High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
U2C ES030163
NIEHS NIH HHS - United States
P30 ES010126
NIEHS NIH HHS - United States
R01 AG067501
NIA NIH HHS - United States
RF1 AG066107
NIA NIH HHS - United States
R21 ES036033
NIEHS NIH HHS - United States
R25 GM143298
NIGMS NIH HHS - United States
R01 ES032831
NIEHS NIH HHS - United States
P42 ES031007
NIEHS NIH HHS - United States
P30 ES009089
NIEHS NIH HHS - United States
R03 OD034497
NIH HHS - United States
UL1 TR004419
NCATS NIH HHS - United States
P30 ES019776
NIEHS NIH HHS - United States
K01 ES035398
NIEHS NIH HHS - United States
UL1 TR001873
NCATS NIH HHS - United States
R21 ES034187
NIEHS NIH HHS - United States
PubMed
38984754
PubMed Central
PMC11271014
DOI
10.1021/acs.est.4c01156
Knihovny.cz E-zdroje
- Klíčová slova
- chemical space, chromatography, environmental exposures, exposome, high-resolution mass spectrometry, metabolomics, non-targeted analysis, toxicants,
- MeSH
- expozom MeSH
- hmotnostní spektrometrie * metody MeSH
- lidé MeSH
- metabolomika MeSH
- proteomika metody MeSH
- vystavení vlivu životního prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Department of Medicine School of Medicine Emory University Atlanta Georgia 30322 United States
Institute for Risk Assessment Sciences Utrecht University Utrecht 3584CM The Netherlands
NILU Fram Centre Tromsø NO 9296 Norway
NILU PO Box 100 NO 2027 Kjeller Norway
RECETOX Faculty of Science Masaryk University Kotlářská 2 611 37 Brno Czech Republic
School of Engineering Brown University Providence Rhode Island 02912 United States
Thermo Fisher Scientific San Jose California 95134 United States
Thermo Fisher Scientific Somerset New Jersey 08873 United States
Univ Rennes Inserm EHESP Irset UMR_S 1085 Rennes France
UPMC Hillman Cancer Center Pittsburgh Pennsylvania 15232 United States
West Coast Metabolomics Center University of California Davis Davis California 95616 United States
Zobrazit více v PubMed
Wild C. P. Complementing the genome with an ″exposome″: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidem Biomar 2005, 14 (8), 1847–1850. 10.1158/1055-9965.EPI-05-0456. PubMed DOI
Vermeulen R.; Schymanski E. L.; Barabasi A. L.; Miller G. W. The exposome and health: Where chemistry meets biology. Science 2020, 367 (6476), 392–396. 10.1126/science.aay3164. PubMed DOI PMC
Miller G. W.; Jones D. P. The nature of nurture: refining the definition of the exposome. Toxicol. Sci. 2014, 137 (1), 1–2. 10.1093/toxsci/kft251. PubMed DOI PMC
Nriagu J. O.; Pacyna J. M. Quantitative Assessment of Worldwide Contamination of Air, Water and Soils by Trace-Metals. Nature 1988, 333 (6169), 134–139. 10.1038/333134a0. PubMed DOI
Rochman C. M.; Browne M. A.; Halpern B. S.; Hentschel B. T.; Hoh E.; Karapanagioti H. K.; Rios-Mendoza L. M.; Takada H.; Teh S.; Thompson R. C. Classify plastic waste as hazardous. Nature 2013, 494 (7436), 169–171. 10.1038/494169a. PubMed DOI
Manisalidis I.; Stavropoulou E.; Stavropoulos A.; Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 10.3389/fpubh.2020.00014. PubMed DOI PMC
Susmann H. P.; Schaider L. A.; Rodgers K. M.; Rudel R. A. Dietary Habits Related to Food Packaging and Population Exposure to PFASs. Environ. Health Perspect 2019, 127 (10), 10700310.1289/EHP4092. PubMed DOI PMC
Liu S.; Hammond S. K.; Rojas-Cheatham A. Concentrations and potential health risks of metals in lip products. Environ. Health Perspect 2013, 121 (6), 705–710. 10.1289/ehp.1205518. PubMed DOI PMC
Ural B. B.; Caron D. P.; Dogra P.; Wells S. B.; Szabo P. A.; Granot T.; Senda T.; Poon M. M. L.; Lam N.; Thapa P.; et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat. Med. 2022, 28 (12), 2622–2632. 10.1038/s41591-022-02073-x. PubMed DOI PMC
Hernández A. F.; Gil F.; Lacasaña M. Toxicological interactions of pesticide mixtures: an update. Arch. Toxicol. 2017, 91 (10), 3211–3223. 10.1007/s00204-017-2043-5. PubMed DOI
Chi Z. H.; Goodyer C. G.; Hales B. F.; Bayen S. Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. Environ. Int. 2023, 171, 10771710.1016/j.envint.2022.107717. PubMed DOI
Polderman T. J. C.; Benyamin B.; de Leeuw C. A.; Sullivan P. F.; van Bochoven A.; Visscher P. M.; Posthuma D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47 (7), 702.10.1038/ng.3285. PubMed DOI
Shen J.; Liao Y.; Hopper J. L.; Goldberg M.; Santella R. M.; Terry M. B. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: an illustration with polycyclic aromatic hydrocarbons and breast cancer. Br. J. Cancer 2017, 116 (9), 1229–1233. 10.1038/bjc.2017.81. PubMed DOI PMC
Argentieri M. A.; Amin N.; Nevado-Holgado A. J.; Sproviero W.; Collister J. A.; Keestra S. M.; Doherty A.; Hunter D. J.; Alvergne A.; Duijn C. M. v.. Integrating the environmental and genetic architectures of mortality and aging. medRxiv, May 16, 2023. 10.1101/2023.03.10.23286340. DOI
Price E. J.; Vitale C. M.; Miller G. W.; David A.; Barouki R.; Audouze K.; Walker D. I.; Antignac J.-P.; Coumoul X.; Bessonneau V.; et al. Merging the exposome into an integrated framework for “omics” sciences. iScience 2022, 25 (3), 10397610.1016/j.isci.2022.103976. PubMed DOI PMC
David A.; Chaker J.; Price E. J.; Bessonneau V.; Chetwynd A. J.; Vitale C. M.; Klanova J.; Walker D. I.; Antignac J. P.; Barouki R.; et al. Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. Environ. Int. 2021, 156, 10663010.1016/j.envint.2021.106630. PubMed DOI
Flasch M.; Bueschl C.; Del Favero G.; Adam G.; Schuhmacher R.; Marko D.; Warth B. Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. Environ. Int. 2022, 158, 10694010.1016/j.envint.2021.106940. PubMed DOI
The “All of Us” Research Program. N. Engl. J. Med. 2019, 381 ( (7), ), 668–676. 10.1056/NEJMsr1809937. PubMed DOI PMC
Hartung T. A call for a Human Exposome Project. ALTEX 2023, 40 (1), 4–33. 10.14573/altex.2301061. PubMed DOI
Griffiths J. A brief history of mass spectrometry. Anal. Chem. 2008, 80 (15), 5678–5683. 10.1021/ac8013065. PubMed DOI
Sabbioni G.; Berset J.-D.; Day B. W. Is It Realistic to Propose Determination of a Lifetime Internal Exposome?. Chem. Res. Toxicol. 2020, 33 (8), 2010–2021. 10.1021/acs.chemrestox.0c00092. PubMed DOI
Chait B. T. Mass spectrometry in the postgenomic era. Annu. Rev. Biochem. 2011, 80, 239–246. 10.1146/annurev-biochem-110810-095744. PubMed DOI
Sun J.; Fang R.; Wang H.; Xu D.-X.; Yang J.; Huang X.; Cozzolino D.; Fang M.; Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. Environ. Int. 2022, 158, 10694110.1016/j.envint.2021.106941. PubMed DOI
Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology 2002, 48 (1), 155–171. 10.1023/A:1013713905833. PubMed DOI
Hu X.; Walker D. I.; Liang Y.; Smith M. R.; Orr M. L.; Juran B. D.; Ma C.; Uppal K.; Koval M.; Martin G. S.; et al. A scalable workflow to characterize the human exposome. Nat. Commun. 2021, 12 (1), 5575.10.1038/s41467-021-25840-9. PubMed DOI PMC
Go Y.-M.; Walker D. I.; Liang Y.; Uppal K.; Soltow Q. A.; Tran V.; Strobel F.; Quyyumi A. A.; Ziegler T. R.; Pennell K. D.; et al. Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research. Toxicol. Sci. 2015, 148 (2), 531–543. 10.1093/toxsci/kfv198. PubMed DOI PMC
Rappaport S. M.; Barupal D. K.; Wishart D.; Vineis P.; Scalbert A. The blood exposome and its role in discovering causes of disease. Environ. Health Perspect 2014, 122 (8), 769–774. 10.1289/ehp.1308015. PubMed DOI PMC
Chaker J.; Gilles E.; Léger T.; Jégou B.; David A. From Metabolomics to HRMS-Based Exposomics: Adapting Peak Picking and Developing Scoring for MS1 Suspect Screening. Anal. Chem. 2021, 93 (3), 1792–1800. 10.1021/acs.analchem.0c04660. PubMed DOI
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J. Sep. Sci. 2021, 44 (8), 1769–1787. 10.1002/jssc.202001263. PubMed DOI
Sdougkou K.; Xie H.; Papazian S.; Bonnefille B.; Bergdahl I. A.; Martin J. W. Phospholipid Removal for Enhanced Chemical Exposomics in Human Plasma. Environ. Sci. Technol. 2023, 57 (28), 10173–10184. 10.1021/acs.est.3c00663. PubMed DOI PMC
Chaker J.; Kristensen D. M.; Halldorsson T. I.; Olsen S. F.; Monfort C.; Chevrier C.; Jégou B.; David A. Comprehensive Evaluation of Blood Plasma and Serum Sample Preparations for HRMS-Based Chemical Exposomics: Overlaps and Specificities. Anal. Chem. 2022, 94 (2), 866–874. 10.1021/acs.analchem.1c03638. PubMed DOI
Parera J.; Ábalos M.; Kärrman A.; van Bavel B.; Abad E.. 1.03 - Assessing and Controlling Sample Contamination. In Comprehensive Sampling and Sample Preparation; Pawliszyn J., Ed.; Academic Press, 2012; pp 51–64.
Psychogios N.; Hau D. D.; Peng J.; Guo A. C.; Mandal R.; Bouatra S.; Sinelnikov I.; Krishnamurthy R.; Eisner R.; Gautam B.; et al. The Human Serum Metabolome. PLoS One 2011, 6 (2), e1695710.1371/journal.pone.0016957. PubMed DOI PMC
David A.; Abdul-Sada A.; Lange A.; Tyler C. R.; Hill E. M. A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography A 2014, 1365, 72–85. 10.1016/j.chroma.2014.09.001. PubMed DOI
Sanchez T. R.; Hu X.; Zhao J.; Tran V.; Loiacono N.; Go Y.-M.; Goessler W.; Cole S.; Umans J.; Jones D. P.; et al. An atlas of metallome and metabolome interactions and associations with incident diabetes in the Strong Heart Family Study. Environ. Int. 2021, 157, 10681010.1016/j.envint.2021.106810. PubMed DOI PMC
Lipinski C.; Hopkins A. Navigating chemical space for biology and medicine. Nature 2004, 432 (7019), 855–861. 10.1038/nature03193. PubMed DOI
Stockwell B. R. Exploring biology with small organic molecules. Nature 2004, 432 (7019), 846–854. 10.1038/nature03196. PubMed DOI PMC
Ruan T.; Li P.; Wang H.; Li T.; Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem. Rev. 2023, 123 (17), 10584–10640. 10.1021/acs.chemrev.3c00056. PubMed DOI
Gouin T.; Mackay D.; Webster E.; Wania F. Screening Chemicals for Persistence in the Environment. Environ. Sci. Technol. 2000, 34 (5), 881–884. 10.1021/es991011z. DOI
Reymond J.-L. The Chemical Space Project. Acc. Chem. Res. 2015, 48 (3), 722–730. 10.1021/ar500432k. PubMed DOI
Hulleman T.; Turkina V.; O’Brien J. W.; Chojnacka A.; Thomas K. V.; Samanipour S. Critical Assessment of the Chemical Space Covered by LC–HRMS Non-Targeted Analysis. Environ. Sci. Technol. 2023, 57 (38), 14101–14112. 10.1021/acs.est.3c03606. PubMed DOI PMC
Wang Z.; Walker G. W.; Muir D. C. G.; Nagatani-Yoshida K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54 (5), 2575–2584. 10.1021/acs.est.9b06379. PubMed DOI
Zhang P.; Carlsten C.; Chaleckis R.; Hanhineva K.; Huang M.; Isobe T.; Koistinen V. M.; Meister I.; Papazian S.; Sdougkou K.; et al. Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective. Environ. Sci. Technol. Lett. 2021, 8 (10), 839–852. 10.1021/acs.estlett.1c00648. PubMed DOI PMC
Chen Y. C.; Hsu J. F.; Chang C. W.; Li S. W.; Yang Y. C.; Chao M. R.; Chen H. C.; Liao P. C. Connecting chemical exposome to human health using high-resolution mass spectrometry-based biomonitoring: Recent advances and future perspectives. Mass Spectrom. Rev. 2022, e2180510.1002/mas.21805. PubMed DOI
Isaacs K. K.; Egeghy P.; Dionisio K. L.; Phillips K. A.; Zidek A.; Ring C.; Sobus J. R.; Ulrich E. M.; Wetmore B. A.; Williams A. J.; et al. The chemical landscape of high-throughput new approach methodologies for exposure. J. Expo Sci. Environ. Epidemiol 2022, 32 (6), 820–832. 10.1038/s41370-022-00496-9. PubMed DOI PMC
Manz K. E.; Feerick A.; Braun J. M.; Feng Y. L.; Hall A.; Koelmel J.; Manzano C.; Newton S. R.; Pennell K. D.; Place B. J.; et al. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. J. Expo Sci. Environ. Epidemiol 2023, 33 (4), 524–536. 10.1038/s41370-023-00574-6. PubMed DOI PMC
Black G.; Lowe C.; Anumol T.; Bade J.; Favela K.; Feng Y.-L.; Knolhoff A.; McEachran A.; Nuñez J.; Fisher C.; et al. Exploring chemical space in non-targeted analysis: a proposed ChemSpace tool. Anal. Bioanal. Chem. 2023, 415 (1), 35–44. 10.1007/s00216-022-04434-4. PubMed DOI PMC
Schymanski E. L.; Kondic T.; Neumann S.; Thiessen P. A.; Zhang J.; Bolton E. E. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J. Cheminform 2021, 13 (1), 19.10.1186/s13321-021-00489-0. PubMed DOI PMC
Neveu V.; Moussy A.; Rouaix H.; Wedekind R.; Pon A.; Knox C.; Wishart D. S.; Scalbert A. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 2017, 45 (D1), D979–D984. 10.1093/nar/gkw980. PubMed DOI PMC
Borrel A.; Conway M.; Nolte S. Z; Unnikrishnan A.; Schmitt C. P; Kleinstreuer N. C ChemMaps.com v2.0: exploring the environmental chemical universe. Nucleic Acids Res. 2023, 51 (W1), W78–W82. 10.1093/nar/gkad380. PubMed DOI PMC
Williams A. J.; Grulke C. M.; Edwards J.; McEachran A. D.; Mansouri K.; Baker N. C.; Patlewicz G.; Shah I.; Wambaugh J. F.; Judson R. S.; et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J. Cheminform 2017, 9 (1), 61.10.1186/s13321-017-0247-6. PubMed DOI PMC
Weisgerber D. W. Chemical Abstracts Service Chemical Registry System: History, scope, and impacts. Journal of the American Society for Information Science 1997, 48 (4), 349–360. 10.1002/(SICI)1097-4571(199704)48:4<349::AID-ASI8>3.0.CO;2-W. DOI
Kim S.; Chen J.; Cheng T.; Gindulyte A.; He J.; He S.; Li Q.; Shoemaker B. A.; Thiessen P. A.; Yu B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51 (D1), D1373–D1380. 10.1093/nar/gkac956. PubMed DOI PMC
Pellizzari E. D.; Woodruff T. J.; Boyles R. R.; Kannan K.; Beamer P. I.; Buckley J. P.; Wang A.; Zhu Y.; Bennett D. H. Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research. Environ. Health Perspect 2019, 127 (12), 12600110.1289/EHP5133. PubMed DOI PMC
Flasch M.; Koellensperger G.; Warth B. Comparing the sensitivity of a low- and a high-resolution mass spectrometry approach for xenobiotic trace analysis: An exposome-type case study. Anal. Chim. Acta 2023, 1279, 34174010.1016/j.aca.2023.341740. PubMed DOI
Oesterle I.; Pristner M.; Berger S.; Wang M.; Verri Hernandes V.; Rompel A.; Warth B. Exposomic Biomonitoring of Polyphenols by Non-Targeted Analysis and Suspect Screening. Anal. Chem. 2023, 95 (28), 10686–10694. 10.1021/acs.analchem.3c01393. PubMed DOI PMC
Schwarzenbach R. P.; Gschwend P. M.; Imboden D. M.. Environmental Organic Chemistry; Wiley, 2017.
Escher B. I.; Stapleton H. M.; Schymanski E. L. Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367 (6476), 388–392. 10.1126/science.aay6636. PubMed DOI PMC
Cherkasov A.; Muratov E. N.; Fourches D.; Varnek A.; Baskin I. I.; Cronin M.; Dearden J.; Gramatica P.; Martin Y. C.; Todeschini R.; et al. QSAR Modeling: Where Have You Been? Where Are You Going To?. J. Med. Chem. 2014, 57 (12), 4977–5010. 10.1021/jm4004285. PubMed DOI PMC
Rand-Weaver M.; Margiotta-Casaluci L.; Patel A.; Panter G. H.; Owen S. F.; Sumpter J. P. The Read-Across Hypothesis and Environmental Risk Assessment of Pharmaceuticals. Environ. Sci. Technol. 2013, 47 (20), 11384–11395. 10.1021/es402065a. PubMed DOI PMC
Schmeisser S.; Miccoli A.; von Bergen M.; Berggren E.; Braeuning A.; Busch W.; Desaintes C.; Gourmelon A.; Grafström R.; Harrill J.; et al. New approach methodologies in human regulatory toxicology – Not if, but how and when!. Environ. Int. 2023, 178, 10808210.1016/j.envint.2023.108082. PubMed DOI PMC
Sager J. E.; Yu J.; Ragueneau-Majlessi I.; Isoherranen N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug Metab. Dispos. 2015, 43 (11), 1823–1837. 10.1124/dmd.115.065920. PubMed DOI PMC
Wang X.; Zhao X.; Shi D.; Dong Z.; Zhang X.; Liang W.; Liu L.; Wang X.; Wu F. Integrating Physiologically Based Pharmacokinetic Modeling-Based Forward Dosimetry and in Vitro Bioassays to Improve the Risk Assessment of Organophosphate Esters on Human Health. Environ. Sci. Technol. 2023, 57 (4), 1764–1775. 10.1021/acs.est.2c04576. PubMed DOI
Müller F. A.; Stamou M.; Englert F. H.; Frenzel O.; Diedrich S.; Suter-Dick L.; Wambaugh J. F.; Sturla S. J. In vitro to in vivo extrapolation and high-content imaging for simultaneous characterization of chemically induced liver steatosis and markers of hepatotoxicity. Arch. Toxicol. 2023, 97 (6), 1701–1721. 10.1007/s00204-023-03490-8. PubMed DOI PMC
Tollefsen K. E.; Scholz S.; Cronin M. T.; Edwards S. W.; de Knecht J.; Crofton K.; Garcia-Reyero N.; Hartung T.; Worth A.; Patlewicz G. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regul. Toxicol. Pharmacol. 2014, 70 (3), 629–640. 10.1016/j.yrtph.2014.09.009. PubMed DOI
González-Domínguez R.; Jáuregui O.; Queipo-Ortuño M. I.; Andrés-Lacueva C. Characterization of the Human Exposome by a Comprehensive and Quantitative Large-Scale Multianalyte Metabolomics Platform. Anal. Chem. 2020, 92 (20), 13767–13775. 10.1021/acs.analchem.0c02008. PubMed DOI
Gu Y.; Peach J. T.; Warth B. Sample preparation strategies for mass spectrometry analysis in human exposome research: Current status and future perspectives. TrAC Trends in Analytical Chemistry 2023, 166, 11715110.1016/j.trac.2023.117151. DOI
Brack W.; Ait-Aissa S.; Burgess R. M.; Busch W.; Creusot N.; Di Paolo C.; Escher B. I.; Mark Hewitt L.; Hilscherova K.; Hollender J.; et al. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview. Sci. Total Environ. 2016, 544, 1073–1118. 10.1016/j.scitotenv.2015.11.102. PubMed DOI
Vitale C. M.; Price E. J.; Miller G. W.; David A.; Antignac J.-P.; Barouki R.; Klánová J. Analytical strategies for chemical exposomics: exploring limits and feasibility. Exposome 2021, 10.1093/exposome/osab003. DOI
Schymanski E. L.; Jeon J.; Gulde R.; Fenner K.; Ruff M.; Singer H. P.; Hollender J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. 10.1021/es5002105. PubMed DOI
Fitzgerald C. C. J.; Hedman R.; Uduwela D. R.; Paszerbovics B.; Carroll A. J.; Neeman T.; Cawley A.; Brooker L.; McLeod M. D. Profiling Urinary Sulfate Metabolites With Mass Spectrometry. Front. Mol. Biosci. 2022, 10.3389/fmolb.2022.829511. PubMed DOI PMC
Xue J.; Lai Y.; Liu C. W.; Ru H. Towards Mass Spectrometry-Based Chemical Exposome: Current Approaches, Challenges, and Future Directions. Toxics 2019, 7 (3), 41.10.3390/toxics7030041. PubMed DOI PMC
Manrai A. K.; Cui Y.; Bushel P. R.; Hall M.; Karakitsios S.; Mattingly C. J.; Ritchie M.; Schmitt C.; Sarigiannis D. A.; Thomas D. C.; et al. Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health. Annu. Rev. Public Health 2017, 38, 279–294. 10.1146/annurev-publhealth-082516-012737. PubMed DOI PMC
Andra S. S.; Austin C.; Patel D.; Dolios G.; Awawda M.; Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. Environ. Int. 2017, 100, 32–61. 10.1016/j.envint.2016.11.026. PubMed DOI PMC
Hajeb P.; Zhu L.; Bossi R.; Vorkamp K. Sample preparation techniques for suspect and non-target screening of emerging contaminants. Chemosphere 2022, 287, 13230610.1016/j.chemosphere.2021.132306. PubMed DOI
Lioy P. J.; Rappaport S. M. Exposure science and the exposome: an opportunity for coherence in the environmental health sciences. Environ. Health Perspect 2011, 119 (11), A466–467. 10.1289/ehp.1104387. PubMed DOI PMC
Musatadi M.; Andrés-Maguregi A.; De Angelis F.; Prieto A.; Anakabe E.; Olivares M.; Etxebarria N.; Zuloaga O. The role of sample preparation in suspect and non-target screening for exposome analysis using human urine. Chemosphere 2023, 339, 13969010.1016/j.chemosphere.2023.139690. PubMed DOI
Damaraju S.; Driga A.; Cook L.; Calder K.; Graham K.; Dabbs K.; Steed H.; Berendt R.; Mackey J. R.; Cass C. E.. 3.02 - Considerations on Dealing with Tissues and Cell Samples (Include Tissue Banking). In Comprehensive Sampling and Sample Preparation; Pawliszyn J., Ed.; Academic Press, 2012; pp 21–31.
Guthrie J. W.3.01 - General Considerations when Dealing with Biological Fluid Samples. In Comprehensive Sampling and Sample Preparation; Pawliszyn J., Ed.; Academic Press, 2012; pp 1–19.
Zhou W.; Yang S.; Wang P. G. Matrix effects and application of matrix effect factor. Bioanalysis 2017, 9 (23), 1839–1844. 10.4155/bio-2017-0214. PubMed DOI
Barupal D. K.; Fiehn O. Generating the Blood Exposome Database Using a Comprehensive Text Mining and Database Fusion Approach. Environ. Health Persp. 2019, 127 (9), 09700810.1289/EHP4713. PubMed DOI PMC
Goerdten J.; Yuan L.; Huybrechts I.; Neveu V.; Nöthlings U.; Ahrens W.; Scalbert A.; Floegel A. Reproducibility of the Blood and Urine Exposome: A Systematic Literature Review and Meta-Analysis. Cancer Epidemiology, Biomarkers & Prevention 2022, 31 (9), 1683–1692. 10.1158/1055-9965.EPI-22-0090. PubMed DOI
Tkalec Ž.; Antignac J.-P.; Bandow N.; Béen F. M.; Belova L.; Bessems J.; Le Bizec B.; Brack W.; Cano-Sancho G.; Chaker J.; et al. Innovative analytical methodologies for characterizing chemical exposure with a view to next-generation risk assessment. Environ. Int. 2024, 186, 10858510.1016/j.envint.2024.108585. PubMed DOI
Tian Z.; Zhao H.; Peter K. T.; Gonzalez M.; Wetzel J.; Wu C.; Hu X.; Prat J.; Mudrock E.; Hettinger R.; et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 2021, 371 (6525), 185–189. 10.1126/science.abd6951. PubMed DOI
Vinggaard A. M.; Bonefeld-Jørgensen E. C.; Jensen T. K.; Fernandez M. F.; Rosenmai A. K.; Taxvig C.; Rodriguez-Carrillo A.; Wielsøe M.; Long M.; Olea N.; et al. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. Environ. Int. 2021, 146, 10619110.1016/j.envint.2020.106191. PubMed DOI
Chung M. K.; Rappaport S. M.; Wheelock C. E.; Nguyen V. K.; Meer T. P. v. d.; Miller G. W.; Vermeulen R.; Patel C. J. Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery. Environ. Health Persp. 2021, 129 (8), 08500110.1289/EHP8327. PubMed DOI PMC
Tian Z.; McMinn M. H.; Fang M. Effect-directed analysis and beyond: how to find causal environmental toxicants. Exposome 2023, 10.1093/exposome/osad002. DOI
Simon E.; Lamoree M. H.; Hamers T.; de Boer J. Challenges in effect-directed analysis with a focus on biological samples. TrAC Trends in Analytical Chemistry 2015, 67, 179–191. 10.1016/j.trac.2015.01.006. DOI
Semple K. T.; Doick K. J.; Jones K. C.; Burauel P.; Craven A.; Harms H. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ. Sci. Technol. 2004, 38 (12), 228A–231A. 10.1021/es040548w. PubMed DOI
Yu M.; Roszkowska A.; Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS Environmental Au 2022, 2 (1), 30–41. 10.1021/acsenvironau.1c00024. PubMed DOI PMC
Lin E. Z.; Nichols A.; Zhou Y.; Koelmel J. P.; Godri Pollitt K. J. Characterizing the external exposome using passive samplers—comparative assessment of chemical exposures using different wearable form factors. Journal of Exposure Science & Environmental Epidemiology 2023, 33 (4), 558–565. 10.1038/s41370-022-00456-3. PubMed DOI
Rusina T. P.; Smedes F.; Klanova J.; Booij K.; Holoubek I. Polymer selection for passive sampling: A comparison of critical properties. Chemosphere 2007, 68 (7), 1344–1351. 10.1016/j.chemosphere.2007.01.025. PubMed DOI
Adams R. G.; Lohmann R.; Fernandez L. A.; MacFarlane J. K.; Gschwend P. M. Polyethylene Devices: Passive Samplers for Measuring Dissolved Hydrophobic Organic Compounds in Aquatic Environments. Environ. Sci. Technol. 2007, 41 (4), 1317–1323. 10.1021/es0621593. PubMed DOI
Bohlin P.; Jones K. C.; Strandberg B. Occupational and indoor air exposure to persistent organic pollutants: A review of passive sampling techniques and needs. Journal of Environmental Monitoring 2007, 9 (6), 501–509. 10.1039/b700627f. PubMed DOI
Souza-Silva É. A.; Jiang R.; Rodríguez-Lafuente A.; Gionfriddo E.; Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. TrAC Trends in Analytical Chemistry 2015, 71, 224–235. 10.1016/j.trac.2015.04.016. DOI
Bessonneau V.; Ings J.; McMaster M.; Smith R.; Bragg L.; Servos M.; Pawliszyn J. In vivo microsampling to capture the elusive exposome. Sci. Rep. 2017, 7 (1), 4403810.1038/srep44038. PubMed DOI PMC
Kleeblatt J.; Schubert J. K.; Zimmermann R. Detection of Gaseous Compounds by Needle Trap Sampling and Direct Thermal-Desorption Photoionization Mass Spectrometry: Concept and Demonstrative Application to Breath Gas Analysis. Anal. Chem. 2015, 87 (3), 1773–1781. 10.1021/ac5039829. PubMed DOI
Bessonneau V.; Boyaci E.; Maciazek-Jurczyk M.; Pawliszyn J. In vivo solid phase microextraction sampling of human saliva for non-invasive and on-site monitoring. Anal. Chim. Acta 2015, 856, 35–45. 10.1016/j.aca.2014.11.029. PubMed DOI
Papazian S.; Fornaroli C.; Bonnefille B.; Pesquet E.; Xie H.; Martin J. W. Silicone Foam for Passive Sampling and Nontarget Analysis of Air. Environ. Sci. Tech Let 2023, 10, 989.10.1021/acs.estlett.2c00489. DOI
Koelmel J. P.; Lin E. Z.; Guo P.; Zhou J.; He J.; Chen A.; Gao Y.; Deng F.; Dong H.; Liu Y.; et al. Exploring the external exposome using wearable passive samplers - The China BAPE study. Environ. Pollut. 2021, 270, 11622810.1016/j.envpol.2020.116228. PubMed DOI
Okeme J. O.; Koelmel J. P.; Johnson E.; Lin E. Z.; Gao D.; Pollitt K. J. G. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Current Environmental Health Reports 2023, 10 (2), 84–98. 10.1007/s40572-023-00392-w. PubMed DOI
Samon S. M.; Hammel S. C.; Stapleton H. M.; Anderson K. A. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. Environ. Int. 2022, 169, 10733910.1016/j.envint.2022.107339. PubMed DOI PMC
O’Connell S. G.; Kincl L. D.; Anderson K. A. Silicone Wristbands as Personal Passive Samplers. Environ. Sci. Technol. 2014, 48 (6), 3327–3335. 10.1021/es405022f. PubMed DOI PMC
Jobst K. J.; Arora A.; Pollitt K. G.; Sled J. G. Dried blood spots for the identification of bioaccumulating organic compounds: Current challenges and future perspectives. Current Opinion in Environmental Science & Health 2020, 15, 66–73. 10.1016/j.coesh.2020.07.001. PubMed DOI PMC
Kocur A.; Pawinski T. Volumetric Absorptive Microsampling in Therapeutic Drug Monitoring of Immunosuppressive Drugs-From Sampling and Analytical Issues to Clinical Application. Int. J. Mol. Sci. 2023, 24 (1), 681.10.3390/ijms24010681. PubMed DOI PMC
Nemkov T.; Yoshida T.; Nikulina M.; D’Alessandro A. High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage. Front Physiol 2022, 13, 83324210.3389/fphys.2022.833242. PubMed DOI PMC
Jacobson T. A.; Bae Y.; Kler J. S.; Iyer R.; Zhang R.; Montgomery N. D.; Nunes D.; Pleil J. D.; Funk W. E. Advancing Global Health Surveillance of Mycotoxin Exposures using Minimally Invasive Sampling Techniques: A State-of-the-Science Review. Environ. Sci. Technol. 2024, 58 (8), 3580–3594. 10.1021/acs.est.3c04981. PubMed DOI PMC
Jain A.; Morris M.; Lin E. Z.; Khan S. A.; Ma X.; Deziel N. C.; Godri Pollitt K. J.; Johnson C. H. Hemoglobin normalization outperforms other methods for standardizing dried blood spot metabolomics: A comparative study. Science of The Total Environment 2023, 854, 15871610.1016/j.scitotenv.2022.158716. PubMed DOI
Berndt A. E. Sampling Methods. Journal of Human Lactation 2020, 36 (2), 224–226. 10.1177/0890334420906850. PubMed DOI
Fisher C. M.; Peter K. T.; Newton S. R.; Schaub A. J.; Sobus J. R. Approaches for assessing performance of high-resolution mass spectrometry–based non-targeted analysis methods. Anal. Bioanal. Chem. 2022, 414 (22), 6455–6471. 10.1007/s00216-022-04203-3. PubMed DOI PMC
Manz K. E.; Yamada K.; Scheidl L.; La Merrill M. A.; Lind L.; Pennell K. D. Targeted and Nontargeted Detection and Characterization of Trace Organic Chemicals in Human Serum and Plasma Using QuEChERS Extraction. Toxicol. Sci. 2021, 185 (1), 77–88. 10.1093/toxsci/kfab121. PubMed DOI PMC
Tulipani S.; Llorach R.; Urpi-Sarda M.; Andres-Lacueva C. Comparative Analysis of Sample Preparation Methods To Handle the Complexity of the Blood Fluid Metabolome: When Less Is More. Anal. Chem. 2013, 85 (1), 341–348. 10.1021/ac302919t. PubMed DOI
Al-Salhi R.; Monfort C.; Bonvallot N.; David A. Analytical strategies to profile the internal chemical exposome and the metabolome of human placenta. Anal. Chim. Acta 2022, 1219, 33998310.1016/j.aca.2022.339983. PubMed DOI
Mertens H.; Noll B.; Schwerdtle T.; Abraham K.; Monien B. H. Less is more: a methodological assessment of extraction techniques for per- and polyfluoroalkyl substances (PFAS) analysis in mammalian tissues. Anal. Bioanal. Chem. 2023, 415 (24), 5925–5938. 10.1007/s00216-023-04867-5. PubMed DOI PMC
De Baere S.; Ochieng P. E.; Kemboi D. C.; Scippo M.-L.; Okoth S.; Lindahl J. F.; Gathumbi J. K.; Antonissen G.; Croubels S. Development of High-Throughput Sample Preparation Procedures for the Quantitative Determination of Aflatoxins in Biological Matrices of Chickens and Cattle Using UHPLC-MS/MS. Toxins 2023, 15 (1), 37.10.3390/toxins15010037. PubMed DOI PMC
Zeleke G.; De Baere S.; Suleman S.; Devreese M. Development and Validation of a Reliable UHPLC-MS/MS Method for Simultaneous Quantification of Macrocyclic Lactones in Bovine Plasma. Molecules 2022, 27 (3), 998.10.3390/molecules27030998. PubMed DOI PMC
Tanoue R.; Nozaki K.; Nomiyama K.; Kunisue T.; Tanabe S. Rapid analysis of 65 pharmaceuticals and 7 personal care products in plasma and whole-body tissue samples of fish using acidic extraction, zirconia-coated silica cleanup, and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2020, 1631, 46158610.1016/j.chroma.2020.461586. PubMed DOI
Pourchet M.; Narduzzi L.; Jean A.; Guiffard I.; Bichon E.; Cariou R.; Guitton Y.; Hutinet S.; Vlaanderen J.; Meijer J.; et al. Non-targeted screening methodology to characterise human internal chemical exposure: Application to halogenated compounds in human milk. Talanta 2021, 225, 12197910.1016/j.talanta.2020.121979. PubMed DOI
Taylor P. J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clinical Biochemistry 2005, 38 (4), 328–334. 10.1016/j.clinbiochem.2004.11.007. PubMed DOI
Matuszewski B. K.; Constanzer M. L.; Chavez-Eng C. M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC–MS/MS. Anal. Chem. 2003, 75 (13), 3019–3030. 10.1021/ac020361s. PubMed DOI
Stahnke H.; Kittlaus S.; Kempe G.; Alder L. Reduction of Matrix Effects in Liquid Chromatography–Electrospray Ionization–Mass Spectrometry by Dilution of the Sample Extracts: How Much Dilution is Needed?. Anal. Chem. 2012, 84 (3), 1474–1482. 10.1021/ac202661j. PubMed DOI
Greer B.; Chevallier O.; Quinn B.; Botana L. M.; Elliott C. T. Redefining dilute and shoot: The evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. TrAC Trends in Analytical Chemistry 2021, 141, 11628410.1016/j.trac.2021.116284. DOI
Alcántara-Durán J.; Moreno-González D.; Beneito-Cambra M.; García-Reyes J. F. Dilute-and-shoot coupled to nanoflow liquid chromatography high resolution mass spectrometry for the determination of drugs of abuse and sport drugs in human urine. Talanta 2018, 182, 218–224. 10.1016/j.talanta.2018.01.081. PubMed DOI
Atapattu S. N.; Rosenfeld J. M. Analytical derivatizations in environmental analysis. Journal of Chromatography A 2022, 1678, 46334810.1016/j.chroma.2022.463348. PubMed DOI
Lai Z.; Fiehn O. Mass spectral fragmentation of trimethylsilylated small molecules. Mass Spectrom. Rev. 2018, 37 (3), 245–257. 10.1002/mas.21518. PubMed DOI
Metz T. O.; Baker E. S.; Schymanski E. L.; Renslow R. S.; Thomas D. G.; Causon T. J.; Webb I. K.; Hann S.; Smith R. D.; Teeguarden J. G. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?. Bioanalysis 2017, 9 (1), 81–98. 10.4155/bio-2016-0244. PubMed DOI PMC
Skoog D. A.; West D. M.; Holler F. J.; Crouch S. R.. Fundamentals of Analytical Chemistry; Cengage Learning, 2013.
May J. C.; McLean J. A. Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation. Anal. Chem. 2015, 87 (3), 1422–1436. 10.1021/ac504720m. PubMed DOI PMC
Shanmuganathan M.; Kroezen Z.; Gill B.; Azab S.; de Souza R. J.; Teo K. K.; Atkinson S.; Subbarao P.; Desai D.; Anand S. S.; et al. The maternal serum metabolome by multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform and standardized data workflow for large-scale epidemiological studies. Nat. Protoc. 2021, 16 (4), 1966–1994. 10.1038/s41596-020-00475-0. PubMed DOI
Fiehn O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114 (1), 30.34.31–30.34.32. 10.1002/0471142727.mb3004s114. PubMed DOI PMC
Fiehn O.; Kopka J.; Dörmann P.; Altmann T.; Trethewey R. N.; Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000, 18 (11), 1157–1161. 10.1038/81137. PubMed DOI
Gago-Ferrero P.; Díaz-Cruz M. S.; Barceló D. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal. Bioanal. Chem. 2012, 404 (9), 2597–2610. 10.1007/s00216-012-6067-7. PubMed DOI
Mol H. G. J.; Plaza-Bolaños P.; Zomer P.; de Rijk T. C.; Stolker A. A. M.; Mulder P. P. J. Toward a Generic Extraction Method for Simultaneous Determination of Pesticides, Mycotoxins, Plant Toxins, and Veterinary Drugs in Feed and Food Matrixes. Anal. Chem. 2008, 80 (24), 9450–9459. 10.1021/ac801557f. PubMed DOI
Kanakaki C.; Traka T.; Thomaidis N. S. Development and validation of multi-analyte methods for the determination of migrating substances from plastic food contact materials by GC-EI-QqQ-MS and GC-APCI-QTOF-MS. Front. Sustain. Food Syst. 2023, 10.3389/fsufs.2023.1159002. DOI
Wong J. K. Y.; Choi T. L. S.; Kwok K. Y.; Lei E. N. Y.; Wan T. S. M. Doping control analysis of 121 prohibited substances in equine hair by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 158, 189–203. 10.1016/j.jpba.2018.05.043. PubMed DOI
Thevis M.; Thomas A.; Pop V.; Schänzer W. Ultrahigh pressure liquid chromatography-(tandem) mass spectrometry in human sports drug testing: possibilities and limitations. J. Chromatogr A 2013, 1292, 38–50. 10.1016/j.chroma.2012.12.048. PubMed DOI
Rampler E.; Abiead Y. E.; Schoeny H.; Rusz M.; Hildebrand F.; Fitz V.; Koellensperger G. Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics—Standardization, Coverage, and Throughput. Anal. Chem. 2021, 93 (1), 519–545. 10.1021/acs.analchem.0c04698. PubMed DOI PMC
Flasch M.; Fitz V.; Rampler E.; Ezekiel C. N.; Koellensperger G.; Warth B. Integrated Exposomics/Metabolomics for Rapid Exposure and Effect Analyses. JACS Au 2022, 2 (11), 2548–2560. 10.1021/jacsau.2c00433. PubMed DOI PMC
González-Gaya B.; Lopez-Herguedas N.; Bilbao D.; Mijangos L.; Iker A. M.; Etxebarria N.; Irazola M.; Prieto A.; Olivares M.; Zuloaga O. Suspect and non-target screening: the last frontier in environmental analysis. Analytical Methods 2021, 13 (16), 1876–1904. 10.1039/D1AY00111F. PubMed DOI
Dürig W.; Lindblad S.; Golovko O.; Gkotsis G.; Aalizadeh R.; Nika M.-C.; Thomaidis N.; Alygizakis N. A.; Plassmann M.; Haglund P.; et al. What is in the fish? Collaborative trial in suspect and non-target screening of organic micropollutants using LC- and GC-HRMS. Environ. Int. 2023, 181, 10828810.1016/j.envint.2023.108288. PubMed DOI
Manz K. E.; Dodson R. E.; Liu Y.; Scheidl L.; Burks S.; Dunn F.; Gairola R.; Lee N. F.; Walker E. D.; Pennell K. D.; et al. Effects of Corsi-Rosenthal boxes on indoor air contaminants: non-targeted analysis using high resolution mass spectrometry. Journal of Exposure Science & Environmental Epidemiology 2023, 33 (4), 537–547. 10.1038/s41370-023-00577-3. PubMed DOI PMC
Misra B. B.; Olivier M. High Resolution GC-Orbitrap-MS Metabolomics Using Both Electron Ionization and Chemical Ionization for Analysis of Human Plasma. J. Proteome Res. 2020, 19 (7), 2717–2731. 10.1021/acs.jproteome.9b00774. PubMed DOI PMC
Brack W.; Hollender J.; de Alda M. L.; Müller C.; Schulze T.; Schymanski E.; Slobodnik J.; Krauss M. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environmental Sciences Europe 2019, 31 (1), 62.10.1186/s12302-019-0230-0. DOI
Morris C. B.; Poland J. C.; May J. C.; McLean J. A.. Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules. In Ion Mobility-Mass Spectrometry: Methods and Protocols; Paglia G., Astarita G., Eds.; Springer US, 2020; pp 1–31. PubMed PMC
Zhou Z.; Luo M.; Chen X.; Yin Y.; Xiong X.; Wang R.; Zhu Z.-J. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. Nat. Commun. 2020, 11 (1), 4334.10.1038/s41467-020-18171-8. PubMed DOI PMC
Baker E. S.; Hoang C.; Uritboonthai W.; Heyman H. M.; Pratt B.; MacCoss M.; MacLean B.; Plumb R.; Aisporna A.; Siuzdak G. METLIN-CCS: an ion mobility spectrometry collision cross section database. Nat. Methods 2023, 20, 1836.10.1038/s41592-023-02078-5. PubMed DOI PMC
Feuerstein M. L.; Hernández-Mesa M.; Kiehne A.; Le Bizec B.; Hann S.; Dervilly G.; Causon T. Comparability of Steroid Collision Cross Sections Using Three Different IM-HRMS Technologies: An Interplatform Study. J. Am. Soc. Mass Spectrom. 2022, 33 (10), 1951–1959. 10.1021/jasms.2c00196. PubMed DOI PMC
Celma A.; Sancho J. V.; Schymanski E. L.; Fabregat-Safont D.; Ibáñez M.; Goshawk J.; Barknowitz G.; Hernández F.; Bijlsma L. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 2020, 54 (23), 15120–15131. 10.1021/acs.est.0c05713. PubMed DOI
Izquierdo-Sandoval D.; Fabregat-Safont D.; Lacalle-Bergeron L.; Sancho J. V.; Hernández F.; Portoles T. Benefits of Ion Mobility Separation in GC-APCI-HRMS Screening: From the Construction of a CCS Library to the Application to Real-World Samples. Anal. Chem. 2022, 94 (25), 9040–9047. 10.1021/acs.analchem.2c01118. PubMed DOI PMC
Mairinger T.; Causon T. J.; Hann S. The potential of ion mobility–mass spectrometry for non-targeted metabolomics. Curr. Opin. Chem. Biol. 2018, 42, 9–15. 10.1016/j.cbpa.2017.10.015. PubMed DOI
Gonzalez de Vega R.; Cameron A.; Clases D.; Dodgen T. M.; Doble P. A.; Bishop D. P. Simultaneous targeted and non-targeted analysis of per- and polyfluoroalkyl substances in environmental samples by liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry and mass defect analysis. J. Chromatogr A 2021, 1653, 46242310.1016/j.chroma.2021.462423. PubMed DOI
Tu J.; Zhou Z.; Li T.; Zhu Z.-J. The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification. TrAC Trends in Analytical Chemistry 2019, 116, 332–339. 10.1016/j.trac.2019.03.017. DOI
Giles K.; Ujma J.; Wildgoose J.; Pringle S.; Richardson K.; Langridge D.; Green M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91 (13), 8564–8573. 10.1021/acs.analchem.9b01838. PubMed DOI
Foster M.; Rainey M.; Watson C.; Dodds J. N.; Kirkwood K. I.; Fernández F. M.; Baker E. S. Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. Environ. Sci. Technol. 2022, 56 (12), 9133–9143. 10.1021/acs.est.2c00201. PubMed DOI PMC
Chouinard C. D.; Cruzeiro V. W. D.; Roitberg A. E.; Yost R. A. Experimental and Theoretical Investigation of Sodiated Multimers of Steroid Epimers with Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28 (2), 323–331. 10.1007/s13361-016-1525-7. PubMed DOI PMC
Kyle J. E.; Zhang X.; Weitz K. K.; Monroe M. E.; Ibrahim Y. M.; Moore R. J.; Cha J.; Sun X.; Lovelace E. S.; Wagoner J.; et al. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 2016, 141 (5), 1649–1659. 10.1039/C5AN02062J. PubMed DOI PMC
Jeanne Dit Fouque K.; Ramirez C. E.; Lewis R. L.; Koelmel J. P.; Garrett T. J.; Yost R. A.; Fernandez-Lima F. Effective Liquid Chromatography–Trapped Ion Mobility Spectrometry–Mass Spectrometry Separation of Isomeric Lipid Species. Anal. Chem. 2019, 91 (8), 5021–5027. 10.1021/acs.analchem.8b04979. PubMed DOI
Wojcik R.; Nagy G.; Attah I. K.; Webb I. K.; Garimella S. V. B.; Weitz K. K.; Hollerbach A.; Monroe M. E.; Ligare M. R.; Nielson F. F.; et al. SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes. Anal. Chem. 2019, 91 (18), 11952–11962. 10.1021/acs.analchem.9b02808. PubMed DOI PMC
Watson J. T.; Sparkman O. D.. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation; Wiley, 2007.
Finkelstein J. Development of ionization methods. Nat. Methods 2015, 12 (1), 6–7. 10.1038/nmeth.3538. DOI
Beale D. J.; Pinu F. R.; Kouremenos K. A.; Poojary M. M.; Narayana V. K.; Boughton B. A.; Kanojia K.; Dayalan S.; Jones O. A. H.; Dias D. A. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 2018, 14 (11), 152.10.1007/s11306-018-1449-2. PubMed DOI
Baumeister T. U. H.; Ueberschaar N.; Pohnert G. Gas-Phase Chemistry in the GC Orbitrap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2019, 30 (4), 573–580. 10.1007/s13361-018-2117-5. PubMed DOI
Hong S.; Kang W.; Su Y.; Guo Y. Analysis of Trace-Level Volatile Compounds in Fresh Turf Crop (Lolium perenne L.) by Gas Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Chin. J. Chem. 2013, 31 (10), 1329–1335. 10.1002/cjoc.201300414. DOI
Omer E.; Bichon E.; Hutinet S.; Royer A. L.; Monteau F.; Germon H.; Hill P.; Remaud G.; Dervilly-Pinel G.; Cariou R.; et al. Toward the characterisation of non-intentionally added substances migrating from polyester-polyurethane lacquers by comprehensive gas chromatography-mass spectrometry technologies. J. Chromatogr A 2019, 1601, 327–334. 10.1016/j.chroma.2019.05.024. PubMed DOI
Vogel P.; Lazarou C.; Gazeli O.; Brandt S.; Franzke J.; Moreno-González D. Study of Controlled Atmosphere Flexible Microtube Plasma Soft Ionization Mass Spectrometry for Detection of Volatile Organic Compounds as Potential Biomarkers in Saliva for Cancer. Anal. Chem. 2020, 92 (14), 9722–9729. 10.1021/acs.analchem.0c01063. PubMed DOI
Alon T.; Amirav A. How enhanced molecular ions in Cold EI improve compound identification by the NIST library. Rapid Commun. Mass Spectrom. 2015, 29 (23), 2287–2292. 10.1002/rcm.7392. PubMed DOI
Margolin Eren K. J.; Elkabets O.; Amirav A. A comparison of electron ionization mass spectra obtained at 70 eV, low electron energies, and with cold EI and their NIST library identification probabilities. Journal of Mass Spectrometry 2020, 55 (12), e464610.1002/jms.4646. PubMed DOI
Tsizin S.; Bokka R.; Keshet U.; Alon T.; Fialkov A. B.; Tal N.; Amirav A. Comparison of electrospray LC–MS, LC–MS with Cold EI and GC–MS with Cold EI for sample identification. Int. J. Mass Spectrom. 2017, 422, 119–125. 10.1016/j.ijms.2017.09.006. DOI
Dougherty R. C.Positive and Negative Chemical Ionization Mass Spectrometry. In Mass Spectrometry in Environmental Sciences; Karasek F. W., Hutzinger O., Safe S., Eds.; Springer US, 1985; pp 77–91.
Capellades J.; Junza A.; Samino S.; Brunner J. S.; Schabbauer G.; Vinaixa M.; Yanes O. Exploring the Use of Gas Chromatography Coupled to Chemical Ionization Mass Spectrometry (GC-CI-MS) for Stable Isotope Labeling in Metabolomics. Anal. Chem. 2021, 93 (3), 1242–1248. 10.1021/acs.analchem.0c02998. PubMed DOI
Ayala-Cabrera J. F.; Montero L.; Meckelmann S. W.; Uteschil F.; Schmitz O. J. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part I: Current ion source developments and improvements in ionization strategies. Anal. Chim. Acta 2023, 1238, 34035310.1016/j.aca.2022.340353. PubMed DOI
Niu Y.; Liu J.; Yang R.; Zhang J.; Shao B. Atmospheric pressure chemical ionization source as an advantageous technique for gas chromatography-tandem mass spectrometry. TrAC Trends in Analytical Chemistry 2020, 132, 11605310.1016/j.trac.2020.116053. DOI
de Hoffmann E.Mass Spectrometry: Principles and Applications; John Wiley & Sons, 2007.
Li X.; Dorman F. L.; Helm P. A.; Kleywegt S.; Simpson A.; Simpson M. J.; Jobst K. J. Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential. Molecules 2021, 26 (22), 6911.10.3390/molecules26226911. PubMed DOI PMC
Singh R. R.; Aminot Y.; Héas-Moisan K.; Preud’homme H.; Munschy C. Cracked and shucked: GC-APCI-IMS-HRMS facilitates identification of unknown halogenated organic chemicals in French marine bivalves. Environ. Int. 2023, 178, 10809410.1016/j.envint.2023.108094. PubMed DOI
Konermann L.; Ahadi E.; Rodriguez A. D.; Vahidi S. Unraveling the Mechanism of Electrospray Ionization. Anal. Chem. 2013, 85 (1), 2–9. 10.1021/ac302789c. PubMed DOI
De O. Silva R.; De Menezes M. G.G.; De Castro R. C.; De A. Nobre C.; Milhome M. A.L.; Do Nascimento R. F. Efficiency of ESI and APCI ionization sources in LC-MS/MS systems for analysis of 22 pesticide residues in food matrix. Food Chem. 2019, 297, 12493410.1016/j.foodchem.2019.06.001. PubMed DOI
Martínez-Villalba A.; Moyano E.; Galceran M. T. Ultra-high performance liquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry for the analysis of benzimidazole compounds in milk samples. Journal of Chromatography A 2013, 1313, 119–131. 10.1016/j.chroma.2013.08.073. PubMed DOI
Xue J.; Domingo-Almenara X.; Guijas C.; Palermo A.; Rinschen M. M.; Isbell J.; Benton H. P.; Siuzdak G. Enhanced in-Source Fragmentation Annotation Enables Novel Data Independent Acquisition and Autonomous METLIN Molecular Identification. Anal. Chem. 2020, 92 (8), 6051–6059. 10.1021/acs.analchem.0c00409. PubMed DOI PMC
Bernardo-Bermejo S.; Xue J.; Hoang L.; Billings E.; Webb B.; Honders M. W.; Venneker S.; Heijs B.; Castro-Puyana M.; Marina M. L.; et al. Quantitative multiple fragment monitoring with enhanced in-source fragmentation/annotation mass spectrometry. Nat. Protoc. 2023, 18 (4), 1296–1315. 10.1038/s41596-023-00803-0. PubMed DOI PMC
Xue J.; Zhu J.; Hu L.; Yang J.; Lv Y.; Zhao F.; Liu Y.; Zhang T.; Cai Y.; Fang M. EISA-EXPOSOME: One Highly Sensitive and Autonomous Exposomic Platform with Enhanced in-Source Fragmentation/Annotation. Anal. Chem. 2023, 95, 17228.10.1021/acs.analchem.3c02697. PubMed DOI
Singh R. R.; Chao A.; Phillips K. A.; Xia X. R.; Shea D.; Sobus J. R.; Schymanski E. L.; Ulrich E. M. Expanded coverage of non-targeted LC-HRMS using atmospheric pressure chemical ionization: a case study with ENTACT mixtures. Anal Bioanal Chem. 2020, 412 (20), 4931–4939. 10.1007/s00216-020-02716-3. PubMed DOI PMC
Richard A. M.; Huang R.; Waidyanatha S.; Shinn P.; Collins B. J.; Thillainadarajah I.; Grulke C. M.; Williams A. J.; Lougee R. R.; Judson R. S.; et al. The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chem. Res. Toxicol. 2021, 34 (2), 189–216. 10.1021/acs.chemrestox.0c00264. PubMed DOI PMC
Xian F.; Hendrickson C. L.; Marshall A. G. High Resolution Mass Spectrometry. Anal. Chem. 2012, 84 (2), 708–719. 10.1021/ac203191t. PubMed DOI
Zubarev R. A.; Makarov A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85 (11), 5288–5296. 10.1021/ac4001223. PubMed DOI
Kind T.; Fiehn O. Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 2006, 7 (1), 234.10.1186/1471-2105-7-234. PubMed DOI PMC
Balogh M. P. Debating resolution and mass accuracy. LC-GC N. Am. 2004, 22 (2), 118.
Siuzdak G.The Expanding Role of Mass Spectrometry in Biotechnology; MCC Press, 2006.
Ni Y.; Su M.; Qiu Y.; Jia W.; Du X. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Anal. Chem. 2016, 88 (17), 8802–8811. 10.1021/acs.analchem.6b02222. PubMed DOI PMC
Worsfold P.; Townshend A.; Poole C. F.; Miró M.. Encyclopedia of Analytical Science; Elsevier Science, 2019.
Llorca M.; Farré M.; Picó Y.; Barceló D. Study of the performance of three LC-MS/MS platforms for analysis of perfluorinated compounds. Anal Bioanal Chem. 2010, 398 (3), 1145–1159. 10.1007/s00216-010-3911-5. PubMed DOI
Michalski A.; Damoc E.; Hauschild J. P.; Lange O.; Wieghaus A.; Makarov A.; Nagaraj N.; Cox J.; Mann M.; Horning S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell Proteomics 2011, 10 (9), M111.01101510.1074/mcp.M111.011015. PubMed DOI PMC
Scheltema R. A.; Hauschild J. P.; Lange O.; Hornburg D.; Denisov E.; Damoc E.; Kuehn A.; Makarov A.; Mann M. The Q Exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol. Cell Proteomics 2014, 13 (12), 3698–3708. 10.1074/mcp.M114.043489. PubMed DOI PMC
Eichhorn P.; Pérez S.; Barceló D.. Chapter 5 - Time-of-Flight Mass Spectrometry Versus Orbitrap-Based Mass Spectrometry for the Screening and Identification of Drugs and Metabolites: Is There a Winner? In Comprehensive Analytical Chemistry; Fernandez-Alba A. R., Ed.; Elsevier, 2012; Vol. 58, pp 217–272.
Makarov A.; Denisov E.; Lange O. Performance Evaluation of a High-field Orbitrap Mass Analyzer. J. Am. Soc. Mass Spectrom. 2009, 20 (8), 1391–1396. 10.1016/j.jasms.2009.01.005. PubMed DOI
Eliuk S.; Makarov A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu. Rev. Anal Chem. (Palo Alto Calif) 2015, 8, 61–80. 10.1146/annurev-anchem-071114-040325. PubMed DOI
Hu Q.; Noll R. J.; Li H.; Makarov A.; Hardman M.; Graham Cooks R. The Orbitrap: a new mass spectrometer. J. Mass Spectrom 2005, 40 (4), 430–443. 10.1002/jms.856. PubMed DOI
Kaufmann A.; Walker S. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers. Rapid Commun. Mass Spectrom. 2017, 31 (22), 1915–1926. 10.1002/rcm.7981. PubMed DOI
Johnson R. Forming fragments. Nat. Methods 2015, 12 (1), 14–14. 10.1038/nmeth.3533. PubMed DOI
Cooks R. G. Special feature: Historical. Collision-induced dissociation: Readings and commentary. Journal of Mass Spectrometry 1995, 30 (9), 1215–1221. 10.1002/jms.1190300902. DOI
de Hoffmann E. Tandem mass spectrometry: A primer. Journal of Mass Spectrometry 1996, 31 (2), 129–137. 10.1002/(SICI)1096-9888(199602)31:2<129::AID-JMS305>3.0.CO;2-T. DOI
Bourmaud A.; Gallien S.; Domon B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications. Proteomics 2016, 16 (15–16), 2146–2159. 10.1002/pmic.201500543. PubMed DOI
Vaniya A.; Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. TrAC Trends in Analytical Chemistry 2015, 69, 52–61. 10.1016/j.trac.2015.04.002. PubMed DOI PMC
Li J.; Smith L. S.; Zhu H.-J. Data-independent acquisition (DIA): An emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters. Drug Discovery Today: Technologies 2021, 39, 49–56. 10.1016/j.ddtec.2021.06.006. PubMed DOI PMC
Krasny L.; Huang P. H. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Molecular Omics 2021, 17 (1), 29–42. 10.1039/D0MO00072H. PubMed DOI
Zhang F.; Ge W.; Ruan G.; Cai X.; Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics 2020, 20 (17–18), e190027610.1002/pmic.201900276. PubMed DOI
Meier F.; Geyer P. E.; Virreira Winter S.; Cox J.; Mann M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 2018, 15 (6), 440–448. 10.1038/s41592-018-0003-5. PubMed DOI
Wu J.; Wang H.; Zhao X.; Qiu H.; Li N. High sensitivity and high-confidence compound identification with a flexible BoxCar acquisition method. J. Pharm. Biomed. Anal. 2022, 219, 11497310.1016/j.jpba.2022.114973. PubMed DOI
Liu K.; Song Y.; Liu Y.; Peng M.; Li H.; Li X.; Feng B.; Xu P.; Su D. An integrated strategy using UPLC–QTOF-MSE and UPLC–QTOF-MRM (enhanced target) for pharmacokinetics study of wine processed Schisandra Chinensis fructus in rats. J. Pharm. Biomed. Anal. 2017, 139, 165–178. 10.1016/j.jpba.2017.02.043. PubMed DOI
Castro G.; Ramil M.; Cela R.; Rodríguez I. Identification and determination of emerging pollutants in sewage sludge driven by UPLC-QTOF-MS data mining. Science of The Total Environment 2021, 778, 14625610.1016/j.scitotenv.2021.146256. PubMed DOI
Collins B. C.; Hunter C. L.; Liu Y.; Schilling B.; Rosenberger G.; Bader S. L.; Chan D. W.; Gibson B. W.; Gingras A.-C.; Held J. M.; et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 2017, 8 (1), 291.10.1038/s41467-017-00249-5. PubMed DOI PMC
Koopmans F.; Ho J. T. C.; Smit A. B.; Li K. W. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA. PROTEOMICS 2018, 18 (1), 170030410.1002/pmic.201700304. PubMed DOI PMC
Meier F.; Brunner A.-D.; Frank M.; Ha A.; Bludau I.; Voytik E.; Kaspar-Schoenefeld S.; Lubeck M.; Raether O.; Bache N.; et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 2020, 17 (12), 1229–1236. 10.1038/s41592-020-00998-0. PubMed DOI
Heil L. R.; Damoc E.; Arrey T. N.; Pashkova A.; Denisov E.; Petzoldt J.; Peterson A. C.; Hsu C.; Searle B. C.; Shulman N.; et al. Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition. J. Proteome Res. 2023, 22 (10), 3290–3300. 10.1021/acs.jproteome.3c00357. PubMed DOI PMC
Guo J.; Huan T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography–Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92 (12), 8072–8080. 10.1021/acs.analchem.9b05135. PubMed DOI
Nikolskiy I.; Mahieu N. G.; Chen Y. Jr.; Tautenhahn R.; Patti G. J. An Untargeted Metabolomic Workflow to Improve Structural Characterization of Metabolites. Anal. Chem. 2013, 85 (16), 7713–7719. 10.1021/ac400751j. PubMed DOI PMC
van Herwerden D.; O’Brien J. W.; Lege S.; Pirok B. W. J.; Thomas K. V.; Samanipour S. Cumulative Neutral Loss Model for Fragment Deconvolution in Electrospray Ionization High-Resolution Mass Spectrometry Data. Anal. Chem. 2023, 95 (33), 12247–12255. 10.1021/acs.analchem.3c00896. PubMed DOI PMC
Pejchinovski M.; Klein J.; Ramírez-Torres A.; Bitsika V.; Mermelekas G.; Vlahou A.; Mullen W.; Mischak H.; Jankowski V. Comparison of higher energy collisional dissociation and collision-induced dissociation MS/MS sequencing methods for identification of naturally occurring peptides in human urine. Proteomics Clin Appl. 2015, 9 (5–6), 531–542. 10.1002/prca.201400163. PubMed DOI
Peters-Clarke T.; Coon J.; Riley N.. Instrumentation at the Leading Edge of Proteomics; American Chemical Society (ACS), 2023. PubMed
Chen X.; Wang Z.; Wong Y.-L. E.; Wu R.; Zhang F.; Chan T.-W. D. Electron-ion reaction-based dissociation: A powerful ion activation method for the elucidation of natural product structures. Mass Spectrom. Rev. 2018, 37 (6), 793–810. 10.1002/mas.21563. PubMed DOI
Brodbelt J. S.; Morrison L. J.; Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev. 2020, 120 (7), 3328–3380. 10.1021/acs.chemrev.9b00440. PubMed DOI PMC
Baba T.; Campbell J. L.; Le Blanc J. C. Y.; Baker P. R. S. In-depth sphingomyelin characterization using electron impact excitation of ions from organics and mass spectrometry[S]. J. Lipid Res. 2016, 57 (5), 858–867. 10.1194/jlr.M067199. PubMed DOI PMC
Kong F.; Keshet U.; Shen T.; Rodriguez E.; Fiehn O. LibGen: Generating High Quality Spectral Libraries of Natural Products for EAD-, UVPD-, and HCD-High Resolution Mass Spectrometers. Anal. Chem. 2023, 95 (46), 16810–16818. 10.1021/acs.analchem.3c02263. PubMed DOI PMC
Wang J.; Chow W.; Wong J. W.; Chang J. Applications of nDATA for screening, quantitation, and identification of pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap all ion fragmentation and data independent acquisition. J. Mass Spectrom 2021, 56 (9), e478310.1002/jms.4783. PubMed DOI
Wang J.; Chow W.; Wong J. W.; Leung D.; Chang J.; Li M. Non-target data acquisition for target analysis (nDATA) of 845 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Anal Bioanal Chem. 2019, 411 (7), 1421–1431. 10.1007/s00216-019-01581-z. PubMed DOI
Wong; Wang J. W.; Chang J.; Chow J. S.; Carlson W.; Rajski R.; Fernández-Alba A. R.; Self R.; Cooke W. K.; Lock C. M.; et al. Multilaboratory Collaborative Study of a Nontarget Data Acquisition for Target Analysis (nDATA) Workflow Using Liquid Chromatography-High-Resolution Accurate Mass Spectrometry for Pesticide Screening in Fruits and Vegetables. J. Agric. Food Chem. 2021, 69 (44), 13200–13216. 10.1021/acs.jafc.1c04437. PubMed DOI
Wong J. W.; Wang J.; Chow W.; Carlson R.; Jia Z.; Zhang K.; Hayward D. G.; Chang J. S. Perspectives on Liquid Chromatography-High-Resolution Mass Spectrometry for Pesticide Screening in Foods. J. Agric. Food Chem. 2018, 66 (37), 9573–9581. 10.1021/acs.jafc.8b03468. PubMed DOI
Manjarrés D. P.; Montemurro N.; Pérez S. Development of a USE/d-SPE and targeted DIA-Orbitrap-MS acquisition methodology for the analysis of wastewater-derived organic pollutants in fish tissues and body fluids. MethodsX 2022, 9, 10170510.1016/j.mex.2022.101705. PubMed DOI PMC
Hollender J.; Schymanski E. L.; Ahrens L.; Alygizakis N.; Béen F.; Bijlsma L.; Brunner A. M.; Celma A.; Fildier A.; Fu Q.; et al. NORMAN guidance on suspect and non-target screening in environmental monitoring. Environmental Sciences Europe 2023, 35 (1), 75.10.1186/s12302-023-00779-4. DOI
Uppal K.; Walker D. I.; Liu K.; Li S.; Go Y.-M.; Jones D. P. Computational Metabolomics: A Framework for the Million Metabolome. Chem. Res. Toxicol. 2016, 29 (12), 1956–1975. 10.1021/acs.chemrestox.6b00179. PubMed DOI PMC
Liu X.; Locasale J. W. Metabolomics: A Primer. Trends Biochem. Sci. 2017, 42 (4), 274–284. 10.1016/j.tibs.2017.01.004. PubMed DOI PMC
Thompson J. W.; Adams K. J.; Adamski J.; Asad Y.; Borts D.; Bowden J. A.; Byram G.; Dang V.; Dunn W. B.; Fernandez F.; et al. International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis. Anal. Chem. 2019, 91 (22), 14407–14416. 10.1021/acs.analchem.9b02908. PubMed DOI PMC
Bowden J. A.; Heckert A.; Ulmer C. Z.; Jones C. M.; Koelmel J. P.; Abdullah L.; Ahonen L.; Alnouti Y.; Armando A. M.; Asara J. M.; et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J. Lipid Res. 2017, 58 (12), 2275–2288. 10.1194/jlr.M079012. PubMed DOI PMC
Gago-Ferrero P.; Bletsou A. A.; Damalas D. E.; Aalizadeh R.; Alygizakis N. A.; Singer H. P.; Hollender J.; Thomaidis N. S. Wide-scope target screening of > 2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard Mater. 2020, 387, 12171210.1016/j.jhazmat.2019.121712. PubMed DOI
Ulrich E. M.; Sobus J. R.; Grulke C. M.; Richard A. M.; Newton S. R.; Strynar M. J.; Mansouri K.; Williams A. J. EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal. Bioanal. Chem. 2019, 411 (4), 853–866. 10.1007/s00216-018-1435-6. PubMed DOI PMC
Place B. J.; Ulrich E. M.; Challis J. K.; Chao A.; Du B.; Favela K.; Feng Y.-L.; Fisher C. M.; Gardinali P.; Hood A.; et al. An Introduction to the Benchmarking and Publications for Non-Targeted Analysis Working Group. Anal. Chem. 2021, 93 (49), 16289–16296. 10.1021/acs.analchem.1c02660. PubMed DOI PMC
Peter K. T.; Phillips A. L.; Knolhoff A. M.; Gardinali P. R.; Manzano C. A.; Miller K. E.; Pristner M.; Sabourin L.; Sumarah M. W.; Warth B.; et al. Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal. Chem. 2021, 93 (41), 13870–13879. 10.1021/acs.analchem.1c02621. PubMed DOI PMC
Mohammed Taha H.; Aalizadeh R.; Alygizakis N.; Antignac J.-P.; Arp H. P. H.; Bade R.; Baker N.; Belova L.; Bijlsma L.; Bolton E. E.; et al. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. Environmental Sciences Europe 2022, 34 (1), 104.10.1186/s12302-022-00680-6. PubMed DOI PMC
Shi C.; Yang J.; You Z.; Zhang Z.; Fang M. Suspect screening analysis by tandem mass spectra from metabolomics to exposomics. TrAC Trends in Analytical Chemistry 2024, 175, 11769910.1016/j.trac.2024.117699. DOI
Mistrik R.mzCLOUD: A spectral tree library for the Identification of “unknown unknowns”, 2018; Vol. 255.
Wang J.; P D. A.; Mistrik R.; Huang Y.; Araujo G. D.. A platform to identify endogenous metabolites using a novel high performance orbitrap MS and the mzCloud library, 2013. https://apps.thermoscientific.com/media/cmd/ASMS-TNG-Roadshow/TNG/resouces/870_PN_ASMS13_MP%20045_JWang.pdf.
Helmus R.; ter Laak T. L.; van Wezel A. P.; de Voogt P.; Schymanski E. L. patRoon: open source software platform for environmental mass spectrometry based non-target screening. Journal of Cheminformatics 2021, 13 (1), 1.10.1186/s13321-020-00477-w. PubMed DOI PMC
Ruttkies C.; Schymanski E. L.; Wolf S.; Hollender J.; Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics 2016, 8 (1), 3.10.1186/s13321-016-0115-9. PubMed DOI PMC
Talavera Andújar B.; Aurich D.; Aho V. T. E.; Singh R. R.; Cheng T.; Zaslavsky L.; Bolton E. E.; Mollenhauer B.; Wilmes P.; Schymanski E. L. Studying the Parkinson’s disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study. Anal. Bioanal. Chem. 2022, 414 (25), 7399–7419. 10.1007/s00216-022-04207-z. PubMed DOI PMC
Cajka T.; Fiehn O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88 (1), 524–545. 10.1021/acs.analchem.5b04491. PubMed DOI
Comte B.; Monnerie S.; Brandolini-Bunlon M.; Canlet C.; Castelli F.; Chu-Van E.; Colsch B.; Fenaille F.; Joly C.; Jourdan F.; et al. Multiplatform metabolomics for an integrative exploration of metabolic syndrome in older men. eBioMedicine 2021, 69, 10344010.1016/j.ebiom.2021.103440. PubMed DOI PMC
Jia S.; Xu T.; Huan T.; Chong M.; Liu M.; Fang W.; Fang M. Chemical Isotope Labeling Exposome (CIL-EXPOSOME): One High-Throughput Platform for Human Urinary Global Exposome Characterization. Environ. Sci. Technol. 2019, 53 (9), 5445–5453. 10.1021/acs.est.9b00285. PubMed DOI
James E. I.; Murphree T. A.; Vorauer C.; Engen J. R.; Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem. Rev. 2022, 122 (8), 7562–7623. 10.1021/acs.chemrev.1c00279. PubMed DOI PMC
Amer B.; Deshpande R. R.; Bird S. S. Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023, 13 (5), 648.10.3390/metabo13050648. PubMed DOI PMC
McCord J. P.; Groff L. C.; Sobus J. R. Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environ. Int. 2022, 158, 10701110.1016/j.envint.2021.107011. PubMed DOI PMC
Rager J. E.; Strynar M. J.; Liang S.; McMahen R. L.; Richard A. M.; Grulke C. M.; Wambaugh J. F.; Isaacs K. K.; Judson R.; Williams A. J.; et al. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring. Environ. Int. 2016, 88, 269–280. 10.1016/j.envint.2015.12.008. PubMed DOI
Newton S. R.; McMahen R. L.; Sobus J. R.; Mansouri K.; Williams A. J.; McEachran A. D.; Strynar M. J. Suspect screening and non-targeted analysis of drinking water using point-of-use filters. Environ. Pollut. 2018, 234, 297–306. 10.1016/j.envpol.2017.11.033. PubMed DOI PMC
Guo J.; Yu H.; Xing S.; Huan T. Addressing big data challenges in mass spectrometry-based metabolomics. Chem. Commun. 2022, 58 (72), 9979–9990. 10.1039/D2CC03598G. PubMed DOI
Yu H.; Huan T. Patterned Signal Ratio Biases in Mass Spectrometry-Based Quantitative Metabolomics. Anal. Chem. 2021, 93 (4), 2254–2262. 10.1021/acs.analchem.0c04113. PubMed DOI
Yu H.; Xing S.; Nierves L.; Lange P. F.; Huan T. Fold-Change Compression: An Unexplored But Correctable Quantitative Bias Caused by Nonlinear Electrospray Ionization Responses in Untargeted Metabolomics. Anal. Chem. 2020, 92 (10), 7011–7019. 10.1021/acs.analchem.0c00246. PubMed DOI
Liang Y.-Z.; Kvalheim O. M.; Manne R. White, grey and black multicomponent systems: A classification of mixture problems and methods for their quantitative analysis. Chemometrics and Intelligent Laboratory Systems 1993, 18 (3), 235–250. 10.1016/0169-7439(93)85001-W. DOI
He Y.; Brademan D. R.; Hutchins P. D.; Overmyer K. A.; Coon J. J. Maximizing MS/MS Acquisition for Lipidomics Using Capillary Separation and Orbitrap Tribrid Mass Spectrometer. Anal. Chem. 2022, 94 (7), 3394–3399. 10.1021/acs.analchem.1c05552. PubMed DOI PMC
Karasawa K.; Duchoslav E.; Baba T. Fast Electron Detachment Dissociation of Oligonucleotides in Electron-Nitrogen Plasma Stored in Magneto Radio-Frequency Ion Traps. Anal. Chem. 2022, 94 (44), 15510–15517. 10.1021/acs.analchem.2c04027. PubMed DOI
Di Poto C.; Tian X.; Peng X.; Heyman H. M.; Szesny M.; Hess S.; Cazares L. H. Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32 (8), 2072–2080. 10.1021/jasms.0c00467. PubMed DOI
Wang Z.; Mülleder M.; Batruch I.; Chelur A.; Textoris-Taube K.; Schwecke T.; Hartl J.; Causon J.; Castro-Perez J.; Demichev V.; et al. High-throughput proteomics of nanogram-scale samples with Zeno SWATH MS. eLife 2022, 11, e8394710.7554/eLife.83947. PubMed DOI PMC
Hernandes V. V.; Warth B. Uniting targeted (Zeno MRM-HR) and untargeted (SWATH) LC-MS in a single run for sensitive high-resolution exposomics. ChemRxiv 2024, 10.26434/chemrxiv-2024-s6sw6. DOI
Wolf C.; Behrens A.; Brungs C.; Mende E. D.; Lenz M.; Piechutta P. C.; Roblick C.; Karst U. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry - Tattoo pigment identification supported by trapped ion mobility spectrometry. Anal. Chim. Acta 2023, 1242, 34079610.1016/j.aca.2023.340796. PubMed DOI
Gago-Ferrero P.; Schymanski E. L.; Bletsou A. A.; Aalizadeh R.; Hollender J.; Thomaidis N. S. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environ. Sci. Technol. 2015, 49 (20), 12333–12341. 10.1021/acs.est.5b03454. PubMed DOI
Meijer J.; Lamoree M.; Hamers T.; Antignac J.-P.; Hutinet S.; Debrauwer L.; Covaci A.; Huber C.; Krauss M.; Walker D. I.; et al. An annotation database for chemicals of emerging concern in exposome research. Environ. Int. 2021, 152, 10651110.1016/j.envint.2021.106511. PubMed DOI
Sauvé S.; Desrosiers M. A review of what is an emerging contaminant. Chemistry Central Journal 2014, 8 (1), 15.10.1186/1752-153X-8-15. PubMed DOI PMC
Liu Y.; D’Agostino L. A.; Qu G.; Jiang G.; Martin J. W. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends in Analytical Chemistry 2019, 121, 11542010.1016/j.trac.2019.02.021. DOI
Hsu J. Y.; Shih C. L.; Liao P. C. Exposure Marker Discovery of Phthalates Using Mass Spectrometry. Mass Spectrom. 2017, 6, S0062.10.5702/massspectrometry.S0062. PubMed DOI PMC
Singer H. P.; Wössner A. E.; McArdell C. S.; Fenner K. Rapid Screening for Exposure to “Non-Target” Pharmaceuticals from Wastewater Effluents by Combining HRMS-Based Suspect Screening and Exposure Modeling. Environ. Sci. Technol. 2016, 50 (13), 6698–6707. 10.1021/acs.est.5b03332. PubMed DOI
Lai A.; Clark A. M.; Escher B. I.; Fernandez M.; McEwen L. R.; Tian Z.; Wang Z.; Schymanski E. L. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). Environ. Sci. Technol. 2022, 56 (12), 7448–7466. 10.1021/acs.est.2c00321. PubMed DOI PMC
Vega-Herrera A.; Llorca M.; Savva K.; León V. M.; Abad E.; Farré M. Screening and Quantification of Micro(Nano)Plastics and Plastic Additives in the Seawater of Mar Menor Lagoon. Front. Marine Sci. 2021, 10.3389/fmars.2021.697424. DOI
Muschket M.; Di Paolo C.; Tindall A. J.; Touak G.; Phan A.; Krauss M.; Kirchner K.; Seiler T.-B.; Hollert H.; Brack W. Identification of Unknown Antiandrogenic Compounds in Surface Waters by Effect-Directed Analysis (EDA) Using a Parallel Fractionation Approach. Environ. Sci. Technol. 2018, 52 (1), 288–297. 10.1021/acs.est.7b04994. PubMed DOI
Zhao H. N.; Hu X.; Tian Z.; Gonzalez M.; Rideout C. A.; Peter K. T.; Dodd M. C.; Kolodziej E. P. Transformation Products of Tire Rubber Antioxidant 6PPD in Heterogeneous Gas-Phase Ozonation: Identification and Environmental Occurrence. Environ. Sci. Technol. 2023, 57 (14), 5621–5632. 10.1021/acs.est.2c08690. PubMed DOI
Hu X.; Zhao H. N.; Tian Z.; Peter K. T.; Dodd M. C.; Kolodziej E. P. Chemical characteristics, leaching, and stability of the ubiquitous tire rubber-derived toxicant 6PPD-quinone. Environ. Sci. Process Impacts 2023, 25 (5), 901–911. 10.1039/D3EM00047H. PubMed DOI
Arp H. P. H.; Aurich D.; Schymanski E. L.; Sims K.; Hale S. E. Avoiding the Next Silent Spring: Our Chemical Past, Present, and Future. Environ. Sci. Technol. 2023, 57 (16), 6355–6359. 10.1021/acs.est.3c01735. PubMed DOI PMC
Safe and Sustainable by Design Chemicals and Materials—A European Assessment Framework; Publications Office of the European Union, 2022. 10.2777/86120. DOI
Rogers L.; Jensen K. F. Continuous manufacturing – the Green Chemistry promise?. Green Chem. 2019, 21 (13), 3481–3498. 10.1039/C9GC00773C. DOI
Zhu B.; Wang D.; Wei N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 2022, 40 (1), 22–37. 10.1016/j.tibtech.2021.02.008. PubMed DOI
Mulvihill M. J.; Beach E. S.; Zimmerman J. B.; Anastas P. T. Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. Annual Review of Environment and Resources 2011, 36 (1), 271–293. 10.1146/annurev-environ-032009-095500. DOI
Meadows D. H.; Wright D.. Thinking in Systems: A Primer; Chelsea Green Publishing, 2008.
McAlister M. M.; Zhang Q.; Annis J.; Schweitzer R. W.; Guidotti S.; Mihelcic J. R. Systems Thinking for Effective Interventions in Global Environmental Health. Environ. Sci. Technol. 2022, 56 (2), 732–738. 10.1021/acs.est.1c04110. PubMed DOI PMC
Wang Z.; DeWitt J. C.; Higgins C. P.; Cousins I. T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?. Environ. Sci. Technol. 2017, 51 (5), 2508–2518. 10.1021/acs.est.6b04806. PubMed DOI
Casey J. S.; Jackson S. R.; Ryan J.; Newton S. R. The use of gas chromatography – high resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances. Journal of Chromatography A 2023, 1693, 46388410.1016/j.chroma.2023.463884. PubMed DOI PMC
Koelmel J. P.; Lin E. Z.; DeLay K.; Williams A. J.; Zhou Y.; Bornman R.; Obida M.; Chevrier J.; Godri Pollitt K. J. Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. Environ. Sci. Technol. 2022, 56 (4), 2191–2203. 10.1021/acs.est.1c06481. PubMed DOI
Akoueson F.; Chbib C.; Brémard A.; Monchy S.; Paul-Pont I.; Doyen P.; Dehaut A.; Duflos G. Identification of plastic additives: Py/TD-GC-HRMS method development and application on food containers. Journal of Analytical and Applied Pyrolysis 2022, 168, 10574510.1016/j.jaap.2022.105745. DOI
Hankett J. M.; Holtz J. L.; Walker-Franklin I.; Shaffer K.; Jourdan J.; Batiste D. C.; Garcia J. M.; Kaczan C.; Wohlleben W.; Ferguson L. Matrix Matters: novel insights for the extraction, preparation, and quantitation of microplastics in a freshwater mesocosm study. Microplastics and Nanoplastics 2023, 3 (1), 13.10.1186/s43591-023-00062-6. DOI
Fischer M.; Scholz-Böttcher B. M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017, 51 (9), 5052–5060. 10.1021/acs.est.6b06362. PubMed DOI
Zheng T.; Kelsey K.; Zhu C.; Pennell K. D.; Yao Q.; Manz K. E.; Zheng Y. F.; Braun J. M.; Liu Y.; Papandonatos G.; et al. Adverse birth outcomes related to concentrations of per- and polyfluoroalkyl substances (PFAS) in maternal blood collected from pregnant women in 1960–1966. Environ. Res. 2024, 241, 11701010.1016/j.envres.2023.117010. PubMed DOI
Panagopoulos Abrahamsson D.; Wang A.; Jiang T.; Wang M.; Siddharth A.; Morello-Frosch R.; Park J.-S.; Sirota M.; Woodruff T. J. A Comprehensive Non-targeted Analysis Study of the Prenatal Exposome. Environ. Sci. Technol. 2021, 55 (15), 10542–10557. 10.1021/acs.est.1c01010. PubMed DOI PMC
Warembourg C.; Anguita-Ruiz A.; Siroux V.; Slama R.; Vrijheid M.; Richiardi L.; Basagaña X. Statistical Approaches to Study Exposome-Health Associations in the Context of Repeated Exposure Data: A Simulation Study. Environ. Sci. Technol. 2023, 57 (43), 16232–16243. 10.1021/acs.est.3c04805. PubMed DOI PMC
Gibson E. A.; Goldsmith J.; Kioumourtzoglou M.-A. Complex Mixtures, Complex Analyses: an Emphasis on Interpretable Results. Current Environmental Health Reports 2019, 6 (2), 53–61. 10.1007/s40572-019-00229-5. PubMed DOI PMC
Avery C. L.; Howard A. G.; Ballou A. F.; Buchanan V. L.; Collins J. M.; Downie C. G.; Engel S. M.; Graff M.; Highland H. M.; Lee M. P.; et al. Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods. Environ. Health Persp. 2022, 130 (5), 05500110.1289/EHP9098. PubMed DOI PMC
Du X.; Dastmalchi F.; Ye H.; Garrett T. J.; Diller M. A.; Liu M.; Hogan W. R.; Brochhausen M.; Lemas D. J. Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software. Metabolomics 2023, 19 (2), 11.10.1007/s11306-023-01974-3. PubMed DOI
Siuzdak G.Activity Metabolomics and Mass Spectrometry; MCC Press: San Diego, USA, 2024. 10.63025/LCUW3037. DOI
Mahieu N. G.; Patti G. J. Systems-Level Annotation of a Metabolomics Data Set Reduces 25 000 Features to Fewer than 1000 Unique Metabolites. Anal. Chem. 2017, 89 (19), 10397–10406. 10.1021/acs.analchem.7b02380. PubMed DOI PMC
Smith C. A.; Want E. J.; O’Maille G.; Abagyan R.; Siuzdak G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78 (3), 779–787. 10.1021/ac051437y. PubMed DOI
Tsugawa H.; Cajka T.; Kind T.; Ma Y.; Higgins B.; Ikeda K.; Kanazawa M.; VanderGheynst J.; Fiehn O.; Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12 (6), 523–526. 10.1038/nmeth.3393. PubMed DOI PMC
Schmid R.; Heuckeroth S.; Korf A.; Smirnov A.; Myers O.; Dyrlund T. S.; Bushuiev R.; Murray K. J.; Hoffmann N.; Lu M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41 (4), 447–449. 10.1038/s41587-023-01690-2. PubMed DOI PMC
