The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
38394337
PubMed Central
PMC10917290
DOI
10.1371/journal.pntd.0012007
PII: PNTD-D-23-01016
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- fosfofruktokinasy metabolismus MeSH
- glukoneogeneze * genetika MeSH
- glukosa metabolismus MeSH
- glycerol metabolismus MeSH
- lidé MeSH
- savci MeSH
- transaldolasa metabolismus MeSH
- Trypanosoma brucei brucei * genetika metabolismus MeSH
- uhlík metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- fosfofruktokinasy MeSH
- glukosa MeSH
- glycerol MeSH
- transaldolasa MeSH
- uhlík MeSH
Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.
Wellcome Centre for Anti Infectives Research University of Dundee Dundee United Kingdom
Wellcome Centre for Integrative Parasitology University of Glasgow Glasgow United Kingdom
Zobrazit více v PubMed
Crilly NP, Mugnier MR. Thinking outside the blood: Perspectives on tissue-resident Trypanosoma brucei. PLoS Pathog. 2021;17(9):e1009866. Epub 2021/09/17. doi: 10.1371/journal.ppat.1009866 ; PubMed Central PMCID: PMC8445408. PubMed DOI PMC
Caljon G, Van Reet N, De Trez C, Vermeersch M, Pérez-Morga D, Van Den Abbeele J. The Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies. PLoS Pathog. 2016;12(7):e1005744. Epub 2016/07/22. doi: 10.1371/journal.ppat.1005744 ; PubMed Central PMCID: PMC4956260. PubMed DOI PMC
Capewell P, Cren-Travaillé C, Marchesi F, Johnston P, Clucas C, Benson RA, et al.. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. Elife. 2016;5. Epub 2016/09/23. doi: 10.7554/eLife.17716 ; PubMed Central PMCID: PMC5065312. PubMed DOI PMC
Trindade S, Rijo-Ferreira F, Carvalho T, Pinto-Neves D, Guegan F, Aresta-Branco F, et al.. Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice. Cell Host Microbe. 2016;19(6):837–48. Epub 2016/05/31. doi: 10.1016/j.chom.2016.05.002 ; PubMed Central PMCID: PMC4906371. PubMed DOI PMC
Mabille D, Dirkx L, Thys S, Vermeersch M, Montenye D, Govaerts M, et al.. Impact of pulmonary African trypanosomes on the immunology and function of the lung. Nat Commun. 2022;13(1):7083. Epub 2022/11/19. doi: 10.1038/s41467-022-34757-w ; PubMed Central PMCID: PMC9674601. PubMed DOI PMC
Kovářová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D. Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog. 2018;14(12):e1007475. Epub 2018/12/28. doi: 10.1371/journal.ppat.1007475 ; PubMed Central PMCID: PMC6307712. PubMed DOI PMC
Pineda E, Thonnus M, Mazet M, Mourier A, Cahoreau E, Kulyk H, et al.. Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions. PLoS Pathog. 2018;14(11):e1007412. Epub 2018/11/02. doi: 10.1371/journal.ppat.1007412 ; PubMed Central PMCID: PMC6245841. PubMed DOI PMC
Trindade S, De Niz M, Costa-Sequeira M, Bizarra-Rebelo T, Bento F, Dejung M, et al.. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat Commun. 2022;13(1):7548. Epub 2022/12/09. doi: 10.1038/s41467-022-34622-w ; PubMed Central PMCID: PMC9732351. PubMed DOI PMC
Albert MA, Haanstra JR, Hannaert V, Van Roy J, Opperdoes FR, Bakker BM, et al.. Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem. 2005;280(31):28306–15. Epub 2005/06/16. doi: 10.1074/jbc.M502403200 . PubMed DOI
Scrutton a M C, Utter MF. The Regulation of Glycolysis and Gluconeogenesis in Animal Tissues. Annual Review of Biochemistry. 1968;37(1):249–302. doi: 10.1146/annurev.bi.37.070168.001341 DOI
Wargnies M, Bertiaux E, Cahoreau E, Ziebart N, Crouzols A, Morand P, et al.. Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog. 2018;14(12):e1007502. Epub 2018/12/18. doi: 10.1371/journal.ppat.1007502 ; PubMed Central PMCID: PMC6312356. PubMed DOI PMC
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 2004;381(Pt 3):561–79. Epub 2004/06/02. doi: 10.1042/BJ20040752 ; PubMed Central PMCID: PMC1133864. PubMed DOI PMC
Cronin CN, Tipton KF. Purification and regulatory properties of phosphofructokinase from Trypanosoma (Trypanozoon) brucei brucei. Biochem J. 1985;227(1):113–24. Epub 1985/04/01. doi: 10.1042/bj2270113 ; PubMed Central PMCID: PMC1144815. PubMed DOI PMC
Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PA. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. Febs j. 2005;272(14):3542–60. Epub 2005/07/13. doi: 10.1111/j.1742-4658.2005.04774.x . PubMed DOI
McNae IW, Martinez-Oyanedel J, Keillor JW, Michels PA, Fothergill-Gilmore LA, Walkinshaw MD. The crystal structure of ATP-bound phosphofructokinase from Trypanosoma brucei reveals conformational transitions different from those of other phosphofructokinases. J Mol Biol. 2009;385(5):1519–33. Epub 2008/12/17. doi: 10.1016/j.jmb.2008.11.047 . PubMed DOI
McNae IW, Kinkead J, Malik D, Yen LH, Walker MK, Swain C, et al.. Fast acting allosteric phosphofructokinase inhibitors block trypanosome glycolysis and cure acute African trypanosomiasis in mice. Nat Commun. 2021;12(1):1052. Epub 2021/02/18. doi: 10.1038/s41467-021-21273-6 ; PubMed Central PMCID: PMC7887271. PubMed DOI PMC
Fernandes PM, Kinkead J, McNae IW, Bringaud F, Michels PAM, Walkinshaw MD. The kinetic characteristics of human and trypanosomatid phosphofructokinases for the reverse reaction. Biochem J. 2019;476(2):179–91. Epub 2018/11/09. doi: 10.1042/BCJ20180635 ; PubMed Central PMCID: PMC6340114. PubMed DOI PMC
Hofmann E. The significance of phosphofructokinase to the regulation of carbohydrate metabolism. Rev Physiol Biochem Pharmacol. 1976;75:1–68. Epub 1976/01/01. doi: 10.1007/BFb0030484 PubMed DOI
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: New insights and new questions. J Eukaryot Microbiol. 2022;69(6):e12897. Epub 2022/02/18. doi: 10.1111/jeu.12897 . PubMed DOI
Stoffel SA, Alibu VP, Hubert J, Ebikeme C, Portais JC, Bringaud F, et al.. Transketolase in Trypanosoma brucei. Mol Biochem Parasitol. 2011;179(1):1–7. Epub 2011/05/17. doi: 10.1016/j.molbiopara.2011.04.006 . PubMed DOI
Cronín CN, Nolan DP, Voorheis HP. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei. FEBS Lett. 1989;244(1):26–30. Epub 1989/02/13. doi: 10.1016/0014-5793(89)81154-8 . PubMed DOI
Gualdrón-López M, Brennand A, Avilán L, Michels PA. Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology. 2013;140(1):1–20. Epub 2012/08/24. doi: 10.1017/S0031182012001278 . PubMed DOI
Achcar F, Barrett MP, Breitling R. Explicit consideration of topological and parameter uncertainty gives new insights into a well-established model of glycolysis. Febs j. 2013;280(18):4640–51. Epub 2013/07/20. doi: 10.1111/febs.12436 ; PubMed Central PMCID: PMC4768353. PubMed DOI PMC
Bakker BM, Westerhoff HV, Michels PA. Regulation and control of compartmentalized glycolysis in bloodstream form Trypanosoma brucei. J Bioenerg Biomembr. 1995;27(5):513–25. Epub 1995/10/01. doi: 10.1007/BF02110191 . PubMed DOI
Hannaert V, Bringaud F, Opperdoes FR, Michels PA. Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol Dis. 2003;2(1):11. Epub 2003/11/14. doi: 10.1186/1475-9292-2-11 ; PubMed Central PMCID: PMC317351. PubMed DOI PMC
