Angiogenic imbalance in pregnancies with preterm prelabor rupture of membranes between 34 and 37 weeks of gestation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38511515
PubMed Central
PMC11103135
DOI
10.1111/aogs.14833
Knihovny.cz E-zdroje
- Klíčová slova
- amniotic fluid, angiogenic factors, inflammation, microorganism, preterm delivery,
- MeSH
- amniocentéza MeSH
- biologické markery krev MeSH
- chorioamnionitida krev MeSH
- dospělí MeSH
- gestační stáří MeSH
- lidé MeSH
- placentární růstový faktor * krev MeSH
- plodová voda * mikrobiologie metabolismus MeSH
- předčasný odtok plodové vody * krev MeSH
- receptor 1 pro vaskulární endoteliální růstový faktor * krev MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- FLT1 protein, human MeSH Prohlížeč
- PGF protein, human MeSH Prohlížeč
INTRODUCTION: This study aimed to identify whether microbial invasion of the amniotic cavity and/or intra-amniotic inflammation in women with late preterm prelabor rupture of membranes (PPROM) was associated with changes in concentrations of soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PlGF) and its ratio in maternal serum, and whether placental features consistent with maternal vascular malperfusion further affect their concentrations. MATERIAL AND METHODS: This historical study included 154 women with singleton pregnancies complicated by PPROM between gestational ages 34+0 and 36+6 weeks. Transabdominal amniocentesis was performed as part of standard clinical management to evaluate the intra-amniotic environment. Women were categorized into two subgroups based on the presence of microorganisms and/or their nucleic acids in amniotic fluid (determined by culturing and molecular biology method) and intra-amniotic inflammation (by amniotic fluid interleukin-6 concentration evaluation): (1) those with the presence of microorganisms and/or inflammation (at least one present) and (2) those with negative amniotic fluid for infection/inflammation (absence of both). Concentrations of sFlt-1 and PlGF were assessed using the Elecsys® sFlt-1 and Elecsys® PlGF immunoassays and converted into multiples of medians. RESULTS: Women with the presence of microorganisms and/or inflammation in amniotic fluid had lower serum concentrations of sFlt-1 and sFlt-1/PlGF ratios and higher concentrations of PlGF compared with those with negative amniotic fluid. (sFlt-1: presence: median 1.0 multiples of the median (MoM), vs negative: median: 1.5 MoM, P = 0.003; PlGF: presence: median 0.7 MoM, vs negative: median 0.4 MoM, P = 0.02; sFlt-1/PlGF: presence: median 8.9 vs negative 25.0, P = 0.001). Higher serum concentrations of sFlt-1 and sFlt-1/PlGF ratios as well as lower concentrations of PlGF were found in the subsets of women with maternal vascular malperfusion than in those without maternal vascular malperfusion. CONCLUSIONS: Among women experiencing late PPROM, angiogenic imbalance in maternal serum is primarily observed in those without both microbial invasion of the amniotic cavity and intra-amniotic inflammation. Additionally, there is an association between angiogenic imbalance and the presence of maternal vascular malperfusion.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Obstetrics and Gynecology Hospital Most Usti nad Labem Czech Republic
Department of Pathology School of Medicine Detroit Wayne State University Detroit Michigan USA
Zobrazit více v PubMed
Mercer BM. Preterm premature rupture of the membranes. Obstet Gynecol. 2003;101:178‐193. PubMed
Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet Gynecol Clin N Am. 2005;32:411‐428. PubMed
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre‐labor rupture of the membranes. Semin Immunopathol. 2020;42:431‐450. PubMed PMC
Romero R, Miranda J, Chaemsaithong P, et al. Sterile and microbial‐associated intra‐amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015;28:1394‐1409. PubMed PMC
Menon R, Richardson LS. Preterm prelabor rupture of the membranes: a disease of the fetal membranes. Semin Perinatol. 2017;41:409‐419. PubMed PMC
Kim CJ, Romero R, Kusanovic JP, et al. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod Pathol. 2010;23:1000‐1011. PubMed PMC
Kumar D, Schatz F, Moore RM, et al. The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta. 2011;32:206‐213. PubMed PMC
Romero R, Jung E, Chaiworapongsa T, et al. Toward a new taxonomy of obstetrical disease: improved performance of maternal blood biomarkers for the great obstetrical syndromes when classified according to placental pathology. Am J Obstet Gynecol. 2022;227(615):e1‐e25. PubMed PMC
Savasan ZA, Romero R, Chaiworapongsa T, et al. Evidence in support of a role for anti‐angiogenic factors in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2010;23:828‐841. PubMed PMC
Rodriguez‐Trujillo A, Cobo T, Vives I, et al. Gestational age is more important for short‐term neonatal outcome than microbial invasion of the amniotic cavity or intra‐amniotic inflammation in preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2016;95:926‐933. PubMed
