Insect fat body cell morphology and response to cold stress is modulated by acclimation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30190314
DOI
10.1242/jeb.189647
PII: jeb.189647
Knihovny.cz E-zdroje
- Klíčová slova
- Actin, Chymomyza, Cytoskeleton, Diapause, Drosophilid, Freeze tolerance,
- MeSH
- aklimatizace * MeSH
- cytoskelet fyziologie MeSH
- Drosophilidae cytologie růst a vývoj fyziologie MeSH
- gastrointestinální trakt cytologie fyziologie MeSH
- larva cytologie růst a vývoj fyziologie MeSH
- malpighické trubice cytologie fyziologie MeSH
- nízká teplota škodlivé účinky MeSH
- tukové těleso cytologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mechanistic understanding about the nature of cellular cryoinjury and mechanisms by which some animals survive freezing while others do not is currently lacking. Here, we exploited the broadly manipulable freeze tolerance of larval malt flies (Chymomyza costata) to uncover cell and tissue morphological changes associated with freeze mortality. Diapause induction, cold acclimation and dietary proline supplementation generate malt fly variants ranging from weakly to extremely freeze tolerant. Using confocal microscopy and immunostaining of the fat body, Malpighian tubules and anterior midgut, we described tissue and cytoskeletal (F-actin and α-tubulin) morphologies among these variants after exposure to various cold stresses (from chilling at -5°C to extreme freezing at -196°C), and upon recovery from cold exposure. Fat body tissue appeared to be the most susceptible to cryoinjury: freezing caused coalescence of lipid droplets, loss of α-tubulin structure and apparent aggregation of F-actin. A combination of diapause and cold acclimation substantially lowered the temperature at which these morphological disruptions occurred. Larvae that recovered from a freezing challenge repaired F-actin aggregation but not lipid droplet coalescence or α-tubulin structure. Our observations indicate that lipid coalescence and damage to α-tubulin are non-lethal forms of freeze injury, and suggest that repair or removal (rather than protection) of actin proteins is a potential mechanism of acquired freeze tolerance.
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Citace poskytuje Crossref.org
Insect mitochondria as targets of freezing-induced injury
Transcriptional analysis of insect extreme freeze tolerance
Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect