Caspase-12 Is Present During Craniofacial Development and Participates in Regulation of Osteogenic Markers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33178702
PubMed Central
PMC7593616
DOI
10.3389/fcell.2020.589136
Knihovny.cz E-zdroje
- Klíčová slova
- alkaline phosphatase, bone, caspase-12, differentiation, osteoblast,
- Publikační typ
- časopisecké články MeSH
Caspases are evolutionary conserved proteases traditionally known as participating in apoptosis and inflammation but recently discovered also in association with other processes such as proliferation or differentiation. This investigation focuses on caspase-12, ranked among inflammatory caspases but displaying other, not yet defined functions. A screening analysis pointed to statistically significant (P < 0.001) increase in expression of caspase-12 in a decisive period of mandibular bone formation when the original mesenchymal condensation turns into vascularized bone tissue. Immunofluorescence analysis confirmed the presence of caspase-12 protein in osteoblasts. Therefore, the osteoblastic cell line MC3T3-E1 was challenged to investigate any impact of caspase-12 on the osteogenic pathways. Pharmacological inhibition of caspase-12 in MC3T3-E1 cells caused a statistically significant decrease in expression of some major osteogenic genes, including those for alkaline phosphatase, osteocalcin and Phex. This downregulation was further confirmed by an alkaline phosphatase activity assay and by a siRNA inhibition approach. Altogether, this study demonstrates caspase-12 expression and points to its unknown physiological engagement in bone cells during the course of craniofacial development.
Zobrazit více v PubMed
Bolívar B. E., Vogel T. P., Bouchier-Hayes L. (2019). Inflammatory caspase regulation: maintaining balance between inflammation and cell death in health and disease. FEBS J. 286 2628–2644. 10.1111/febs.14926 PubMed DOI PMC
De La Cadena S. G., Hernández-Fonseca K., Camacho-Arroyo I., Massieu L. (2014). Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis 19 414–427. 10.1007/s10495-013-0930-7 PubMed DOI
Ducy P., Desbois C., Boyce B., Pinero G., Story B., Dunstan C., et al. (1996). Increased bone formation in osteocalcin-deficient mice. Nature 382 448–452. 10.1038/382448a0 PubMed DOI
Fedde K. N., Blair L., Silverstein J., Coburn S. P., Ryan L. M., Weinstein R. S., et al. (1999). Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone Miner. Res. 14 2015–2026. 10.1359/jbmr.1999.14.12.2015 PubMed DOI PMC
Francis F., Strom T. M., Hennig S., Böddrich A., Lorenz B., Brandau O., et al. (1997). Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res. 7 573–585. 10.1101/gr.7.6.573 PubMed DOI
Kalai M., Lamkanfi M., Denecker G., Boogmans M., Lippens S., Meeus A., et al. (2003). Regulation of the expression and processing of caspase-12. J. Cell Biol. 162 457–467. 10.1083/jcb.200303157 PubMed DOI PMC
Kratochvílová A., Veselá B., Ledvina V., Švandová E., Klepárník K., Dadáková K., et al. (2020). Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci. Rep. 10 1–8. 10.1038/s41598-020-64294-9 PubMed DOI PMC
Liu L., Zhang Y., Gu H., Zhang K., Ma L. (2015). Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo. Biol. Trace Elem. Res. 164 64–71. 10.1007/s12011-014-0192-4 PubMed DOI
Lorenz-Depiereux B., Bastepe M., Benet-Pagès A., Amyere M., Wagenstaller J., Müller-Barth U., et al. (2006). DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet. 38 1248–1250. 10.1038/ng1868 PubMed DOI PMC
Minaříková M., Oralová V., Veselá B., Radlanski R. J., Matalová E. (2015). Osteogenic profile of mesenchymal cell populations contributing to alveolar bone formation. Cells Tissues Organs 200 339–348. 10.1159/000439165 PubMed DOI