Yu T.; Park Y.; Johnson J. M.; Jones D. P. apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics 2009, 25 (15), 1930–1936. 10.1093/bioinformatics/btp291. PubMed DOI PMC
Misra B. B. New software tools, databases, and resources in metabolomics: updates from 2020. Metabolomics 2021, 17 (5), 49.10.1007/s11306-021-01796-1. PubMed DOI PMC
Renner G.; Reuschenbach M. Critical review on data processing algorithms in non-target screening: challenges and opportunities to improve result comparability. Anal. Bioanal. Chem. 2023, 415 (18), 4111–4123. 10.1007/s00216-023-04776-7. PubMed DOI PMC
DeFelice B. C.; Mehta S. S.; Samra S.; Čajka T.; Wancewicz B.; Fahrmann J. F.; Fiehn O. Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography–Mass Spectroscopy (LC-MS) Data Processing. Anal. Chem. 2017, 89 (6), 3250–3255. 10.1021/acs.analchem.6b04372. PubMed DOI PMC
Uppal K.; Soltow Q. A.; Strobel F. H.; Pittard W. S.; Gernert K. M.; Yu T.; Jones D. P. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinformatics 2013, 14 (1), 15.10.1186/1471-2105-14-15. PubMed DOI PMC
Delabriere A.; Warmer P.; Brennsteiner V.; Zamboni N. SLAW: A Scalable and Self-Optimizing Processing Workflow for Untargeted LC-MS. Anal. Chem. 2021, 93 (45), 15024–15032. 10.1021/acs.analchem.1c02687. PubMed DOI
Li S.; Siddiqa A.; Thapa M.; Chi Y.; Zheng S. Trackable and scalable LC-MS metabolomics data processing using asari. Nat. Commun. 2023, 14 (1), 4113.10.1038/s41467-023-39889-1. PubMed DOI PMC
Sing J. C.; Charkow J.; AlHigaylan M.; Horecka I.; Xu L.; Röst H. L. MassDash: A Web-Based Dashboard for Data-Independent Acquisition Mass Spectrometry Visualization. J. Proteome Res. 2024, 23, 2306.10.1021/acs.jproteome.4c00026. PubMed DOI
Lai Z.; Tsugawa H.; Wohlgemuth G.; Mehta S.; Mueller M.; Zheng Y.; Ogiwara A.; Meissen J.; Showalter M.; Takeuchi K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15 (1), 53–56. 10.1038/nmeth.4512. PubMed DOI PMC
Smirnov A.; Qiu Y.; Jia W.; Walker D. I.; Jones D. P.; Du X. ADAP-GC 4.0: Application of Clustering-Assisted Multivariate Curve Resolution to Spectral Deconvolution of Gas Chromatography–Mass Spectrometry Metabolomics Data. Anal. Chem. 2019, 91 (14), 9069–9077. 10.1021/acs.analchem.9b01424. PubMed DOI PMC
Aksenov A. A.; Laponogov I.; Zhang Z.; Doran S. L. F.; Belluomo I.; Veselkov D.; Bittremieux W.; Nothias L. F.; Nothias-Esposito M.; Maloney K. N.; et al. Auto-deconvolution and molecular networking of gas chromatography-mass spectrometry data. Nat. Biotechnol. 2021, 39 (2), 169–173. 10.1038/s41587-020-0700-3. PubMed DOI PMC
Lennon S.; Chaker J.; Price E. J.; Hollender J.; Huber C.; Schulze T.; Ahrens L.; Béen F.; Creusot N.; Debrauwer L.; et al. Harmonized quality assurance/quality control provisions to assess completeness and robustness of MS1 data preprocessing for LC-HRMS-based suspect screening and non-targeted analysis. TrAC Trends in Analytical Chemistry 2024, 174, 11767410.1016/j.trac.2024.117674. DOI
Yang J.; Zhao X.; Lu X.; Lin X.; Xu G. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Front Mol. Biosci 2015, 2, 4.10.3389/fmolb.2015.00004. PubMed DOI PMC
Stancliffe E.; Schwaiger-Haber M.; Sindelar M.; Murphy M. J.; Soerensen M.; Patti G. J. An Untargeted Metabolomics Workflow that Scales to Thousands of Samples for Population-Based Studies. Anal. Chem. 2022, 94 (50), 17370–17378. 10.1021/acs.analchem.2c01270. PubMed DOI PMC
Fan S.; Kind T.; Cajka T.; Hazen S. L.; Tang W. H. W.; Kaddurah-Daouk R.; Irvin M. R.; Arnett D. K.; Barupal D. K.; Fiehn O. Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data. Anal. Chem. 2019, 91 (5), 3590–3596. 10.1021/acs.analchem.8b05592. PubMed DOI PMC
Rong Z.; Tan Q.; Cao L.; Zhang L.; Deng K.; Huang Y.; Zhu Z.-J.; Li Z.; Li K. NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data. Anal. Chem. 2020, 92 (7), 5082–5090. 10.1021/acs.analchem.9b05460. PubMed DOI
Yu M.; Teitelbaum S. L.; Dolios G.; Dang L. T.; Tu P.; Wolff M. S.; Petrick L. M. Molecular Gatekeeper Discovery: Workflow for Linking Multiple Exposure Biomarkers to Metabolomics. Environ. Sci. Technol. 2022, 56 (10), 6162–6171. 10.1021/acs.est.1c04039. PubMed DOI PMC
Barupal D. K.; Mahajan P.; Fakouri-Baygi S.; Wright R. O.; Arora M.; Teitelbaum S. L. CCDB: A database for exploring inter-chemical correlations in metabolomics and exposomics datasets. Environ. Int. 2022, 164, 10724010.1016/j.envint.2022.107240. PubMed DOI PMC
Du X.; Zeisel S. H. SPECTRAL DECONVOLUTION FOR GAS CHROMATOGRAPHY MASS SPECTROMETRY-BASED METABOLOMICS: CURRENT STATUS AND FUTURE PERSPECTIVES. Computational and Structural Biotechnology Journal 2013, 4 (5), e20130101310.5936/csbj.201301013. PubMed DOI PMC
Smirnov A.; Liao Y.; Fahy E.; Subramaniam S.; Du X. ADAP-KDB: A Spectral Knowledgebase for Tracking and Prioritizing Unknown GC–MS Spectra in the NIH’s Metabolomics Data Repository. Anal. Chem. 2021, 93 (36), 12213–12220. 10.1021/acs.analchem.1c00355. PubMed DOI
Ardente A. J.; Garrett T. J.; Wells R. S.; Walsh M.; Smith C. R.; Colee J.; Hill R. C. A Targeted Metabolomics Assay to Measure Eight Purines in the Diet of Common Bottlenose Dolphins, Tursiops truncatus. J. Chromatogr. Sep. Technol. 2016, 10.4172/2157-7064.1000334. PubMed DOI PMC
Griffiths W. J.; Koal T.; Wang Y.; Kohl M.; Enot D. P.; Deigner H.-P. Targeted Metabolomics for Biomarker Discovery. Angew. Chem., Int. Ed. 2010, 49 (32), 5426–5445. 10.1002/anie.200905579. PubMed DOI
Yazd H. S.; Rubio V. Y.; Chamberlain C. A.; Yost R. A.; Garrett T. J. Metabolomic and lipidomic characterization of an X-chromosome deletion disorder in neural progenitor cells by UHPLC-HRMS. Journal of Mass Spectrometry and Advances in the Clinical Lab 2021, 20, 11–24. 10.1016/j.jmsacl.2021.05.002. PubMed DOI PMC
Koelmel J. P.; Xie H.; Price E. J.; Lin E. Z.; Manz K. E.; Stelben P.; Paige M. K.; Papazian S.; Okeme J.; Jones D. P. An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry. Exposome 2022, 10.1093/exposome/osac007. PubMed DOI PMC
Blaženović I.; Kind T.; Ji J.; Fiehn O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018, 8 (2), 31.10.3390/metabo8020031. PubMed DOI PMC
Zhang H.; Luo M.; Wang H.; Ren F.; Yin Y.; Zhu Z.-J. AllCCS2: Curation of Ion Mobility Collision Cross-Section Atlas for Small Molecules Using Comprehensive Molecular Representations. Anal. Chem. 2023, 95 (37), 13913–13921. 10.1021/acs.analchem.3c02267. PubMed DOI
Simón-Manso Y.; Lowenthal M. S.; Kilpatrick L. E.; Sampson M. L.; Telu K. H.; Rudnick P. A.; Mallard W. G.; Bearden D. W.; Schock T. B.; Tchekhovskoi D. V.; et al. Metabolite Profiling of a NIST Standard Reference Material for Human Plasma (SRM 1950): GC-MS, LC-MS, NMR, and Clinical Laboratory Analyses, Libraries, and Web-Based Resources. Anal. Chem. 2013, 85 (24), 11725–11731. 10.1021/ac402503m. PubMed DOI
Horai H.; Arita M.; Kanaya S.; Nihei Y.; Ikeda T.; Suwa K.; Ojima Y.; Tanaka K.; Tanaka S.; Aoshima K.; et al. MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry 2010, 45 (7), 703–714. 10.1002/jms.1777. PubMed DOI
Wohlgemuth G.; Mehta S. S.; Mejia R. F.; Neumann S.; Pedrosa D.; Pluskal T.; Schymanski E. L.; Willighagen E. L.; Wilson M.; Wishart D. S.; et al. SPLASH, a hashed identifier for mass spectra. Nat. Biotechnol. 2016, 34 (11), 1099–1101. 10.1038/nbt.3689. PubMed DOI PMC
Guijas C.; Montenegro-Burke J. R.; Domingo-Almenara X.; Palermo A.; Warth B.; Hermann G.; Koellensperger G.; Huan T.; Uritboonthai W.; Aisporna A. E.; et al. METLIN: A Technology Platform for Identifying Knowns and Unknowns. Anal. Chem. 2018, 90 (5), 3156–3164. 10.1021/acs.analchem.7b04424. PubMed DOI PMC
Stein S. Mass Spectral Reference Libraries: An Ever-Expanding Resource for Chemical Identification. Anal. Chem. 2012, 84 (17), 7274–7282. 10.1021/ac301205z. PubMed DOI
Kind T.; Tsugawa H.; Cajka T.; Ma Y.; Lai Z.; Mehta S. S.; Wohlgemuth G.; Barupal D. K.; Showalter M. R.; Arita M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37 (4), 513–532. 10.1002/mas.21535. PubMed DOI PMC
Papazian S.; D’Agostino L. A.; Sadiktsis I.; Froment J.; Bonnefille B.; Sdougkou K.; Xie H.; Athanassiadis I.; Budhavant K.; Dasari S.; et al. Nontarget mass spectrometry and in silico molecular characterization of air pollution from the Indian subcontinent. Communications Earth & Environment 2022, 3 (1), 35.10.1038/s43247-022-00365-1. DOI
Colby S. M.; Chang C. H.; Bade J. L.; Nunez J. R.; Blumer M. R.; Orton D. J.; Bloodsworth K. J.; Nakayasu E. S.; Smith R. D.; Ibrahim Y. M.; et al. DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data. Anal. Chem. 2022, 94 (16), 6130–6138. 10.1021/acs.analchem.1c05017. PubMed DOI PMC
Broeckling C. D.; Afsar F. A.; Neumann S.; Ben-Hur A.; Prenni J. E. RAMClust: A Novel Feature Clustering Method Enables Spectral-Matching-Based Annotation for Metabolomics Data. Anal. Chem. 2014, 86 (14), 6812–6817. 10.1021/ac501530d. PubMed DOI
Koelmel J. P.; Kummer M.; Chevallier O.; Hindle R.; Hunt K.; Camacho C. G.; Abril N.; Gill E. L.; Beecher C. W. W.; Garrett T. J.; et al. Expanding Per- and Polyfluoroalkyl Substances Coverage in Nontargeted Analysis Using Data-Independent Analysis and IonDecon. J. Am. Soc. Mass Spectrom. 2023, 34 (11), 2525–2537. 10.1021/jasms.3c00244. PubMed DOI
Koelmel J. P.; Kroeger N. M.; Gill E. L.; Ulmer C. Z.; Bowden J. A.; Patterson R. E.; Yost R. A.; Garrett T. J. Expanding Lipidome Coverage Using LC-MS/MS Data-Dependent Acquisition with Automated Exclusion List Generation. J. Am. Soc. Mass Spectrom. 2017, 28 (5), 908–917. 10.1007/s13361-017-1608-0. PubMed DOI PMC
Yu M.; Dolios G.; Petrick L. Reproducible untargeted metabolomics workflow for exhaustive MS2 data acquisition of MS1 features. Journal of Cheminformatics 2022, 14 (1), 6.10.1186/s13321-022-00586-8. PubMed DOI PMC
Cooper B.; Yang R. An assessment of AcquireX and Compound Discoverer software 3.3 for non-targeted metabolomics. Sci. Rep. 2024, 14 (1), 4841.10.1038/s41598-024-55356-3. PubMed DOI PMC
Kováts E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41 (7), 1915–1932. 10.1002/hlca.19580410703. DOI
Li M.; Wang X. R. Peak alignment of gas chromatography–mass spectrometry data with deep learning. Journal of Chromatography A 2019, 1604, 46047610.1016/j.chroma.2019.460476. PubMed DOI
Rigano F.; Arigò A.; Oteri M.; La Tella R.; Dugo P.; Mondello L. The retention index approach in liquid chromatography: An historical review and recent advances. Journal of Chromatography A 2021, 1640, 46196310.1016/j.chroma.2021.461963. PubMed DOI
Hughey C. A.; Hendrickson C. L.; Rodgers R. P.; Marshall A. G.; Qian K. Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Anal. Chem. 2001, 73 (19), 4676–4681. 10.1021/ac010560w. PubMed DOI
Zhang X.; Di Lorenzo R. A.; Helm P. A.; Reiner E. J.; Howard P. H.; Muir D. C. G.; Sled J. G.; Jobst K. J. Compositional space: A guide for environmental chemists on the identification of persistent and bioaccumulative organics using mass spectrometry. Environ. Int. 2019, 132, 10480810.1016/j.envint.2019.05.002. PubMed DOI PMC
Kind T.; Fiehn O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 2007, 8 (1), 105.10.1186/1471-2105-8-105. PubMed DOI PMC
Aron A. T.; Gentry E. C.; McPhail K. L.; Nothias L.-F.; Nothias-Esposito M.; Bouslimani A.; Petras D.; Gauglitz J. M.; Sikora N.; Vargas F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15 (6), 1954–1991. 10.1038/s41596-020-0317-5. PubMed DOI
Koelmel J. P.; Paige M. K.; Aristizabal-Henao J. J.; Robey N. M.; Nason S. L.; Stelben P. J.; Li Y.; Kroeger N. M.; Napolitano M. P.; Savvaides T.; et al. Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition. Anal. Chem. 2020, 92 (16), 11186–11194. 10.1021/acs.analchem.0c01591. PubMed DOI PMC
Koelmel J. P.; Kroeger N. M.; Ulmer C. Z.; Bowden J. A.; Patterson R. E.; Cochran J. A.; Beecher C. W. W.; Garrett T. J.; Yost R. A. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 2017, 18 (1), 331.10.1186/s12859-017-1744-3. PubMed DOI PMC
Zhao F.; Li L.; Lin P.; Chen Y.; Xing S.; Du H.; Wang Z.; Yang J.; Huan T.; Long C.; et al. HExpPredict: In Vivo Exposure Prediction of Human Blood Exposome Using a Random Forest Model and Its Application in Chemical Risk Prioritization. Environ. Health Persp. 2023, 131 (3), 03700910.1289/EHP11305. PubMed DOI PMC
Pesyna G. M.; Venkataraghavan R.; Dayringer H. E.; McLafferty F. W. Probability based matching system using a large collection of reference mass spectra. Anal. Chem. 1976, 48 (9), 1362–1368. 10.1021/ac50003a026. DOI
McLafferty F. W.; Hertel R.; Villwock R. Probability based matching of mass spectra. Rapid identification of specific compounds in mixtures. Journal of Mass Spectrometry 1974, 9, 690–702. 10.1002/oms.1210090710. DOI
Sokolow S.; K J.; Gustafson P.. The Finnigan Library Search Program, Finnigan Application Report 2, San Jose, CA; 1978. https://littlemsandsailing.com/wp-content/uploads/2015/03/finigan-incos-app-note-fixed.pdf.
Hertz H. S.; Hites R. A.; Biemann K. Identification of mass spectra by computer-searching a file of known spectra. Anal. Chem. 1971, 43 (6), 681–691. 10.1021/ac60301a009. DOI
Stein S. E.; Scott D. R. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 1994, 5 (9), 859–866. 10.1016/1044-0305(94)87009-8. PubMed DOI
Sheldon M. T.; Mistrik R.; Croley T. R. Determination of Ion Structures in Structurally Related Compounds Using Precursor Ion Fingerprinting. J. Am. Soc. Mass Spectrom. 2009, 20 (3), 370–376. 10.1016/j.jasms.2008.10.017. PubMed DOI
de Jonge N. F.; Louwen J. J. R.; Chekmeneva E.; Camuzeaux S.; Vermeir F. J.; Jansen R. S.; Huber F.; van der Hooft J. J. J. MS2Query: reliable and scalable MS2 mass spectra-based analogue search. Nat. Commun. 2023, 14 (1), 1752.10.1038/s41467-023-37446-4. PubMed DOI PMC
Li Y.; Kind T.; Folz J.; Vaniya A.; Mehta S. S.; Fiehn O. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat. Methods 2021, 18 (12), 1524–1531. 10.1038/s41592-021-01331-z. PubMed DOI PMC
Li Y.; Fiehn O. Flash entropy search to query all mass spectral libraries in real time. Nat. Methods 2023, 20 (10), 1475–1478. 10.1038/s41592-023-02012-9. PubMed DOI PMC
Cai Y.; Zhou Z.; Zhu Z.-J. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC Trends in Analytical Chemistry 2023, 158, 11690310.1016/j.trac.2022.116903. DOI
Kind T.; Liu K.-H.; Lee D. Y.; DeFelice B.; Meissen J. K.; Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 2013, 10 (8), 755–758. 10.1038/nmeth.2551. PubMed DOI PMC
Zhou J.; Weber R. J.; Allwood J. W.; Mistrik R.; Zhu Z.; Ji Z.; Chen S.; Dunn W. B.; He S.; Viant M. R. HAMMER: automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics 2014, 30 (4), 581–583. 10.1093/bioinformatics/btt711. PubMed DOI PMC
Tsugawa H.; Kind T.; Nakabayashi R.; Yukihira D.; Tanaka W.; Cajka T.; Saito K.; Fiehn O.; Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88 (16), 7946–7958. 10.1021/acs.analchem.6b00770. PubMed DOI PMC
Wang F.; Liigand J.; Tian S.; Arndt D.; Greiner R.; Wishart D. S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93 (34), 11692–11700. 10.1021/acs.analchem.1c01465. PubMed DOI PMC
Duhrkop K.; Shen H.; Meusel M.; Rousu J.; Bocker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (41), 12580–12585. 10.1073/pnas.1509788112. PubMed DOI PMC
Borges R. M.; Colby S. M.; Das S.; Edison A. S.; Fiehn O.; Kind T.; Lee J.; Merrill A. T.; Merz K. M. Jr; Metz T. O.; et al. Quantum Chemistry Calculations for Metabolomics. Chem. Rev. 2021, 121 (10), 5633–5670. 10.1021/acs.chemrev.0c00901. PubMed DOI PMC
Wang S.; Kind T.; Bremer P. L.; Tantillo D. J.; Fiehn O. Quantum Chemical Prediction of Electron Ionization Mass Spectra of Trimethylsilylated Metabolites. Anal. Chem. 2022, 94 (3), 1559–1566. 10.1021/acs.analchem.1c02838. PubMed DOI PMC
Liu M.; Jiang J.; Zheng J.; Huan T.; Gao B.; Fei X.; Wang Y.; Fang M. RTP: One Effective Platform to Probe Reactive Compound Transformation Products and Its Applications for a Reactive Plasticizer BADGE. Environ. Sci. Technol. 2021, 55 (23), 16034–16043. 10.1021/acs.est.1c05262. PubMed DOI
Tian S.; Cao X.; Greiner R.; Li C.; Guo A.; Wishart D. S. CyProduct: A Software Tool for Accurately Predicting the Byproducts of Human Cytochrome P450 Metabolism. J. Chem. Inf. Model. 2021, 61 (6), 3128–3140. 10.1021/acs.jcim.1c00144. PubMed DOI PMC
Wishart D. S; Tian S.; Allen D.; Oler E.; Peters H.; Lui V. W; Gautam V.; Djoumbou-Feunang Y.; Greiner R.; Metz T. O BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Res. 2022, 50 (W1), W115–W123. 10.1093/nar/gkac313. PubMed DOI PMC
Dührkop K.; Fleischauer M.; Ludwig M.; Aksenov A. A.; Melnik A. V.; Meusel M.; Dorrestein P. C.; Rousu J.; Böcker S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16 (4), 299–302. 10.1038/s41592-019-0344-8. PubMed DOI
Tautenhahn R.; Patti G. J.; Rinehart D.; Siuzdak G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal. Chem. 2012, 84 (11), 5035–5039. 10.1021/ac300698c. PubMed DOI PMC
Uppal K.; Walker D. I.; Jones D. P. xMSannotator: An R Package for Network-Based Annotation of High-Resolution Metabolomics Data. Anal. Chem. 2017, 89 (2), 1063–1067. 10.1021/acs.analchem.6b01214. PubMed DOI PMC
Shen X.; Yan H.; Wang C.; Gao P.; Johnson C. H.; Snyder M. P. TidyMass an object-oriented reproducible analysis framework for LC–MS data. Nat. Commun. 2022, 13 (1), 4365.10.1038/s41467-022-32155-w. PubMed DOI PMC
Shen X.; Wu S.; Liang L.; Chen S.; Contrepois K.; Zhu Z.-J.; Snyder M. metID: an R package for automatable compound annotation for LC–MS-based data. Bioinformatics 2022, 38 (2), 568–569. 10.1093/bioinformatics/btab583. PubMed DOI PMC
Schymanski E. L.; Neumann S. The Critical Assessment of Small Molecule Identification (CASMI): Challenges and Solutions. Metabolites 2013, 3 (3), 517–538. 10.3390/metabo3030517. PubMed DOI PMC
McEachran A. D.; Chao A.; Al-Ghoul H.; Lowe C.; Grulke C.; Sobus J. R.; Williams A. J. Revisiting Five Years of CASMI Contests with EPA Identification Tools. Metabolites 2020, 10 (6), 260.10.3390/metabo10060260. PubMed DOI PMC
Bertrand S.; Guitton Y.; Roullier C. Successes and pitfalls in automated dereplication strategy using liquid chromatography coupled to mass spectrometry data: A CASMI 2016 experience. Phytochemistry Letters 2017, 21, 297–305. 10.1016/j.phytol.2016.12.025. DOI
Blaženović I.; Kind T.; Torbašinović H.; Obrenović S.; Mehta S. S.; Tsugawa H.; Wermuth T.; Schauer N.; Jahn M.; Biedendieck R.; et al. Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy. Journal of Cheminformatics 2017, 9 (1), 32.10.1186/s13321-017-0219-x. PubMed DOI PMC
Xing S.; Shen S.; Xu B.; Li X.; Huan T. BUDDY: molecular formula discovery via bottom-up MS/MS interrogation. Nat. Methods 2023, 20 (6), 881–890. 10.1038/s41592-023-01850-x. PubMed DOI
Hecht H.; Rojas W. Y.; Ahmad Z.; Křenek A.; Klánová J.; EJ P. Quantum chemistry based prediction of electron ionization mass spectra for environmental chemicals. ChemRxiv 2024, 10.26434/chemrxiv-2024-2ngwq-v2. DOI
Wolf S.; Schmidt S.; Müller-Hannemann M.; Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 2010, 11 (1), 148.10.1186/1471-2105-11-148. PubMed DOI PMC
Ruttkies C.; Neumann S.; Posch S. Improving MetFrag with statistical learning of fragment annotations. BMC Bioinformatics 2019, 20 (1), 376.10.1186/s12859-019-2954-7. PubMed DOI PMC
Phinney K. W.; Ballihaut G.; Bedner M.; Benford B. S.; Camara J. E.; Christopher S. J.; Davis W. C.; Dodder N. G.; Eppe G.; Lang B. E.; et al. Development of a Standard Reference Material for Metabolomics Research. Anal. Chem. 2013, 85 (24), 11732–11738. 10.1021/ac402689t. PubMed DOI PMC
Hampel D.; Shahab-Ferdows S.; Hossain M.; Islam M. M.; Ahmed T.; Allen L. H. Validation and Application of Biocrates AbsoluteIDQ(®) p180 Targeted Metabolomics Kit Using Human Milk. Nutrients 2019, 11 (8), 1733.10.3390/nu11081733. PubMed DOI PMC
Lippa K. A.; Aristizabal-Henao J. J.; Beger R. D.; Bowden J. A.; Broeckling C.; Beecher C.; Clay Davis W.; Dunn W. B.; Flores R.; Goodacre R.; et al. Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics 2022, 18 (4), 24.10.1007/s11306-021-01848-6. PubMed DOI PMC
Hoang C.; Uritboonthai W.; Hoang L.; Billings E. M.; Aisporna A.; Nia F. A.; Derks R. J. E.; Williamson J. R.; Giera M.; Siuzdak G. Tandem Mass Spectrometry across Platforms. Anal. Chem. 2024, 96 (14), 5478–5488. 10.1021/acs.analchem.3c05576. PubMed DOI PMC
Samanipour S.; Choi P.; O’Brien J. W.; Pirok B. W. J.; Reid M. J.; Thomas K. V. From Centroided to Profile Mode: Machine Learning for Prediction of Peak Width in HRMS Data. Anal. Chem. 2021, 93 (49), 16562–16570. 10.1021/acs.analchem.1c03755. PubMed DOI PMC
Wilkinson M. D.; Dumontier M.; Aalbersberg I. J.; Appleton G.; Axton M.; Baak A.; Blomberg N.; Boiten J.-W.; da Silva Santos L. B.; Bourne P. E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 2016, 3 (1), 16001810.1038/sdata.2016.18. PubMed DOI PMC
Martens L.; Chambers M.; Sturm M.; Kessner D.; Levander F.; Shofstahl J.; Tang W. H.; Römpp A.; Neumann S.; Pizarro A. D.; et al. mzML—a Community Standard for Mass Spectrometry Data*. Mol. Cell. Proteomics 2011, 10 (1), R110.00013310.1074/mcp.R110.000133. PubMed DOI PMC
Lin S. M.; Zhu L.; Winter A. Q.; Sasinowski M.; Kibbe W. A. What is mzXML good for?. Expert Review of Proteomics 2005, 2 (6), 839–845. 10.1586/14789450.2.6.839. PubMed DOI
Larralde M.; Lawson T. N.; Weber R. J. M.; Moreno P.; Haug K.; Rocca-Serra P.; Viant M. R.; Steinbeck C.; Salek R. M. mzML2ISA and nmrML2ISA: generating enriched ISA-Tab metadata files from metabolomics XML data. Bioinformatics 2017, 33 (16), 2598–2600. 10.1093/bioinformatics/btx169. PubMed DOI PMC
Hoffmann N.; Rein J.; Sachsenberg T.; Hartler J.; Haug K.; Mayer G.; Alka O.; Dayalan S.; Pearce J. T. M.; Rocca-Serra P.; et al. mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics. Anal. Chem. 2019, 91 (5), 3302–3310. 10.1021/acs.analchem.8b04310. PubMed DOI PMC
Misra B. B. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. Analytical Methods 2021, 13 (20), 2265–2282. 10.1039/D1AY00173F. PubMed DOI
Uclés S.; Lozano A.; Sosa A.; Parrilla Vázquez P.; Valverde A.; Fernández-Alba A. R. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 2017, 174, 72–81. 10.1016/j.talanta.2017.05.068. PubMed DOI
Raposo F.; Barceló D. Challenges and strategies of matrix effects using chromatography-mass spectrometry: An overview from research versus regulatory viewpoints. TrAC Trends in Analytical Chemistry 2021, 134, 11606810.1016/j.trac.2020.116068. DOI
Price E. J.; Palát J.; Coufaliková K.; Kukučka P.; Codling G.; Vitale C. M.; Koudelka Š.; Klánová J. Open, High-Resolution EI+ Spectral Library of Anthropogenic Compounds. Front. Public Health 2021, 10.3389/fpubh.2021.622558. PubMed DOI PMC
RECETOX High-resolution filtering workflow; Zenodo, 2024. 10.5281/zenodo.11212089. DOI
Kwiecien N. W.; Bailey D. J.; Rush M. J. P.; Cole J. S.; Ulbrich A.; Hebert A. S.; Westphall M. S.; Coon J. J. High-Resolution Filtering for Improved Small Molecule Identification via GC/MS. Anal. Chem. 2015, 87 (16), 8328–8335. 10.1021/acs.analchem.5b01503. PubMed DOI PMC
Maitre L.; Guimbaud J.-B.; Warembourg C.; Güil-Oumrait N.; Petrone P. M.; Chadeau-Hyam M.; Vrijheid M.; Basagaña X.; Gonzalez J. R. State-of-the-art methods for exposure-health studies: Results from the exposome data challenge event. Environ. Int. 2022, 168, 10742210.1016/j.envint.2022.107422. PubMed DOI
Tzoulaki I.; Ebbels T. M. D.; Valdes A.; Elliott P.; Ioannidis J. P. A. Design and Analysis of Metabolomics Studies in Epidemiologic Research: A Primer on -Omic Technologies. American Journal of Epidemiology 2014, 180 (2), 129–139. 10.1093/aje/kwu143. PubMed DOI
Kalia V.; Walker D. I.; Krasnodemski K. M.; Jones D. P.; Miller G. W.; Kioumourtzoglou M.-A. Unsupervised dimensionality reduction for exposome research. Current Opinion in Environmental Science & Health 2020, 15, 32–38. 10.1016/j.coesh.2020.05.001. PubMed DOI PMC
Momeni Z.; Hassanzadeh E.; Saniee Abadeh M.; Bellazzi R. A survey on single and multi omics data mining methods in cancer data classification. Journal of Biomedical Informatics 2020, 107, 10346610.1016/j.jbi.2020.103466. PubMed DOI
Bobb J. F.; Valeri L.; Claus Henn B.; Christiani D. C.; Wright R. O.; Mazumdar M.; Godleski J. J.; Coull B. A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16 (3), 493–508. 10.1093/biostatistics/kxu058. PubMed DOI PMC
Carrico C.; Gennings C.; Wheeler D. C.; Factor-Litvak P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. Journal of Agricultural, Biological, and Environmental Statistics 2015, 20 (1), 100–120. 10.1007/s13253-014-0180-3. PubMed DOI PMC
Gibson E. A.; Nunez Y.; Abuawad A.; Zota A. R.; Renzetti S.; Devick K. L.; Gennings C.; Goldsmith J.; Coull B. A.; Kioumourtzoglou M.-A. An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length. Environmental Health 2019, 18 (1), 76.10.1186/s12940-019-0515-1. PubMed DOI PMC
Sarker I. H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science 2021, 2 (6), 420.10.1007/s42979-021-00815-1. PubMed DOI PMC
Zhang J. D.; Xue C.; Kolachalama V. B.; Donald W. A. Interpretable Machine Learning on Metabolomics Data Reveals Biomarkers for Parkinson’s Disease. ACS Central Science 2023, 9 (5), 1035–1045. 10.1021/acscentsci.2c01468. PubMed DOI PMC
MacKinnon D. P.; Fairchild A. J.; Fritz M. S. Mediation Analysis. Annual Review of Psychology 2007, 58 (1), 593–614. 10.1146/annurev.psych.58.110405.085542. PubMed DOI PMC
Davies N. M.; Holmes M. V.; Smith G. D. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 2018, 362, k601.10.1136/bmj.k601. PubMed DOI PMC
Sanderson E.; Glymour M. M.; Holmes M. V.; Kang H.; Morrison J.; Munafò M. R.; Palmer T.; Schooling C. M.; Wallace C.; Zhao Q.; et al. Mendelian randomization. Nature Reviews Methods Primers 2022, 2 (1), 6.10.1038/s43586-021-00092-5. PubMed DOI PMC
Gao P.; Shen X. T.; Zhang X. Y.; Jiang C.; Zhang S.; Zhou X.; Rose S. M. S. F.; Snyder M. Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res. 2022, 32 (6), 1199–1214. 10.1101/gr.276521.121. PubMed DOI PMC
Koelmel J. P.; Stelben P.; McDonough C. A.; Dukes D. A.; Aristizabal-Henao J. J.; Nason S. L.; Li Y.; Sternberg S.; Lin E.; Beckmann M.; et al. FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Anal. Bioanal. Chem. 2022, 414 (3), 1201–1215. 10.1007/s00216-021-03392-7. PubMed DOI PMC