Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Chymomyza costata

. 2022 Feb 09 ; 12 (2) : . [epub] 20220209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35208237

Grantová podpora
19-13381S Czech Science Foundation
17-22276S Czech Science Foundation

Many cold-acclimated insects accumulate high concentrations of low molecular weight cryoprotectants (CPs) in order to tolerate low subzero temperatures or internal freezing. The sources from which carbon skeletons for CP biosynthesis are driven, and the metabolic reprogramming linked to cold acclimation, are not sufficiently understood. Here we aim to resolve the metabolism of putative CPs by mapping relative changes in concentration of 56 metabolites and expression of 95 relevant genes as larvae of the drosophilid fly, Chymomyza costata transition from a freeze sensitive to a freeze tolerant phenotype during gradual cold acclimation. We found that C. costata larvae may directly assimilate amino acids proline and glutamate from diet to acquire at least half of their large proline stocks (up to 55 µg per average 2 mg larva). Metabolic conversion of internal glutamine reserves that build up in early diapause may explain the second half of proline accumulation, while the metabolic conversion of ornithine and the degradation of larval collagens and other proteins might be two additional minor sources. Next, we confirm that glycogen reserves represent the major source of glucose units for trehalose synthesis and accumulation (up to 27 µg per larva), while the diet may serve as an additional source. Finally, we suggest that interconversions of phospholipids may release accumulated glycero-phosphocholine (GPC) and -ethanolamine (GPE). Choline is a source of accumulated methylamines: glycine-betaine and sarcosine. The sum of methylamines together with GPE and GPC represents approximately 2 µg per larva. In conclusion, we found that food ingestion may be an important source of carbon skeletons for direct assimilation of, and/or metabolic conversions to, CPs in a diapausing and cold-acclimated insect. So far, the cold-acclimation- linked accumulation of CPs in insects was considered to be sourced mainly from internal macromolecular reserves.

Zobrazit více v PubMed

Somero G. Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1986;251:R197–R213. doi: 10.1152/ajpregu.1986.251.2.R197. PubMed DOI

Yancey P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 2005;208:2819–2830. doi: 10.1242/jeb.01730. PubMed DOI

Yancey P.H., Siebenaller J.F. Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 2015;218:1880–1896. doi: 10.1242/jeb.114355. PubMed DOI

Hochachka P., Somero G. Biochemical Adaptation. Mechanism and Process in Physiological Evolution. Oxford University Press; Oxford, UK: 2002. p. 478.

Lee R.E.J. A primer on insect cold-tolerance. In: Denlinger D.L., Lee R.E.J., editors. Low Temperature Biology of Insects. Cambridge University Press; Cambridge, UK: 2010.

Toxopeus J., Sinclair B.J. Mechanisms underlying insect freeze tolerance. Biol. Rev. 2018;93:1891–1914. doi: 10.1111/brv.12425. PubMed DOI

Teets N.M., Denlinger D.L. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 2013;38:105–116. doi: 10.1111/phen.12019. DOI

Storey K.B. Organic solutes in freezing tolerance. Comp. Biochem. Physiol. A. 1997;117:319–326. doi: 10.1016/S0300-9629(96)00270-8. PubMed DOI

Salt R. Principles of insect cold-hardiness. Annu. Rev. Entomol. 1961;6:55–74. doi: 10.1146/annurev.en.06.010161.000415. DOI

Lee R.E. Insects at Low Temperature. Springer; Berlin/Heidelberg, Germany: 1991. Principles of insect low temperature tolerance; pp. 17–46.

Zachariassen K.E. Physiology of cold tolerance in insects. Physiol. Rev. 1985;65:799–832. doi: 10.1152/physrev.1985.65.4.799. PubMed DOI

Holmstrup M., Westh P. Dehydration of earthworm cocoons exposed to cold: A novel cold hardiness mechanism. J. Comp. Physiol. B. 1994;164:312–315. doi: 10.1007/BF00346448. DOI

Hayakawa Y., Chino H. Temperature-dependent interconversion between glycogen and trehalose in diapausing pupae of Philosamia cynthia ricini and pryeri. Insect Biochem. 1981;11:43–47. doi: 10.1016/0020-1790(81)90039-1. DOI

Storey J.M., Storey K.B. Winter survival of the gall fly larva, Eurosta solidaginis: Profiles of fuel reserves and cryoprotectants in a natural population. J. Insect Physiol. 1986;32:549–556. doi: 10.1016/0022-1910(86)90070-3. DOI

Rickards J., Kelleher M.J., Storey K.B. Strategies of freeze avoidance in larvae of the goldenrod gall moth, Epiblema scudderiana: Winter profiles of a natural population. J. Insect Physiol. 1987;33:443–450. doi: 10.1016/0022-1910(87)90024-2. DOI

