J., Moos M., Šimek P., Koštál V. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J. Exp. Biol. 2018;221:170464. doi: 10.1242/jeb.170464. PubMed DOI
Des Marteaux L.E., Hůla P., Koštál V. Transcriptional analysis of insect extreme freeze tolerance. Proc. R. Soc. B. 2019;286:20192019. doi: 10.1098/rspb.2019.2019. PubMed DOI PMC
Kučera L., Moos M., Štetina T., Korbelová J., Vodrážka P., Marteaux L.D., Grgac R., Hula P., Rozsypal J., Faltus M., et al. A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. bioRxiv. 2022 PubMed
Denlinger D.L. Relationship between cold hardiness and diapause. In: Lee R.E., Denlinger D.L., editors. Insects at Low Temperature. Chapmann and Hall; New York, NY, USA: 1991. pp. 174–198.
MacRae T.H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 2010;67:2405–2424. doi: 10.1007/s00018-010-0311-0. PubMed DOI PMC
Ragland G.J., Denlinger D.L., Hahn D.A. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc. Natl. Acad. Sci. USA. 2010;107:14909–14914. doi: 10.1073/pnas.1007075107. PubMed DOI PMC
Koštál V., Štětina T., Poupardin R., Korbelová J., Bruce A.W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. USA. 2017;114:8532–8537. doi: 10.1073/pnas.1707281114. PubMed DOI PMC
Hahn D.A., Denlinger D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011;56:103–121. doi: 10.1146/annurev-ento-112408-085436. PubMed DOI
Storey K.B., Storey J.M. Insects at Low Temperature. Springer; Berlin/Heidelberg, Germany: 1991. Biochemistry of cryoprotectants; pp. 64–93.
Šlachta M., Vambera J., Zahradníčková H., Košťál V. Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera: Pentatomidae) J. Insect Physiol. 2002;48:1031–1039. doi: 10.1016/S0022-1910(02)00191-9. PubMed DOI
Hayakawa Y. Activation mechanism of insect fat body phosphorylase by cold phosphorylase kinase, phosphatase and ATP level. Insect Biochem. 1985;15:123–128. doi: 10.1016/0020-1790(85)90052-6. DOI
Storey K.B., Storey J.M. Biochemical strategies of overwintering in the gall gly larva, Eurosta solidaginis: Effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 1981;144:191–199. doi: 10.1007/BF00802757. DOI
Storey K.B., Storey J.M. Insect cold hardiness: Metabolic, gene, and protein adaptation. Can. J. Zool. 2012;90:456–475. doi: 10.1139/z2012-011. DOI
Storey K.B., Storey J.M. Molecular biology of freezing tolerance. Compr. Physiol. 2013;3:1283–1308. PubMed
Pfister T.D., Storey K.B. Insect freeze tolerance: Roles of protein phosphatases and protein kinase A. Insect Biochem. Mol. Biol. 2006;36:18–24. doi: 10.1016/j.ibmb.2005.10.002. PubMed DOI
Wanner L.A., Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 1999;120:391–400. doi: 10.1104/pp.120.2.391. PubMed DOI PMC
Nagao M., Minami A., Arakawa K., Fujikawa S., Takezawa D. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J. Plant Physiol. 2005;162:169–180. doi: 10.1016/j.jplph.2004.06.012. PubMed DOI
Morgan T., Chippendale G. Free amino acids of the haemolymph of the southwestern corn borer and the European corn borer in relation to their diapause. J. Insect Physiol. 1983;29:735–740. doi: 10.1016/0022-1910(83)90001-X. DOI
Fields P.G., Fleurat-Lessard F., Lavenseau L., Febvay G., Peypelut L., Bonnot G. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera) J. Insect Physiol. 1998;44:955–965. doi: 10.1016/S0022-1910(98)00055-9. PubMed DOI
Shimada K., Riihimaa A. Cold acclimation, inoculative freezing and slow cooling: Essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae) Cryo Lett. 1988;9:5–10.
