Caspase-12 Is Present During Craniofacial Development and Participates in Regulation of Osteogenic Markers

. 2020 ; 8 () : 589136. [epub] 20201015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33178702

Caspases are evolutionary conserved proteases traditionally known as participating in apoptosis and inflammation but recently discovered also in association with other processes such as proliferation or differentiation. This investigation focuses on caspase-12, ranked among inflammatory caspases but displaying other, not yet defined functions. A screening analysis pointed to statistically significant (P < 0.001) increase in expression of caspase-12 in a decisive period of mandibular bone formation when the original mesenchymal condensation turns into vascularized bone tissue. Immunofluorescence analysis confirmed the presence of caspase-12 protein in osteoblasts. Therefore, the osteoblastic cell line MC3T3-E1 was challenged to investigate any impact of caspase-12 on the osteogenic pathways. Pharmacological inhibition of caspase-12 in MC3T3-E1 cells caused a statistically significant decrease in expression of some major osteogenic genes, including those for alkaline phosphatase, osteocalcin and Phex. This downregulation was further confirmed by an alkaline phosphatase activity assay and by a siRNA inhibition approach. Altogether, this study demonstrates caspase-12 expression and points to its unknown physiological engagement in bone cells during the course of craniofacial development.

Zobrazit více v PubMed

Bolívar B. E., Vogel T. P., Bouchier-Hayes L. (2019). Inflammatory caspase regulation: maintaining balance between inflammation and cell death in health and disease. FEBS J. 286 2628–2644. 10.1111/febs.14926 PubMed DOI PMC

De La Cadena S. G., Hernández-Fonseca K., Camacho-Arroyo I., Massieu L. (2014). Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis 19 414–427. 10.1007/s10495-013-0930-7 PubMed DOI

Ducy P., Desbois C., Boyce B., Pinero G., Story B., Dunstan C., et al. (1996). Increased bone formation in osteocalcin-deficient mice. Nature 382 448–452. 10.1038/382448a0 PubMed DOI

Fedde K. N., Blair L., Silverstein J., Coburn S. P., Ryan L. M., Weinstein R. S., et al. (1999). Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone Miner. Res. 14 2015–2026. 10.1359/jbmr.1999.14.12.2015 PubMed DOI PMC

Francis F., Strom T. M., Hennig S., Böddrich A., Lorenz B., Brandau O., et al. (1997). Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res. 7 573–585. 10.1101/gr.7.6.573 PubMed DOI

Kalai M., Lamkanfi M., Denecker G., Boogmans M., Lippens S., Meeus A., et al. (2003). Regulation of the expression and processing of caspase-12. J. Cell Biol. 162 457–467. 10.1083/jcb.200303157 PubMed DOI PMC

Kratochvílová A., Veselá B., Ledvina V., Švandová E., Klepárník K., Dadáková K., et al. (2020). Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci. Rep. 10 1–8. 10.1038/s41598-020-64294-9 PubMed DOI PMC

Liu L., Zhang Y., Gu H., Zhang K., Ma L. (2015). Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo. Biol. Trace Elem. Res. 164 64–71. 10.1007/s12011-014-0192-4 PubMed DOI

Lorenz-Depiereux B., Bastepe M., Benet-Pagès A., Amyere M., Wagenstaller J., Müller-Barth U., et al. (2006). DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet. 38 1248–1250. 10.1038/ng1868 PubMed DOI PMC

Minaříková M., Oralová V., Veselá B., Radlanski R. J., Matalová E. (2015). Osteogenic profile of mesenchymal cell populations contributing to alveolar bone formation. Cells Tissues Organs 200 339–348. 10.1159/000439165 PubMed DOI

Mogi M., Togari A. (2003). Activation of caspases is required for osteoblastic differentiation. J. Biol. Chem. 278 47477–47482. 10.1074/jbc.M307055200 PubMed DOI