Koštál V., Tollarova M., Šula J. Adjustments of the enzymatic complement for polyol biosynthesis and accumulation in diapausing cold-acclimated adults of Pyrrhocoris apterus. J. Insect Physiol. 2004;50:303–313. doi: 10.1016/j.jinsphys.2004.01.006. PubMed DOI

Storey J.M., Storey K.B. Triggering of cryoprotectant synthesis by the initiation of ice nucleation in the freeze tolerant frog, Rana sylvatica. J. Comp. Physiol. B. 1985;156:191–195. doi: 10.1007/BF00695773. DOI

Calderon S., Holmstrup M., Westh P., Overgaard J. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: Cryoprotection and fuel for metabolism. J. Exp. Biol. 2009;212:859–866. doi: 10.1242/jeb.026864. PubMed DOI

Koštál V., Zahradníčková H., Šimek P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. USA. 2011;108:13041–13046. doi: 10.1073/pnas.1107060108. PubMed DOI PMC

Rozsypal J., Moos M., Šimek P., Koštál V. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J. Exp. Biol. 2018;221:170464. doi: 10.1242/jeb.170464. PubMed DOI

Des Marteaux L.E., Hůla P., Koštál V. Transcriptional analysis of insect extreme freeze tolerance. Proc. R. Soc. B. 2019;286:20192019. doi: 10.1098/rspb.2019.2019. PubMed DOI PMC

Kučera L., Moos M., Štetina T., Korbelová J., Vodrážka P., Marteaux L.D., Grgac R., Hula P., Rozsypal J., Faltus M., et al. A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. bioRxiv. 2022 PubMed

Denlinger D.L. Relationship between cold hardiness and diapause. In: Lee R.E., Denlinger D.L., editors. Insects at Low Temperature. Chapmann and Hall; New York, NY, USA: 1991. pp. 174–198.

MacRae T.H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 2010;67:2405–2424. doi: 10.1007/s00018-010-0311-0. PubMed DOI PMC

Ragland G.J., Denlinger D.L., Hahn D.A. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc. Natl. Acad. Sci. USA. 2010;107:14909–14914. doi: 10.1073/pnas.1007075107. PubMed DOI PMC

Koštál V., Štětina T., Poupardin R., Korbelová J., Bruce A.W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl. Acad. Sci. USA. 2017;114:8532–8537. doi: 10.1073/pnas.1707281114. PubMed DOI PMC

Hahn D.A., Denlinger D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011;56:103–121. doi: 10.1146/annurev-ento-112408-085436. PubMed DOI

Storey K.B., Storey J.M. Insects at Low Temperature. Springer; Berlin/Heidelberg, Germany: 1991. Biochemistry of cryoprotectants; pp. 64–93.

Šlachta M., Vambera J., Zahradníčková H., Košťál V. Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera: Pentatomidae) J. Insect Physiol. 2002;48:1031–1039. doi: 10.1016/S0022-1910(02)00191-9. PubMed DOI

Hayakawa Y. Activation mechanism of insect fat body phosphorylase by cold phosphorylase kinase, phosphatase and ATP level. Insect Biochem. 1985;15:123–128. doi: 10.1016/0020-1790(85)90052-6. DOI

Storey K.B., Storey J.M. Biochemical strategies of overwintering in the gall gly larva, Eurosta solidaginis: Effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 1981;144:191–199. doi: 10.1007/BF00802757. DOI

Storey K.B., Storey J.M. Insect cold hardiness: Metabolic, gene, and protein adaptation. Can. J. Zool. 2012;90:456–475. doi: 10.1139/z2012-011. DOI

Storey K.B., Storey J.M. Molecular biology of freezing tolerance. Compr. Physiol. 2013;3:1283–1308. PubMed

Pfister T.D., Storey K.B. Insect freeze tolerance: Roles of protein phosphatases and protein kinase A. Insect Biochem. Mol. Biol. 2006;36:18–24. doi: 10.1016/j.ibmb.2005.10.002. PubMed DOI

Wanner L.A., Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 1999;120:391–400. doi: 10.1104/pp.120.2.391. PubMed DOI PMC

Nagao M., Minami A., Arakawa K., Fujikawa S., Takezawa D. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J. Plant Physiol. 2005;162:169–180. doi: 10.1016/j.jplph.2004.06.012. PubMed DOI

Morgan T., Chippendale G. Free amino acids of the haemolymph of the southwestern corn borer and the European corn borer in relation to their diapause. J. Insect Physiol. 1983;29:735–740. doi: 10.1016/0022-1910(83)90001-X. DOI

Fields P.G., Fleurat-Lessard F., Lavenseau L., Febvay G., Peypelut L., Bonnot G. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera) J. Insect Physiol. 1998;44:955–965. doi: 10.1016/S0022-1910(98)00055-9. PubMed DOI

Shimada K., Riihimaa A. Cold acclimation, inoculative freezing and slow cooling: Essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae) Cryo Lett. 1988;9:5–10.