Koštál V., Renault D., Rozsypal J. Seasonal changes of free amino acids and thermal hysteresis in overwintering heteropteran insect, Pyrrhocoris apterus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011;160:245–251. doi: 10.1016/j.cbpa.2011.06.017. PubMed DOI
Koštál V., Korbelová J., Poupardin R., Moos M., Šimek P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 2016;219:2358–2367. doi: 10.1242/jeb.142158. PubMed DOI
Koštál V., Šimek P., Zahradníčková H., Cimlová J., Štětina T. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl. Acad. Sci. USA. 2012;109:3270–3274. doi: 10.1073/pnas.1119986109. PubMed DOI PMC
Li Y., Zhang L., Chen H., Koštál V., Simek P., Moos M., Denlinger D.L. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 2015;63:34–46. doi: 10.1016/j.ibmb.2015.05.012. PubMed DOI
Zhang L., Xue X., Yan J., Yan L.-Y., Jin X.-H., Zhu X.-H., He Z.-Z., Liu J., Li R., Qiao J. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification. Sci. Rep. 2016;6:1–8. doi: 10.1038/srep26326. PubMed DOI PMC
Dou M., Li Y., Sun Z., Li L., Rao W. L-proline feeding for augmented freeze tolerance of Camponotus japonicus Mayr. Sci. Bull. 2019;64:1795–1804. doi: 10.1016/j.scib.2019.09.028. PubMed DOI
Li P., Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids. 2018;50:29–38. doi: 10.1007/s00726-017-2490-6. PubMed DOI
Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Phang J.M., Liu W., Hancock C.N., Fischer J.W. Proline metabolism and cancer: Emerging links to glutamine and collagen. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:71. doi: 10.1097/MCO.0000000000000121. PubMed DOI PMC
Delauney A.J., Verma D.P.S. Proline biosynthesis and osmoregulation in plants. Plant J. 1993;4:215–223. doi: 10.1046/j.1365-313X.1993.04020215.x. DOI
Szabados L., Savouré A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI
Xin Z. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA. 1998;95:7799–7804. doi: 10.1073/pnas.95.13.7799. PubMed DOI PMC
Sakamoto A., Murata N. The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant Cell Environ. 2002;25:163–171. doi: 10.1046/j.0016-8025.2001.00790.x. PubMed DOI
Trüper H.G., Galinski E.A. Biosynthesis and fate of compatible solutes in extremely halophilic phototrophic eubacteria. FEMS Microbiol. Rev. 1990;6:247–254. doi: 10.1016/0378-1097(90)90535-X. DOI
Sakamoto A., Valverde R., Chen T.H., Murata N. Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J. 2000;22:449–453. doi: 10.1046/j.1365-313X.2000.00749.x. PubMed DOI
Chen T.H., Murata N. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 2008;13:499–505. doi: 10.1016/j.tplants.2008.06.007. PubMed DOI
Figueroa-Soto C.G., Valenzuela-Soto E.M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie. 2018;147:89–97. doi: 10.1016/j.biochi.2018.01.002. PubMed DOI
Sizeland P.C., Chambers S.T., Lever M., Bason L.M., Robson R.A. Organic osmolytes in human and other mammalian kidneys. Kidney Int. 1993;43:448–453. doi: 10.1038/ki.1993.66. PubMed DOI
Pajares M.A., Pérez-Sala D. Betaine homocysteine S-methyltransferase: Just a regulator of homocysteine metabolism? Cell. Mol. Life Sci. CMLS. 2006;63:2792–2803. doi: 10.1007/s00018-006-6249-6. PubMed DOI PMC
Nyyssölä A., Kerovuo J., Kaukinen P., von Weymarn N., Reinikainen T. Extreme halophiles synthesize betaine from glycine by methylation. J. Biol. Chem. 2000;275:22196–22201. doi: 10.1074/jbc.M910111199. PubMed DOI
Denlinger D.L. Regulation of diapause. Annu. Rev. Entomol. 2002;47:93–122. doi: 10.1146/annurev.ento.47.091201.145137. PubMed DOI
Kivirikko K.I., Kishida Y., Sakakibara S., Prockop D.J. Hydroxylation of (X-Pro-Gly) n by protocollagen proline hydroxylase Effect of chain length, helical conformation and amino acid sequence in the substrate. Biochim. Biophys. Acta (BBA) Protein Struct. 1972;271:347–356. doi: 10.1016/0005-2795(72)90209-7. PubMed DOI
Miller M.M., Popova L.B., Meleshkevitch E.A., Tran P.V., Boudko D.Y. The invertebrate B0 system transporter, D. melanogaster NAT1, has unique D-amino acid affinity and mediates gut and brain functions. Insect Biochem. Mol. Biol. 2008;38:923–931. doi: 10.1016/j.ibmb.2008.07.005. PubMed DOI PMC
LaFever K.S., Wang X., Page-McCaw P., Bhave G., Page-McCaw A. Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates. Sci. Rep. 2017;7:44560. doi: 10.1038/srep44560. PubMed DOI PMC
Hahn D.A., Denlinger D.L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 2007;53:760–773. doi: 10.1016/j.jinsphys.2007.03.018. PubMed DOI
Kostal V., Shimada K., Hayakawa Y. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. J. Insect Physiol. 2000;46:417–428. doi: 10.1016/S0022-1910(99)00124-9. PubMed DOI
Diener S., Zurbrügg C., Tockner K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009;27:603–610. doi: 10.1177/0734242X09103838. PubMed DOI
Thompson S.N. Trehalose—The insect ‘blood’sugar. Adv. Insect Physiol. 2003;31((Suppl. SC)):205–285.