Kacerovsky M, Musilova I, Andrys C, et al. Prelabor rupture of membranes between 34 and 37 weeks: the intraamniotic inflammatory response and neonatal outcomes. Am J Obstet Gynecol. 2014;210(325):e1‐e10. PubMed
Kim CJ, Romero R, Chaemsaithong P, Kim JS. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am J Obstet Gynecol. 2015;213:S53‐S69. PubMed PMC
Morris JM, Roberts CL, Bowen JR, et al. Immediate delivery compared with expectant management after preterm pre‐labour rupture of the membranes close to term (PPROMT trial): a randomised controlled trial. Lancet. 2016;387:444‐452. PubMed
Musilova I, Kutova R, Pliskova L, et al. Intraamniotic inflammation in women with preterm Prelabor rupture of membranes. PLoS One. 2015;10:e0133929. PubMed PMC
Romero R, Salafia CM, Athanassiadis AP, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol. 1992;166:1382‐1388. PubMed
Kacerovsky M, Musilova I, Hornychova H, et al. Bedside assessment of amniotic fluid interleukin‐6 in preterm prelabor rupture of membranes. Am J Obstet Gynecol. 2014;211(385):e1‐e9. PubMed
Kacerovsky M, Romero R, Stepan M, et al. Antibiotic administration reduces the rate of intraamniotic inflammation in preterm prelabor rupture of the membranes. Am J Obstet Gynecol. 2020;223(114):e1‐e20. PubMed PMC
Lee J, Kim JS, Park JW, et al. Chronic chorioamnionitis is the most common placental lesion in late preterm birth. Placenta. 2013;34:681‐689. PubMed
Nijman TA, van Vliet EO, Benders MJ, et al. Placental histology in spontaneous and indicated preterm birth: a case control study. Placenta. 2016;48:56‐62. PubMed
Tsiakkas A, Duvdevani N, Wright A, Wright D, Nicolaides KH. Serum soluble fms‐like tyrosine kinase‐1 in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2015;45:584‐590. PubMed
Tsiakkas A, Duvdevani N, Wright A, Wright D, Nicolaides KH. Serum placental growth factor in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2015;45:591‐598. PubMed
Musilova I, Andrys C, Holeckova M, et al. Interleukin‐6 measured using the automated electrochemiluminescence immunoassay method for the identification of intra‐amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2020;33:1919‐1926. PubMed
Fouhy F, Deane J, Rea MC, et al. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture‐based investigations. PLoS One. 2015;10:e0119355. PubMed PMC
Kacerovsky M, Pliskova L, Bolehovska R, et al. Lactobacilli‐dominated cervical microbiota in women with preterm prelabor rupture of membranes. Pediatr Res. 2020;87:952‐960. PubMed
Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus Statement. Arch Pathol Lab Med. 2016;140:698‐713. PubMed
Romero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intra‐amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72:458‐474. PubMed PMC
Romero R, Miranda J, Chaiworapongsa T, et al. Sterile intra‐amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2015;28:1343‐1359. PubMed PMC
Daneshmand SS, Chmait RH, Moore TR, Bogic L. Preterm premature rupture of membranes: vascular endothelial growth factor and its association with histologic chorioamnionitis. Am J Obstet Gynecol. 2002;187:1131‐1136. PubMed
Lockwood CJ, Krikun G, Rahman M, Caze R, Buchwalder L, Schatz F. The role of decidualization in regulating endometrial hemostasis during the menstrual cycle, gestation, and in pathological states. Semin Thromb Hemost. 2007;33:111‐117. PubMed
Rajakumar A, Michael HM, Rajakumar PA, et al. Extra‐placental expression of vascular endothelial growth factor receptor‐1, (Flt‐1) and soluble Flt‐1 (sFlt‐1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta. 2005;26:563‐573. PubMed
Shore VH, Wang TH, Wang CL, Torry RJ, Caudle MR, Torry DS. Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta. 1997;18:657‐665. PubMed
Chiu CPH, Feng Q, Chaemsaithong P, et al. Prediction of spontaneous preterm birth and preterm prelabor rupture of membranes using maternal factors, obstetric history and biomarkers of placental function at 11‐13 weeks. Ultrasound Obstet Gynecol. 2022;60:192‐199. PubMed
Espinoza J, Chaiworapongsa T, Romero R, et al. Unexplained fetal death: another anti‐angiogenic state. J Matern Fetal Neonatal Med. 2007;20:495‐507. PubMed PMC
Korzeniewski SJ, Romero R, Chaiworapongsa T, et al. Maternal plasma angiogenic index‐1 (placental growth factor/soluble vascular endothelial growth factor receptor‐1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case‐cohort study. Am J Obstet Gynecol. 2016;214(629):e1‐e17. PubMed PMC
Kim YM, Chaiworapongsa T, Gomez R, et al. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol. 2002;187:1137‐1142. PubMed
Kim YM, Bujold E, Chaiworapongsa T, et al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2003;189:1063‐1069. PubMed
Rowson S, Reddy M, Rolnik DL, Da Silva CF, Palmer KR. Stability of placental growth factor, soluble fms‐like tyrosine kinase 1, and soluble fms‐like tyrosine kinase 1 e15a in human serum and plasma. Placenta. 2019;86:1‐3. PubMed
Law LW, Sahota DS, Chan LW, Chen M, Lau TK, Leung TY. Effect of long‐term storage on placental growth factor and fms‐like tyrosine kinase 1 measurements in samples from pregnant women. J Matern Fetal Neonatal Med. 2010;23:1475‐1480. PubMed