Koštál V., Renault D., Rozsypal J. Seasonal changes of free amino acids and thermal hysteresis in overwintering heteropteran insect, Pyrrhocoris apterus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011;160:245–251. doi: 10.1016/j.cbpa.2011.06.017. PubMed DOI

Koštál V., Korbelová J., Poupardin R., Moos M., Šimek P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 2016;219:2358–2367. doi: 10.1242/jeb.142158. PubMed DOI

Koštál V., Šimek P., Zahradníčková H., Cimlová J., Štětina T. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl. Acad. Sci. USA. 2012;109:3270–3274. doi: 10.1073/pnas.1119986109. PubMed DOI PMC

Li Y., Zhang L., Chen H., Koštál V., Simek P., Moos M., Denlinger D.L. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 2015;63:34–46. doi: 10.1016/j.ibmb.2015.05.012. PubMed DOI

Zhang L., Xue X., Yan J., Yan L.-Y., Jin X.-H., Zhu X.-H., He Z.-Z., Liu J., Li R., Qiao J. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification. Sci. Rep. 2016;6:1–8. doi: 10.1038/srep26326. PubMed DOI PMC

Dou M., Li Y., Sun Z., Li L., Rao W. L-proline feeding for augmented freeze tolerance of Camponotus japonicus Mayr. Sci. Bull. 2019;64:1795–1804. doi: 10.1016/j.scib.2019.09.028. PubMed DOI

Li P., Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids. 2018;50:29–38. doi: 10.1007/s00726-017-2490-6. PubMed DOI

Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC

Phang J.M., Liu W., Hancock C.N., Fischer J.W. Proline metabolism and cancer: Emerging links to glutamine and collagen. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:71. doi: 10.1097/MCO.0000000000000121. PubMed DOI PMC

Delauney A.J., Verma D.P.S. Proline biosynthesis and osmoregulation in plants. Plant J. 1993;4:215–223. doi: 10.1046/j.1365-313X.1993.04020215.x. DOI

Szabados L., Savouré A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI

Xin Z. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA. 1998;95:7799–7804. doi: 10.1073/pnas.95.13.7799. PubMed DOI PMC

Sakamoto A., Murata N. The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant Cell Environ. 2002;25:163–171. doi: 10.1046/j.0016-8025.2001.00790.x. PubMed DOI

Trüper H.G., Galinski E.A. Biosynthesis and fate of compatible solutes in extremely halophilic phototrophic eubacteria. FEMS Microbiol. Rev. 1990;6:247–254. doi: 10.1016/0378-1097(90)90535-X. DOI

Sakamoto A., Valverde R., Chen T.H., Murata N. Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J. 2000;22:449–453. doi: 10.1046/j.1365-313X.2000.00749.x. PubMed DOI

Chen T.H., Murata N. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 2008;13:499–505. doi: 10.1016/j.tplants.2008.06.007. PubMed DOI

Figueroa-Soto C.G., Valenzuela-Soto E.M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie. 2018;147:89–97. doi: 10.1016/j.biochi.2018.01.002. PubMed DOI

Sizeland P.C., Chambers S.T., Lever M., Bason L.M., Robson R.A. Organic osmolytes in human and other mammalian kidneys. Kidney Int. 1993;43:448–453. doi: 10.1038/ki.1993.66. PubMed DOI

Pajares M.A., Pérez-Sala D. Betaine homocysteine S-methyltransferase: Just a regulator of homocysteine metabolism? Cell. Mol. Life Sci. CMLS. 2006;63:2792–2803. doi: 10.1007/s00018-006-6249-6. PubMed DOI PMC

Nyyssölä A., Kerovuo J., Kaukinen P., von Weymarn N., Reinikainen T. Extreme halophiles synthesize betaine from glycine by methylation. J. Biol. Chem. 2000;275:22196–22201. doi: 10.1074/jbc.M910111199. PubMed DOI

Denlinger D.L. Regulation of diapause. Annu. Rev. Entomol. 2002;47:93–122. doi: 10.1146/annurev.ento.47.091201.145137. PubMed DOI

Kivirikko K.I., Kishida Y., Sakakibara S., Prockop D.J. Hydroxylation of (X-Pro-Gly) n by protocollagen proline hydroxylase Effect of chain length, helical conformation and amino acid sequence in the substrate. Biochim. Biophys. Acta (BBA) Protein Struct. 1972;271:347–356. doi: 10.1016/0005-2795(72)90209-7. PubMed DOI