Mogi M., Togari A. (2003). Activation of caspases is required for osteoblastic differentiation. J. Biol. Chem. 278 47477–47482. 10.1074/jbc.M307055200 PubMed DOI
Nakagawa T., Yuan J. (2000). Cross-talk between two cysteine protease families: activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150 887–894. 10.1083/jcb.150.4.887 PubMed DOI PMC
Nakagawa T., Zhu H., Morishima N., Li E., Xu J., Yankner B. A., et al. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403 98–103. 10.1038/47513 PubMed DOI
Nakajima Y. I., Kuranaga E. (2017). Caspase-dependent non-apoptotic processes in development. Cell Death Differ. 24 1422–1430. 10.1038/cdd.2017.36 PubMed DOI PMC
Rao R. V., Hermel E., Castro-Obregon S., Del Rio G., Ellerby L. M., Ellerby H. M., et al. (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 276 33869–33874. 10.1074/jbc.M102225200 PubMed DOI
Roy S., Sharom J. R., Houde C., Loisel T. P., Vaillancourt J. P., Shao W., et al. (2008). Confinement of caspase-12 proteolytic activity to autoprocessing. Proc. Natl. Acad. Sci. U.S.A. 105 1433–1438. 10.1073/pnas.0706658105 PubMed DOI PMC
Saleh M., Mathison J. C., Wolinski M. K., Bensinger S. J., Fitzgerald P., Droin N., et al. (2006). Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440 1064–1068. 10.1038/nature04656 PubMed DOI
Saleh M., Vaillancourt J. P., Graham R. K., Huyck M., Srinivasula S. M., Alnemri E. S., et al. (2004). Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429 75–79. 10.1038/nature02451 PubMed DOI
Salvamoser R., Brinkmann K., O’Reilly L. A., Whitehead L., Strasser A., Herold M. J. (2019). Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis. Cell Death Differ. 26 1124–1137. 10.1038/s41418-018-0188-2 PubMed DOI PMC
Shalini S., Dorstyn L., Dawar S., Kumar S. (2015). Old, new and emerging functions of caspases. Cell Death Differ. 22 526–539. 10.1038/cdd.2014.216 PubMed DOI PMC
Shiraishi H., Okamoto H., Yoshimura A., Yoshida H. (2006). ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J. Cell Sci. 119 3958–3966. 10.1242/jcs.03160 PubMed DOI
Sudo H., Kodama H. A., Amagai Y., Yamamoto S., Kasai S. (1983). In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96 191–198. 10.1083/jcb.96.1.191 PubMed DOI PMC
Svandova E., Lesot H., Vanden Berghe T., Tucker A. S., Sharpe P. T., Vandenabeele P., et al. (2014). Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 5:e1366. 10.1038/cddis.2014.330 PubMed DOI PMC
Svandova E., Vesela B., Tucker A. S., Matalova E. (2018). Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front. Physiol. 9:174. 10.3389/fphys.2018.00174 PubMed DOI PMC
Tsapras P., Nezis I. P. (2017). Caspase involvement in autophagy. Cell Death Differ. 24 1369–1379. 10.1038/cdd.2017.43 PubMed DOI PMC
Van Opdenbosch N., Lamkanfi M. (2019). Caspases in cell death, inflammation, and disease. Immunity 50 1352–1364. 10.1016/j.immuni.2019.05.020 PubMed DOI PMC
Vande Walle L., Jiménez Fernández D., Demon D., Van Laethem N., Van Hauwermeiren F., Van Gorp H., et al. (2016). Does caspase-12 suppress inflammasome activation? Nature 534 E1–E4. 10.1038/nature17649 PubMed DOI
Veselá B., Matalová E. (2015). Expression of apoptosis-related genes in the mouse skin during the first postnatal catagen stage, focused on localization of Bnip3L and caspase-12. Connect. Tissue Res. 56 326–335. 10.3109/03008207.2015.1040546 PubMed DOI
Veselá B., Švandová E., Bobek J., Lesot H., Matalová E. (2019). Osteogenic and angiogenic profiles of mandibular bone-forming cells. Front. Physiol. 10:124. 10.3389/fphys.2019.00124 PubMed DOI PMC
Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics
Exploring caspase functions in mouse models
Making the head: Caspases in life and death