Fraenkel G., Friedman S., Hinton T., Laszlo S., Noland J.L. The effect of substituting carnitine for choline in the nutrition of several organisms. Arch. Biochem. Biophys. 1955;54:432–439. doi: 10.1016/0003-9861(55)90056-4. PubMed DOI
Geer B., Vovis G., Yund M. Choline activity during the development of Drosophila melanogaster. Physiol. Zool. 1968;41:280–292. doi: 10.1086/physzool.41.3.30155461. DOI
Gallazzini M., Burg M.B. What’s new about osmotic regulation of glycerophosphocholine. Physiology. 2009;24:245–249. doi: 10.1152/physiol.00009.2009. PubMed DOI PMC
Koštál V.R., Berková P., Šimek P. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae) Comp. Biochem. Physiol. B. 2003;135:407–419. doi: 10.1016/S1096-4959(03)00117-9. PubMed DOI
Burg M.B., Ferraris J.D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem. 2008;283:7309–7313. doi: 10.1074/jbc.R700042200. PubMed DOI PMC
Burg M.B., Kwon E.D., Peters E.M. Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase. Kidney Int. Suppl. 1996;57:100–104. PubMed
Garcia-Perez A., Burg M.B. Renal medullary organic osmolytes. Physiol. Rev. 1991;71:1081–1115. doi: 10.1152/physrev.1991.71.4.1081. PubMed DOI
Kostal V., Noguchi H., Shimada K., Hayakawa Y. Developmental changes in dopamine levels in larvae of the fly Chymomyza costata: Comparison between wild-type and mutant-nondiapause strains. J. Insect Physiol. 1998;44:605–614. doi: 10.1016/S0022-1910(98)00043-2. PubMed DOI
Lakovaara S. Malt as a culture medium for Drosophila species. Drosoph. Inf. Serv. 1969;44:128.
Poupardin R., Schöttner K., Korbelová J., Provazník J., Doležel D., Pavlinic D., Beneš V., Koštál V. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genom. 2015;16:720. doi: 10.1186/s12864-015-1907-4. PubMed DOI PMC
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Kaun K.R., Riedl C.A., Chakaborty-Chatterjee M., Belay A.T., Douglas S.J., Gibbs A.G., Sokolowski M.B. Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. J. Exp. Biol. 2007;210:3547–3558. doi: 10.1242/jeb.006924. PubMed DOI
Smith P.e., Krohn R.I., Hermanson G., Mallia A., Gartner F., Provenzano M., Fujimoto E., Goeke N., Olson B., Klenk D. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI
Cross H., Carpenter Z., Smith G. Effects of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 1973;38:998–1003. doi: 10.1111/j.1365-2621.1973.tb02133.x. DOI
Bueding E., Orrell S.A. A mild procedure for the isolation of polydisperse glycogen from animal tissues. J. Biol. Chem. 1964;239:4018–4020. doi: 10.1016/S0021-9258(18)91125-7. PubMed DOI
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.T., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI
Koštál V., Tamura M., Tollarová M., Zahradníčková H. Enzymatic capacity for accumulation of polyol cryoprotectants changes during diapause development in the adult red firebug, Pyrrhocoris apterus. Physiol. Entomol. 2004;29:344–355. doi: 10.1111/j.0307-6962.2004.00396.x. DOI
The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis
Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement