Transcriptional analysis of insect extreme freeze tolerance

. 2019 Oct 23 ; 286 (1913) : 20192019. [epub] 20191023

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31640516

Few invertebrates can survive cryopreservation in liquid nitrogen, and the mechanisms by which some species do survive are underexplored, despite high application potential. Here, we turn to the drosophilid Chymomyza costata to strengthen our fundamental understanding of extreme freeze tolerance and gain insights about potential avenues for cryopreservation of biological materials. We first use RNAseq to generate transcriptomes of three C. costata larval phenotypic variants: those warm-acclimated in early or late diapause (weak capacity to survive cryopreservation), and those undergoing cold acclimation after diapause entry (extremely freeze tolerant, surviving cryopreservation). We identify mRNA transcripts representing genes and processes that accompany the physiological transition to extreme freeze tolerance and relate cryopreservation survival to the transcriptional profiles of select candidate genes using extended sampling of phenotypic variants. Enhanced capacity for protein folding, refolding and processing appears to be a central theme of extreme freeze tolerance and may allow cold-acclimated larvae to repair or eliminate proteins damaged by freezing (thus mitigating the toxicity of denatured proteins, endoplasmic reticulum stress and subsequent apoptosis). We also find a number of candidate genes (including both known and potentially novel, unannotated sequences) whose expression profiles tightly mirror the change in extreme freeze tolerance status among phenotypic variants.

Zobrazit více v PubMed

Bachmetjew P. 1901. Experimentelle entomologische studien vom physikalisch-chemischen standpunkt aus. Leipzig, Germany: Verlag von Wilhelm Engelmann.

Payne NM. 1927. Measures of insect cold hardiness. Biol. Bull. 52, 449–457. (10.2307/1536906) DOI

Salt R. 1961. Principles of insect cold-hardiness. Annu. Rev. Entomol. 6, 55–74. (10.1146/annurev.en.06.010161.000415) DOI

Asahina E. 1970. Frost resistance in insects. Adv. Insect Physiol. 6, 1–49.

Lee RE. 1991. Principles of insect low temperature tolerance. In Insects at low temperature (eds Lee RE, Denlinger DL), pp. 17–46. Berlin, Germany: Springer.

Teets NM, Denlinger DL. 2013. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 38, 105–116. (10.1111/phen.12019) DOI

Toxopeus J, Sinclair BJ. 2018. Mechanisms underlying insect freeze tolerance. Biol. Rev. 93, 1891–1914. (10.1111/brv.12425) PubMed DOI

Chown S, Sinclair B. 2010. The macrophysiology of insect cold hardiness. In Low temperature biology of insects (eds Denlinger DL, Lee RE Jr), pp. 191–222. Cambridge, UK: Cambridge University Press.

Sinclair BJ. 1999. Insect cold tolerance: how many kinds of frozen? Eur. J. Entomol. 96, 157–164.

De Coninck L. 1951. On the resistance of the free-living nematode Anguillula silusiae to low temperatures. Biodynamica 7, 77–84. PubMed

Koehler JK. 1967. Studies on the survival of the rotifer Philodina after freezing and thawing. Cryobiology 3, 392–399. (10.1016/S0011-2240(67)80134-2) DOI

Tanno K. 1971. Frost injury and resistance in the poplar sawfly, Trichiocampus populi Okamoto. Contrib. Inst. Low Temp. Sci. 16, 1–41. (10.1016/s0011-2240(69)80014-3) DOI

Moon I, Fujikawa S, Shimada K. 1996. Cryopreservation of Chymomyza larvae (Diptera: Drosophilidae) at −196°C with extracellular freezing. Cryo-Lett. 17, 105–110.

Suzuki D, Miyamoto T, Kikawada T, Watanabe M, Suzuki T. 2014. A leech capable of surviving exposure to extremely low temperatures. PLoS ONE 9, e86807 (10.1371/journal.pone.0086807) PubMed DOI PMC

Fahy GM, Wowk B. 2015. Principles of cryopreservation by vitrification. In Cryopreservation and freeze-drying protocols, 3rd edn (eds Wolkers WF, Oldenhof H), pp. 21–82. Berlin, Germany: Springer. PubMed

Leopold R. 2007. Colony maintenance and mass-rearing: using cold storage technology for extending the shelf-life of insects. In Area-Wide control of insect pests (eds Vreysen MJB, Robinson AS, Hendrichs J), pp. 149–162. Berlin, Germany: Springer.

Mazur P, Schneider U, Mahowald AP. 1992. Characteristics and kinetics of subzero chilling injury in Drosophila embryos. Cryobiology 29, 39–68. (10.1016/0011-2240(92)90005-M) PubMed DOI

Colinet H, Boivin G. 2011. Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biol. Control 58, 83–95. (10.1016/j.biocontrol.2011.04.014) DOI

Wasylyk JM, Tice AR, Baust JG. 1988. Partial glass formation: a novel mechanism of insect cryoprotection. Cryobiology 25, 451–458. (10.1016/0011-2240(88)90053-3) DOI

Steponkus P, et al. 1990. Cryopreservation of Drosophila melanogaster embryos. Nature 345, 170 (10.1038/345170a0) PubMed DOI

Leopold RA, Rinehart JP. 2010. A template for insect cryopreservation. In Low temperature biology of insects (eds Denlinger DL, Lee RE Jr), pp. 325–341. Cambridge, UK: Cambridge University Press.

Koštál V, Mollaei M, Schöttner K. 2016. Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: hibernation in Chymomyza costata. Physiol. Entomol. 41, 344–357. (10.1111/phen.12159) DOI

Rozsypal J, Moos M, Šimek P, Koštál V. 2018. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J. Exp. Biol. 221, 170464 (10.1242/jeb.170464) PubMed DOI

Denlinger DL. 1991. Relationship between cold hardiness and diapause. In Insects at low temperature (eds Lee RE, Denlinger DL), pp. 174–198. Berlin, Germany: Springer.

Hahn DA, Denlinger DL. 2011. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121. (10.1146/annurev-ento-112408-085436) PubMed DOI

Pullin AS. 1996. Physiological relationships between insect diapause and cold tolerance: coevolution or coincidence. Eur. J. Entomol. 93, 121–130.

Koštál V, Štětina T, Poupardin R, Korbelová J, Bruce AW. 2017. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl Acad. Sci. USA 114, 8532–8537. (10.1073/pnas.1707281114) PubMed DOI PMC

Tang B, Liu X-J, Shi Z-K, Shen Q-D, Xu Y-X, Wang S, Zhang F, Wang S-G. 2017. Transcriptome analysis and identification of induced genes in the response of Harmonia axyridis to cold hardiness. Comp. Biochem. Physiol. D 22, 78–89. (10.1016/j.cbd.2017.01.004) PubMed DOI

Des Marteaux LE, McKinnon AH, Udaka H, Toxopeus J, Sinclair B. 2017. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics 18, 357 (10.1186/s12864-017-3711-9) PubMed DOI PMC

Ragland GJ, Keep E. 2017. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42, 246–256. (10.1111/phen.12193) DOI

Colinet H, Renault D, Charoy-Guével B, Com E. 2012. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PLoS ONE 7, e32606 (10.1371/journal.pone.0032606) PubMed DOI PMC

Kristensen TN, Kjeldal H, Schou MF, Nielsen JL. 2016. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation. J. Exp. Biol. 219, 969–976. (10.1242/jeb.132696) PubMed DOI

MacMillan HA, Knee JM, Dennis AB, Udaka H, Marshall KE, Merritt TJ, Sinclair BJ. 2016. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 6, 28999 (10.1038/srep28999) PubMed DOI PMC

Michaud MR, Denlinger DL. 2007. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. J. Comp. Physiol. B 177, 753–763. (10.1007/s00360-007-0172-5) PubMed DOI

Koštál V, Zahradnickova H, Simek P. 2011. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl Acad. Sci. USA 108, 13 041–13 046. (10.1073/pnas.1107060108) PubMed DOI PMC

Shimada K, Riihimaa A. 1988. Cold acclimation, inoculative freezing and slow cooling: essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae). Cryo. Lett. 9, 5–10.

Zachariassen KE. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65, 799–832. (10.1152/physrev.1985.65.4.799) PubMed DOI

Muldrew K, Acker JP, Elliott JA, McGann LE. 2004. The water to ice transition: implications for living cells. In Life in the frozen state (eds Fuller BJ, Lane N, Benson EE), pp. 93–134. Boca Raton, FL: CRC Press.

Crowe JH, Clegg JS, Crowe LM. 1998. Anhydrobiosis: the water replacement hypothesis. In The properties of water in foods ISOPOW 6 (ed. Reid DS.), pp. 440–455. Berlin, Germany: Springer.

Arakawa T, Timasheff SN. 1985. Theory of protein solubility. Methods Enzymol. 114, 49–77. (10.1016/0076-6879(85)14005-X) PubMed DOI

Rudolph AS, Crowe JH. 1986. A calorimetric and infrared spectroscopic study of the stabilizing solute proline. Biophys. J. 50, 423–430. (10.1016/S0006-3495(86)83478-6) PubMed DOI PMC

Elliott GD, Wang S, Fuller BJ. 2017. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74–91. (10.1016/j.cryobiol.2017.04.004) PubMed DOI

Toxopeus J, Koštál V, Sinclair Brent J. 2019. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Proc. R. Soc. B 286, 20190050 (10.1098/rspb.2019.0050) PubMed DOI PMC

Duman JG. 2015. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J. Exp. Biol. 218, 1846–1855. (10.1242/jeb.116905) PubMed DOI

Bar Dolev M, Braslavsky I, Davies PL. 2016. Ice-binding proteins and their function. Annu. Rev. Biochem. 85, 515–542. (10.1146/annurev-biochem-060815-014546) PubMed DOI

King AM, MacRae TH. 2015. Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 60, 59–75. (10.1146/annurev-ento-011613-162107) PubMed DOI

Tunnacliffe A, Wise MJ. 2007. The continuing conundrum of the LEA proteins. Naturwissenschaften 94, 791–812. (10.1007/s00114-007-0254-y) PubMed DOI

Hand SC, Menze MA, Toner M, Boswell L, Moore D. 2011. LEA proteins during water stress: not just for plants anymore. Annu. Rev. Physiol. 73, 115–134. (10.1146/annurev-physiol-012110-142203) PubMed DOI

Bahrndorff S, Tunnacliffe A, Wise MJ, McGee B, Holmstrup M, Loeschcke V. 2009. Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. J. Insect Physiol. 55, 210–217. (10.1016/j.jinsphys.2008.11.010) PubMed DOI

Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC. 2012. Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc. Natl Acad. Sci. USA 109, 20 859–20 864. (10.1073/pnas.1214893109) PubMed DOI PMC

Ma X, et al. 2005. A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51, 15–28. (10.1016/j.cryobiol.2005.04.007) PubMed DOI

Viner RI, Clegg JS. 2001. Influence of trehalose on the molecular chaperone activity of p26, a small heat shock/α-crystallin protein. Cell Stress Chaperon 6, 126 (10.1379/1466-1268(2001)006<0126:IOTOTM>2.0.CO;2) PubMed DOI PMC

Kang J-S, Raymond JA. 2004. Reduction of freeze-thaw-induced hemolysis of red blood cells by an algal ice-binding protein. Cryoletters 25, 307–310. PubMed

Goyal K, Walton LJ, Tunnacliffe A. 2005. LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388, 151–157. (10.1042/BJ20041931) PubMed DOI PMC

Gygi SP, Rochon Y, Franza BR, Aebersold R. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730. (10.1128/MCB.19.3.1720) PubMed DOI PMC

Riihimaa AJ, Kimura MT. 1988. A mutant strain of Chymomyza costata (Diptera: Drosophilidae) insensitive to diapause-inducing action of photoperiod. Physiol. Entomol. 13, 441–445. (10.1111/j.1365-3032.1988.tb01128.x) DOI

Kostal V, Noguchi H, Shimada K, Hayakawa Y. 1998. Developmental changes in dopamine levels in larvae of the fly Chymomyza costata: comparison between wild-type and mutant-nondiapause strains. J. Insect Physiol. 44, 605–614. (10.1016/S0022-1910(98)00043-2) PubMed DOI

Koštál V, Shimada K, Hayakawa Y. 2000. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. J. Insect Physiol. 46, 417–428. (10.1016/S0022-1910(99)00124-9) PubMed DOI

Andrews S. 2018. FastQC: a quality control tool for high throughput sequence data. See https://github.com/s-andrews/FastQC.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. (10.1093/bioinformatics/btu170) PubMed DOI PMC

Goecks J, Nekrutenko A, Taylor J. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (10.1186/gb-2010-11-8-r86) PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9, 357–359. (10.1038/nmeth.1923) PubMed DOI PMC

Poupardin R, Schöttner K, Korbelová J, Provazník J, Doležel D, Pavlinic D, Beneš V, Koštál V. 2015. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics 16, 720 (10.1186/s12864-015-1907-4) PubMed DOI PMC

Trapnell C, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578. (10.1038/nprot.2012.016) PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. (10.1093/bioinformatics/btp616) PubMed DOI PMC

R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902. (10.1038/nbt.2931) PubMed DOI PMC

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. (10.1093/bioinformatics/bti610) PubMed DOI

Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. (10.1093/nar/28.1.27) PubMed DOI PMC

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185. (10.1093/nar/gkm321) PubMed DOI PMC

Luo W, Brouwer C. 2013. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830–1831. (10.1093/bioinformatics/btt285) PubMed DOI PMC

Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. 2009. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinf. 10, 1. PubMed PMC

Dykes IM, Emanueli C. 2017. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genom. Proteom. Bioinf. 15, 177–186. (10.1016/j.gpb.2016.12.005) PubMed DOI PMC

Suarez RK, Moyes CD. 2012. Metabolism in the age of ‘omes’. J. Exp. Biol. 215, 2351–2357. (10.1242/jeb.059725) PubMed DOI

Colinet H, Overgaard J, Com E, Sørensen JG. 2013. Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochem. Mol. Biol. 43, 352–365. (10.1016/j.ibmb.2013.01.006) PubMed DOI

Zhang G, Storey JM, Storey KB. 2011. Chaperone proteins and winter survival by a freeze tolerant insect. J. Insect Physiol. 57, 1115–1122. (10.1016/j.jinsphys.2011.02.016) PubMed DOI

Bhatnagar BS, Bogner RH, Pikal MJ. 2007. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm. Dev. Technol. 12, 505–523. (10.1080/10837450701481157) PubMed DOI

Ragland GJ, Denlinger DL, Hahn DA. 2010. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc. Natl Acad. Sci. USA 107, 14 909–14 914. (10.1073/pnas.1007075107) PubMed DOI PMC

Rinehart JP, Yocum GD, Denlinger DL. 2000. Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem. Mol. Biol. 30, 515–521. (10.1016/S0965-1748(00)00021-7) PubMed DOI

Strudwick N, Schröder M. 2007. The unfolded protein response. In Systems biology (eds Al-Rubeai M, Fussenegger M), pp. 69–155. Berlin, Germany: Springer.

Gong WJ, Golic KG. 2006. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172, 275–286. (10.1534/genetics.105.048793) PubMed DOI PMC

Höhfeld J, Cyr DM, Patterson C. 2001. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. 2, 885–890. (10.1093/embo-reports/kve206) PubMed DOI PMC

McDonough H, Patterson C. 2003. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperon. 8, 303 (10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2) PubMed DOI PMC

Alderson TR, Kim JH, Markley JL. 2016. Dynamical structures of Hsp70 and Hsp70-Hsp40 complexes. Structure 24, 1014–1030. (10.1016/j.str.2016.05.011) PubMed DOI PMC

Qiu X-B, Shao Y-M, Miao S, Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560–2570. (10.1007/s00018-006-6192-6) PubMed DOI PMC

Dai Q, et al. 2005. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J. Biol. Chem. 280, 38 673–38 681. (10.1074/jbc.M507986200) PubMed DOI

Pavel M, et al. 2016. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat. Commun. 7, 13821 (10.1038/ncomms13821) PubMed DOI PMC

Des Marteaux LE, Stinziano JR, Sinclair BJ. 2018. Effects of cold acclimation on rectal macromorphology, ultrastructure, and cytoskeletal stability in Gryllus pennsylvanicus crickets. J. Insect Physiol. 104, 15–24. (10.1016/j.jinsphys.2017.11.004) PubMed DOI

Des Marteaux LE, Štětina T, Koštál V. 2018. Insect fat body cell morphology and response to cold stress is modulated by acclimation. J. Exp. Biol. 221, jeb189647 (10.1242/jeb.189647) PubMed DOI

Kim M, Robich RM, Rinehart JP, Denlinger DL. 2006. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. J. Insect Physiol. 52, 1226–1233. (10.1016/j.jinsphys.2006.09.007) PubMed DOI PMC

Kayukawa T, Ishikawa Y. 2009. Chaperonin contributes to cold hardiness of the onion maggot Delia antiqua through repression of depolymerization of actin at low temperatures. PLoS ONE 4, e8277 (10.1371/journal.pone.0008277) PubMed DOI PMC

MacMillan HA, Yerushalmi GY, Jonusaite S, Kelly SP, Donini A. 2017. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut. Sci. Rep. 7, 8807 (10.1038/s41598-017-08926-7) PubMed DOI PMC

Vos MJ, Carra S, Kanon B, Bosveld F, Klauke K, Sibon OC, Kampinga HH. 2016. Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell 15, 217–226. (10.1111/acel.12422) PubMed DOI PMC

Morrow G, Heikkila JJ, Tanguay RM. 2006. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperon 11, 51 (10.1379/CSC-166.1) PubMed DOI PMC

Morrow G, Le Pécheur M, Tanguay RM. 2016. Drosophila melanogaster mitochondrial Hsp22: a role in resistance to oxidative stress, aging and the mitochondrial unfolding protein response. Biogerontology 17, 61–70. (10.1007/s10522-015-9591-y) PubMed DOI

Amin J, Mestril R, Voellmy R. 1991. Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone. Mol. Cell. Biol. 11, 5937–5944. (10.1128/MCB.11.12.5937) PubMed DOI PMC

Mason P, Hall L, Gausz J. 1984. The expression of heat shock genes during normal development in Drosophila melanogaster (heat shock/abundant transcripts/developmental regulation). Mol. Gen. Genet. 194, 73–78. (10.1007/BF00383500) DOI

Lepesant J, Levine M, Garen A, Lepesant-Kejzlarvoa J, Rat L, Somme-Martin G. 1982. Developmentally regulated gene expression in Drosophila larval fat bodies. J. Mol. Appl. Genet. 1, 371–383. (10.1016/b978-0-12-068350-5.50020-x) PubMed DOI

Chakraborty R, Li Y, Zhou L, Golic KG. 2015. Corp regulates P53 in Drosophila melanogaster via a negative feedback loop. PLoS Genet. 11, e1005400 (10.1371/journal.pgen.1005400) PubMed DOI PMC

Drapeau MD. 2001. The family of yellow-related Drosophila melanogaster proteins. Biochem. Biophys. Res. Commun. 281, 611–613. (10.1006/bbrc.2001.4391) PubMed DOI

Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC. 2016. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol. 16, 11 (10.1186/s12898-016-0070-3) PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.4693079

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...