Miller M.M., Popova L.B., Meleshkevitch E.A., Tran P.V., Boudko D.Y. The invertebrate B0 system transporter, D. melanogaster NAT1, has unique D-amino acid affinity and mediates gut and brain functions. Insect Biochem. Mol. Biol. 2008;38:923–931. doi: 10.1016/j.ibmb.2008.07.005. PubMed DOI PMC

LaFever K.S., Wang X., Page-McCaw P., Bhave G., Page-McCaw A. Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates. Sci. Rep. 2017;7:44560. doi: 10.1038/srep44560. PubMed DOI PMC

Hahn D.A., Denlinger D.L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 2007;53:760–773. doi: 10.1016/j.jinsphys.2007.03.018. PubMed DOI

Kostal V., Shimada K., Hayakawa Y. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. J. Insect Physiol. 2000;46:417–428. doi: 10.1016/S0022-1910(99)00124-9. PubMed DOI

Diener S., Zurbrügg C., Tockner K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009;27:603–610. doi: 10.1177/0734242X09103838. PubMed DOI

Thompson S.N. Trehalose—The insect ‘blood’sugar. Adv. Insect Physiol. 2003;31((Suppl. SC)):205–285.

Fraenkel G., Friedman S., Hinton T., Laszlo S., Noland J.L. The effect of substituting carnitine for choline in the nutrition of several organisms. Arch. Biochem. Biophys. 1955;54:432–439. doi: 10.1016/0003-9861(55)90056-4. PubMed DOI

Geer B., Vovis G., Yund M. Choline activity during the development of Drosophila melanogaster. Physiol. Zool. 1968;41:280–292. doi: 10.1086/physzool.41.3.30155461. DOI

Gallazzini M., Burg M.B. What’s new about osmotic regulation of glycerophosphocholine. Physiology. 2009;24:245–249. doi: 10.1152/physiol.00009.2009. PubMed DOI PMC

Koštál V.R., Berková P., Šimek P. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae) Comp. Biochem. Physiol. B. 2003;135:407–419. doi: 10.1016/S1096-4959(03)00117-9. PubMed DOI

Burg M.B., Ferraris J.D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem. 2008;283:7309–7313. doi: 10.1074/jbc.R700042200. PubMed DOI PMC

Burg M.B., Kwon E.D., Peters E.M. Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase. Kidney Int. Suppl. 1996;57:100–104. PubMed

Garcia-Perez A., Burg M.B. Renal medullary organic osmolytes. Physiol. Rev. 1991;71:1081–1115. doi: 10.1152/physrev.1991.71.4.1081. PubMed DOI

Kostal V., Noguchi H., Shimada K., Hayakawa Y. Developmental changes in dopamine levels in larvae of the fly Chymomyza costata: Comparison between wild-type and mutant-nondiapause strains. J. Insect Physiol. 1998;44:605–614. doi: 10.1016/S0022-1910(98)00043-2. PubMed DOI

Lakovaara S. Malt as a culture medium for Drosophila species. Drosoph. Inf. Serv. 1969;44:128.

Poupardin R., Schöttner K., Korbelová J., Provazník J., Doležel D., Pavlinic D., Beneš V., Koštál V. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genom. 2015;16:720. doi: 10.1186/s12864-015-1907-4. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Kaun K.R., Riedl C.A., Chakaborty-Chatterjee M., Belay A.T., Douglas S.J., Gibbs A.G., Sokolowski M.B. Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. J. Exp. Biol. 2007;210:3547–3558. doi: 10.1242/jeb.006924. PubMed DOI

Smith P.e., Krohn R.I., Hermanson G., Mallia A., Gartner F., Provenzano M., Fujimoto E., Goeke N., Olson B., Klenk D. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI

Cross H., Carpenter Z., Smith G. Effects of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 1973;38:998–1003. doi: 10.1111/j.1365-2621.1973.tb02133.x. DOI

Bueding E., Orrell S.A. A mild procedure for the isolation of polydisperse glycogen from animal tissues. J. Biol. Chem. 1964;239:4018–4020. doi: 10.1016/S0021-9258(18)91125-7. PubMed DOI

Dubois M., Gilles K.A., Hamilton J.K., Rebers P.T., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI

Koštál V., Tamura M., Tollarová M., Zahradníčková H. Enzymatic capacity for accumulation of polyol cryoprotectants changes during diapause development in the adult red firebug, Pyrrhocoris apterus. Physiol. Entomol. 2004;29:344–355. doi: 10.1111/j.0307-6962.2004.00396.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...