Hirumi H, Doyle JJ, Hirumi K. Cultivation of bloodstream Trypanosoma brucei. Bull World Health Organ. 1977;55(2–3):405–9. Epub 1977/01/01. PubMed Central PMCID: PMC2366732. PubMed PMC
Rico E, Jeacock L, Kovářová J, Horn D. Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes. Sci Rep. 2018;8(1):7960. Epub 2018/05/23. doi: 10.1038/s41598-018-26303-w ; PubMed Central PMCID: PMC5962531. PubMed DOI PMC
Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol Biochem Parasitol. 2002;125(1–2):211–6. Epub 2002/12/07. doi: 10.1016/s0166-6851(02)00238-4 . PubMed DOI
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, et al.. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog. 2015;11(3):e1004689. Epub 2015/03/17. doi: 10.1371/journal.ppat.1004689 ; PubMed Central PMCID: PMC4361558. PubMed DOI PMC
Moos M, Korbelová J, Štětina T, Opekar S, Šimek P, Grgac R, et al.. Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Chymomyza costata. Metabolites. 2022;12(2). Epub 2022/02/26. doi: 10.3390/metabo12020163 ; PubMed Central PMCID: PMC8877510. PubMed DOI PMC
Scheltema RA, Jankevics A, Jansen RC, Swertz MA, Breitling R. PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem. 2011;83(7):2786–93. Epub 2011/03/16. doi: 10.1021/ac2000994 . PubMed DOI
Chokkathukalam A, Jankevics A, Creek DJ, Achcar F, Barrett MP, Breitling R. mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics. 2013;29(2):281–3. Epub 2012/11/20. doi: 10.1093/bioinformatics/bts674 ; PubMed Central PMCID: PMC3546800. PubMed DOI PMC
Creek DJ, Nijagal B, Kim DH, Rojas F, Matthews KR, Barrett MP. Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother. 2013;57(6):2768–79. Epub 2013/04/11. doi: 10.1128/AAC.00044-13 ; PubMed Central PMCID: PMC3716122. PubMed DOI PMC
Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, et al.. Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A. 2006;103(14):5502–7. Epub 2006/03/30. doi: 10.1073/pnas.0509196103 ; PubMed Central PMCID: PMC1459384. PubMed DOI PMC
Kuznetsova E, Xu L, Singer A, Brown G, Dong A, Flick R, et al.. Structure and activity of the metal-independent fructose-1,6-bisphosphatase YK23 from Saccharomyces cerevisiae. J Biol Chem. 2010;285(27):21049–59. Epub 2010/04/30. doi: 10.1074/jbc.M110.118315 ; PubMed Central PMCID: PMC2898295. PubMed DOI PMC
Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist. 2007;158(3):263–76. Epub 2007/03/21. doi: 10.1016/j.protis.2006.12.004 . PubMed DOI
Clasquin MF, Melamud E, Singer A, Gooding JR, Xu X, Dong A, et al.. Riboneogenesis in yeast. Cell. 2011;145(6):969–80. Epub 2011/06/15. doi: 10.1016/j.cell.2011.05.022 ; PubMed Central PMCID: PMC3163394. PubMed DOI PMC
Olson WJ, Martorelli Di Genova B, Gallego-Lopez G, Dawson AR, Stevenson D, Amador-Noguez D, et al.. Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. PLoS Pathog. 2020;16(4):e1008432. Epub 2020/04/08. doi: 10.1371/journal.ppat.1008432 ; PubMed Central PMCID: PMC7164669. PubMed DOI PMC
Allmann S, Wargnies M, Plazolles N, Cahoreau E, Biran M, Morand P, et al.. Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biol. 2021;19(8):e3001359. Epub 2021/08/14. doi: 10.1371/journal.pbio.3001359 ; PubMed Central PMCID: PMC8386887. PubMed DOI PMC
Johnston K, Kim DH, Kerkhoven EJ, Burchmore R, Barrett MP, Achcar F. Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U-(13)C-labelled substrates and LC-MS. Biosci Rep. 2019;39(5). Epub 2019/04/28. doi: 10.1042/bsr20181601 ; PubMed Central PMCID: PMC6522824. PubMed DOI PMC