Nakagawa T., Yuan J. (2000). Cross-talk between two cysteine protease families: activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150 887–894. 10.1083/jcb.150.4.887 PubMed DOI PMC

Nakagawa T., Zhu H., Morishima N., Li E., Xu J., Yankner B. A., et al. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403 98–103. 10.1038/47513 PubMed DOI

Nakajima Y. I., Kuranaga E. (2017). Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 24 1422–1430. 10.1038/cdd.2017.36 PubMed DOI PMC

Rao R. V., Hermel E., Castro-Obregon S., Del Rio G., Ellerby L. M., Ellerby H. M., et al. (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276 33869–33874. 10.1074/jbc.M102225200 PubMed DOI

Roy S., Sharom J. R., Houde C., Loisel T. P., Vaillancourt J. P., Shao W., et al. (2008). Confinement of caspase-12 proteolytic activity to autoprocessing. Proc. Natl. Acad. Sci. U.S.A. 105 1433–1438. 10.1073/pnas.0706658105 PubMed DOI PMC

Saleh M., Mathison J. C., Wolinski M. K., Bensinger S. J., Fitzgerald P., Droin N., et al. (2006). Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440 1064–1068. 10.1038/nature04656 PubMed DOI

Saleh M., Vaillancourt J. P., Graham R. K., Huyck M., Srinivasula S. M., Alnemri E. S., et al. (2004). Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429 75–79. 10.1038/nature02451 PubMed DOI

Salvamoser R., Brinkmann K., O’Reilly L. A., Whitehead L., Strasser A., Herold M. J. (2019). Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis. Cell Death Differ. 26 1124–1137. 10.1038/s41418-018-0188-2 PubMed DOI PMC

Shalini S., Dorstyn L., Dawar S., Kumar S. (2015). Old, new and emerging functions of caspases. Cell Death Differ. 22 526–539. 10.1038/cdd.2014.216 PubMed DOI PMC

Shiraishi H., Okamoto H., Yoshimura A., Yoshida H. (2006). ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J. Cell Sci. 119 3958–3966. 10.1242/jcs.03160 PubMed DOI

Sudo H., Kodama H. A., Amagai Y., Yamamoto S., Kasai S. (1983). In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96 191–198. 10.1083/jcb.96.1.191 PubMed DOI PMC

Svandova E., Lesot H., Vanden Berghe T., Tucker A. S., Sharpe P. T., Vandenabeele P., et al. (2014). Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 5:e1366. 10.1038/cddis.2014.330 PubMed DOI PMC

Svandova E., Vesela B., Tucker A. S., Matalova E. (2018). Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front. Physiol. 9:174. 10.3389/fphys.2018.00174 PubMed DOI PMC

Tsapras P., Nezis I. P. (2017). Caspase involvement in autophagy. Cell Death Differ. 24 1369–1379. 10.1038/cdd.2017.43 PubMed DOI PMC

Van Opdenbosch N., Lamkanfi M. (2019). Caspases in cell death, inflammation, and disease. Immunity 50 1352–1364. 10.1016/j.immuni.2019.05.020 PubMed DOI PMC

Vande Walle L., Jiménez Fernández D., Demon D., Van Laethem N., Van Hauwermeiren F., Van Gorp H., et al. (2016). Does caspase-12 suppress inflammasome activation? Nature 534 E1–E4. 10.1038/nature17649 PubMed DOI

Veselá B., Matalová E. (2015). Expression of apoptosis-related genes in the mouse skin during the first postnatal catagen stage, focused on localization of Bnip3L and caspase-12. Connect. Tissue Res. 56 326–335. 10.3109/03008207.2015.1040546 PubMed DOI

Veselá B., Švandová E., Bobek J., Lesot H., Matalová E. (2019). Osteogenic and angiogenic profiles of mandibular bone-forming cells. Front. Physiol. 10:124. 10.3389/fphys.2019.00124 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace