High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage

. 2024 Jul 23 ; 58 (29) : 12784-12822. [epub] 20240710

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38984754

Grantová podpora
U2C ES030163 NIEHS NIH HHS - United States
P30 ES010126 NIEHS NIH HHS - United States
R01 AG067501 NIA NIH HHS - United States
RF1 AG066107 NIA NIH HHS - United States
R21 ES036033 NIEHS NIH HHS - United States
R25 GM143298 NIGMS NIH HHS - United States
R01 ES032831 NIEHS NIH HHS - United States
P42 ES031007 NIEHS NIH HHS - United States
P30 ES009089 NIEHS NIH HHS - United States
R03 OD034497 NIH HHS - United States
UL1 TR004419 NCATS NIH HHS - United States
P30 ES019776 NIEHS NIH HHS - United States
K01 ES035398 NIEHS NIH HHS - United States
UL1 TR001873 NCATS NIH HHS - United States
R21 ES034187 NIEHS NIH HHS - United States

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.

Biological Sciences Division Pacific Northwest National Laboratory Richland Washington 99354 United States

Biomarkers Core Laboratory Irving Institute for Clinical and Translational Research Columbia University Irving Medical Center New York New York 10032 United States

Center for Environmental and Human Toxicology Department of Physiological Sciences College of Veterinary Medicine University of Florida Gainesville Florida 32611 United States

Department of Chemistry and Chemical Biology Northeastern University Boston Massachusetts 02115 United States

Department of Environmental and Occupational Health and Department of Civil and Environmental Engineering University of Pittsburgh Pittsburgh Pennsylvania 15261 United States

Department of Environmental Health Sciences Mailman School of Public Health Columbia University New York New York 10032 United States

Department of Environmental Health Sciences School of Public Health University of Michigan Ann Arbor Michigan 48109 United States

Department of Environmental Health Sciences Yale School of Public Health New Haven Connecticut 06520 United States

Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York 10029 United States

Department of Environmental Science Science for Life Laboratory Stockholm University SE 106 91 Stockholm Sweden

Department of Environmental Sciences and Engineering Gillings School of Global Public Health The University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 United States

Department of Food Chemistry and Toxicology Faculty of Chemistry University of Vienna 1010 Vienna Austria

Department of Medicine School of Medicine Emory University Atlanta Georgia 30322 United States

Gangarosa Department of Environmental Health Rollins School of Public Health Emory University Atlanta Georgia 30322 United States

Institute for Risk Assessment Sciences Utrecht University Utrecht 3584CM The Netherlands

Institute of Atmospheric Pollution Research Italian National Research Council 00015 Monterotondo Rome Italy

National Facility for Exposomics Metabolomics Platform Science for Life Laboratory Stockholm University Solna 171 65 Sweden

NILU Fram Centre Tromsø NO 9296 Norway

NILU PO Box 100 NO 2027 Kjeller Norway

RECETOX Faculty of Science Masaryk University Kotlářská 2 611 37 Brno Czech Republic

School of Engineering Brown University Providence Rhode Island 02912 United States

Thermo Fisher Scientific San Jose California 95134 United States

Thermo Fisher Scientific Somerset New Jersey 08873 United States

Univ Rennes Inserm EHESP Irset UMR_S 1085 Rennes France

UPMC Hillman Cancer Center Pittsburgh Pennsylvania 15232 United States

West Coast Metabolomics Center University of California Davis Davis California 95616 United States

Zobrazit více v PubMed

Wild C. P. Complementing the genome with an ″exposome″: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidem Biomar 2005, 14 (8), 1847–1850. 10.1158/1055-9965.EPI-05-0456. PubMed DOI

Vermeulen R.; Schymanski E. L.; Barabasi A. L.; Miller G. W. The exposome and health: Where chemistry meets biology. Science 2020, 367 (6476), 392–396. 10.1126/science.aay3164. PubMed DOI PMC

Miller G. W.; Jones D. P. The nature of nurture: refining the definition of the exposome. Toxicol. Sci. 2014, 137 (1), 1–2. 10.1093/toxsci/kft251. PubMed DOI PMC

Nriagu J. O.; Pacyna J. M. Quantitative Assessment of Worldwide Contamination of Air, Water and Soils by Trace-Metals. Nature 1988, 333 (6169), 134–139. 10.1038/333134a0. PubMed DOI

Rochman C. M.; Browne M. A.; Halpern B. S.; Hentschel B. T.; Hoh E.; Karapanagioti H. K.; Rios-Mendoza L. M.; Takada H.; Teh S.; Thompson R. C. Classify plastic waste as hazardous. Nature 2013, 494 (7436), 169–171. 10.1038/494169a. PubMed DOI

Manisalidis I.; Stavropoulou E.; Stavropoulos A.; Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 10.3389/fpubh.2020.00014. PubMed DOI PMC

Susmann H. P.; Schaider L. A.; Rodgers K. M.; Rudel R. A. Dietary Habits Related to Food Packaging and Population Exposure to PFASs. Environ. Health Perspect 2019, 127 (10), 10700310.1289/EHP4092. PubMed DOI PMC

Liu S.; Hammond S. K.; Rojas-Cheatham A. Concentrations and potential health risks of metals in lip products. Environ. Health Perspect 2013, 121 (6), 705–710. 10.1289/ehp.1205518. PubMed DOI PMC

Ural B. B.; Caron D. P.; Dogra P.; Wells S. B.; Szabo P. A.; Granot T.; Senda T.; Poon M. M. L.; Lam N.; Thapa P.; et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat. Med. 2022, 28 (12), 2622–2632. 10.1038/s41591-022-02073-x. PubMed DOI PMC

Hernández A. F.; Gil F.; Lacasaña M. Toxicological interactions of pesticide mixtures: an update. Arch. Toxicol. 2017, 91 (10), 3211–3223. 10.1007/s00204-017-2043-5. PubMed DOI

Chi Z. H.; Goodyer C. G.; Hales B. F.; Bayen S. Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. Environ. Int. 2023, 171, 10771710.1016/j.envint.2022.107717. PubMed DOI

Polderman T. J. C.; Benyamin B.; de Leeuw C. A.; Sullivan P. F.; van Bochoven A.; Visscher P. M.; Posthuma D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47 (7), 702.10.1038/ng.3285. PubMed DOI

Shen J.; Liao Y.; Hopper J. L.; Goldberg M.; Santella R. M.; Terry M. B. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: an illustration with polycyclic aromatic hydrocarbons and breast cancer. Br. J. Cancer 2017, 116 (9), 1229–1233. 10.1038/bjc.2017.81. PubMed DOI PMC

Argentieri M. A.; Amin N.; Nevado-Holgado A. J.; Sproviero W.; Collister J. A.; Keestra S. M.; Doherty A.; Hunter D. J.; Alvergne A.; Duijn C. M. v.. Integrating the environmental and genetic architectures of mortality and aging. medRxiv, May 16, 2023. 10.1101/2023.03.10.23286340. DOI

Price E. J.; Vitale C. M.; Miller G. W.; David A.; Barouki R.; Audouze K.; Walker D. I.; Antignac J.-P.; Coumoul X.; Bessonneau V.; et al. Merging the exposome into an integrated framework for “omics” sciences. iScience 2022, 25 (3), 10397610.1016/j.isci.2022.103976. PubMed DOI PMC

David A.; Chaker J.; Price E. J.; Bessonneau V.; Chetwynd A. J.; Vitale C. M.; Klanova J.; Walker D. I.; Antignac J. P.; Barouki R.; et al. Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. Environ. Int. 2021, 156, 10663010.1016/j.envint.2021.106630. PubMed DOI

Flasch M.; Bueschl C.; Del Favero G.; Adam G.; Schuhmacher R.; Marko D.; Warth B. Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. Environ. Int. 2022, 158, 10694010.1016/j.envint.2021.106940. PubMed DOI

The “All of Us” Research Program. N. Engl. J. Med. 2019, 381 ( (7), ), 668–676. 10.1056/NEJMsr1809937. PubMed DOI PMC

Hartung T. A call for a Human Exposome Project. ALTEX 2023, 40 (1), 4–33. 10.14573/altex.2301061. PubMed DOI

Griffiths J. A brief history of mass spectrometry. Anal. Chem. 2008, 80 (15), 5678–5683. 10.1021/ac8013065. PubMed DOI

Sabbioni G.; Berset J.-D.; Day B. W. Is It Realistic to Propose Determination of a Lifetime Internal Exposome?. Chem. Res. Toxicol. 2020, 33 (8), 2010–2021. 10.1021/acs.chemrestox.0c00092. PubMed DOI

Chait B. T. Mass spectrometry in the postgenomic era. Annu. Rev. Biochem. 2011, 80, 239–246. 10.1146/annurev-biochem-110810-095744. PubMed DOI

Sun J.; Fang R.; Wang H.; Xu D.-X.; Yang J.; Huang X.; Cozzolino D.; Fang M.; Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. Environ. Int. 2022, 158, 10694110.1016/j.envint.2021.106941. PubMed DOI

Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology 2002, 48 (1), 155–171. 10.1023/A:1013713905833. PubMed DOI

Hu X.; Walker D. I.; Liang Y.; Smith M. R.; Orr M. L.; Juran B. D.; Ma C.; Uppal K.; Koval M.; Martin G. S.; et al. A scalable workflow to characterize the human exposome. Nat. Commun. 2021, 12 (1), 5575.10.1038/s41467-021-25840-9. PubMed DOI PMC

Go Y.-M.; Walker D. I.; Liang Y.; Uppal K.; Soltow Q. A.; Tran V.; Strobel F.; Quyyumi A. A.; Ziegler T. R.; Pennell K. D.; et al. Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research. Toxicol. Sci. 2015, 148 (2), 531–543. 10.1093/toxsci/kfv198. PubMed DOI PMC

Rappaport S. M.; Barupal D. K.; Wishart D.; Vineis P.; Scalbert A. The blood exposome and its role in discovering causes of disease. Environ. Health Perspect 2014, 122 (8), 769–774. 10.1289/ehp.1308015. PubMed DOI PMC

Chaker J.; Gilles E.; Léger T.; Jégou B.; David A. From Metabolomics to HRMS-Based Exposomics: Adapting Peak Picking and Developing Scoring for MS1 Suspect Screening. Anal. Chem. 2021, 93 (3), 1792–1800. 10.1021/acs.analchem.0c04660. PubMed DOI

Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J. Sep. Sci. 2021, 44 (8), 1769–1787. 10.1002/jssc.202001263. PubMed DOI

Sdougkou K.; Xie H.; Papazian S.; Bonnefille B.; Bergdahl I. A.; Martin J. W. Phospholipid Removal for Enhanced Chemical Exposomics in Human Plasma. Environ. Sci. Technol. 2023, 57 (28), 10173–10184. 10.1021/acs.est.3c00663. PubMed DOI PMC

Chaker J.; Kristensen D. M.; Halldorsson T. I.; Olsen S. F.; Monfort C.; Chevrier C.; Jégou B.; David A. Comprehensive Evaluation of Blood Plasma and Serum Sample Preparations for HRMS-Based Chemical Exposomics: Overlaps and Specificities. Anal. Chem. 2022, 94 (2), 866–874. 10.1021/acs.analchem.1c03638. PubMed DOI

Parera J.; Ábalos M.; Kärrman A.; van Bavel B.; Abad E.. 1.03 - Assessing and Controlling Sample Contamination. In Comprehensive Sampling and Sample Preparation; Pawliszyn J., Ed.; Academic Press, 2012; pp 51–64.

Psychogios N.; Hau D. D.; Peng J.; Guo A. C.; Mandal R.; Bouatra S.; Sinelnikov I.; Krishnamurthy R.; Eisner R.; Gautam B.; et al. The Human Serum Metabolome. PLoS One 2011, 6 (2), e1695710.1371/journal.pone.0016957. PubMed DOI PMC

David A.; Abdul-Sada A.; Lange A.; Tyler C. R.; Hill E. M. A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography A 2014, 1365, 72–85. 10.1016/j.chroma.2014.09.001. PubMed DOI

Sanchez T. R.; Hu X.; Zhao J.; Tran V.; Loiacono N.; Go Y.-M.; Goessler W.; Cole S.; Umans J.; Jones D. P.; et al. An atlas of metallome and metabolome interactions and associations with incident diabetes in the Strong Heart Family Study. Environ. Int. 2021, 157, 10681010.1016/j.envint.2021.106810. PubMed DOI PMC

Lipinski C.; Hopkins A. Navigating chemical space for biology and medicine. Nature 2004, 432 (7019), 855–861. 10.1038/nature03193. PubMed DOI

Stockwell B. R. Exploring biology with small organic molecules. Nature 2004, 432 (7019), 846–854. 10.1038/nature03196. PubMed DOI PMC

Ruan T.; Li P.; Wang H.; Li T.; Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem. Rev. 2023, 123 (17), 10584–10640. 10.1021/acs.chemrev.3c00056. PubMed DOI

Gouin T.; Mackay D.; Webster E.; Wania F. Screening Chemicals for Persistence in the Environment. Environ. Sci. Technol. 2000, 34 (5), 881–884. 10.1021/es991011z. DOI

Reymond J.-L. The Chemical Space Project. Acc. Chem. Res. 2015, 48 (3), 722–730. 10.1021/ar500432k. PubMed DOI

Hulleman T.; Turkina V.; O’Brien J. W.; Chojnacka A.; Thomas K. V.; Samanipour S. Critical Assessment of the Chemical Space Covered by LC–HRMS Non-Targeted Analysis. Environ. Sci. Technol. 2023, 57 (38), 14101–14112. 10.1021/acs.est.3c03606. PubMed DOI PMC

Wang Z.; Walker G. W.; Muir D. C. G.; Nagatani-Yoshida K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54 (5), 2575–2584. 10.1021/acs.est.9b06379. PubMed DOI

Zhang P.; Carlsten C.; Chaleckis R.; Hanhineva K.; Huang M.; Isobe T.; Koistinen V. M.; Meister I.; Papazian S.; Sdougkou K.; et al. Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective. Environ. Sci. Technol. Lett. 2021, 8 (10), 839–852. 10.1021/acs.estlett.1c00648. PubMed DOI PMC

Chen Y. C.; Hsu J. F.; Chang C. W.; Li S. W.; Yang Y. C.; Chao M. R.; Chen H. C.; Liao P. C. Connecting chemical exposome to human health using high-resolution mass spectrometry-based biomonitoring: Recent advances and future perspectives. Mass Spectrom. Rev. 2022, e2180510.1002/mas.21805. PubMed DOI

Isaacs K. K.; Egeghy P.; Dionisio K. L.; Phillips K. A.; Zidek A.; Ring C.; Sobus J. R.; Ulrich E. M.; Wetmore B. A.; Williams A. J.; et al. The chemical landscape of high-throughput new approach methodologies for exposure. J. Expo Sci. Environ. Epidemiol 2022, 32 (6), 820–832. 10.1038/s41370-022-00496-9. PubMed DOI PMC

Manz K. E.; Feerick A.; Braun J. M.; Feng Y. L.; Hall A.; Koelmel J.; Manzano C.; Newton S. R.; Pennell K. D.; Place B. J.; et al. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. J. Expo Sci. Environ. Epidemiol 2023, 33 (4), 524–536. 10.1038/s41370-023-00574-6. PubMed DOI PMC

Black G.; Lowe C.; Anumol T.; Bade J.; Favela K.; Feng Y.-L.; Knolhoff A.; McEachran A.; Nuñez J.; Fisher C.; et al. Exploring chemical space in non-targeted analysis: a proposed ChemSpace tool. Anal. Bioanal. Chem. 2023, 415 (1), 35–44. 10.1007/s00216-022-04434-4. PubMed DOI PMC

Schymanski E. L.; Kondic T.; Neumann S.; Thiessen P. A.; Zhang J.; Bolton E. E. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J. Cheminform 2021, 13 (1), 19.10.1186/s13321-021-00489-0. PubMed DOI PMC

Neveu V.; Moussy A.; Rouaix H.; Wedekind R.; Pon A.; Knox C.; Wishart D. S.; Scalbert A. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 2017, 45 (D1), D979–D984. 10.1093/nar/gkw980. PubMed DOI PMC

Borrel A.; Conway M.; Nolte S. Z; Unnikrishnan A.; Schmitt C. P; Kleinstreuer N. C ChemMaps.com v2.0: exploring the environmental chemical universe. Nucleic Acids Res. 2023, 51 (W1), W78–W82. 10.1093/nar/gkad380. PubMed DOI PMC

Williams A. J.; Grulke C. M.; Edwards J.; McEachran A. D.; Mansouri K.; Baker N. C.; Patlewicz G.; Shah I.; Wambaugh J. F.; Judson R. S.; et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J. Cheminform 2017, 9 (1), 61.10.1186/s13321-017-0247-6. PubMed DOI PMC

Weisgerber D. W. Chemical Abstracts Service Chemical Registry System: History, scope, and impacts. Journal of the American Society for Information Science 1997, 48 (4), 349–360. 10.1002/(SICI)1097-4571(199704)48:4<349::AID-ASI8>3.0.CO;2-W. DOI

Kim S.; Chen J.; Cheng T.; Gindulyte A.; He J.; He S.; Li Q.; Shoemaker B. A.; Thiessen P. A.; Yu B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51 (D1), D1373–D1380. 10.1093/nar/gkac956. PubMed DOI PMC

Pellizzari E. D.; Woodruff T. J.; Boyles R. R.; Kannan K.; Beamer P. I.; Buckley J. P.; Wang A.; Zhu Y.; Bennett D. H. Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research. Environ. Health Perspect 2019, 127 (12), 12600110.1289/EHP5133. PubMed DOI PMC

Flasch M.; Koellensperger G.; Warth B. Comparing the sensitivity of a low- and a high-resolution mass spectrometry approach for xenobiotic trace analysis: An exposome-type case study. Anal. Chim. Acta 2023, 1279, 34174010.1016/j.aca.2023.341740. PubMed DOI

Oesterle I.; Pristner M.; Berger S.; Wang M.; Verri Hernandes V.; Rompel A.; Warth B. Exposomic Biomonitoring of Polyphenols by Non-Targeted Analysis and Suspect Screening. Anal. Chem. 2023, 95 (28), 10686–10694. 10.1021/acs.analchem.3c01393. PubMed DOI PMC

Schwarzenbach R. P.; Gschwend P. M.; Imboden D. M.. Environmental Organic Chemistry; Wiley, 2017.

Escher B. I.; Stapleton H. M.; Schymanski E. L. Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367 (6476), 388–392. 10.1126/science.aay6636. PubMed DOI PMC

Cherkasov A.; Muratov E. N.; Fourches D.; Varnek A.; Baskin I. I.; Cronin M.; Dearden J.; Gramatica P.; Martin Y. C.; Todeschini R.; et al. QSAR Modeling: Where Have You Been? Where Are You Going To?. J. Med. Chem. 2014, 57 (12), 4977–5010. 10.1021/jm4004285. PubMed DOI PMC

Rand-Weaver M.; Margiotta-Casaluci L.; Patel A.; Panter G. H.; Owen S. F.; Sumpter J. P. The Read-Across Hypothesis and Environmental Risk Assessment of Pharmaceuticals. Environ. Sci. Technol. 2013, 47 (20), 11384–11395. 10.1021/es402065a. PubMed DOI PMC

Schmeisser S.; Miccoli A.; von Bergen M.; Berggren E.; Braeuning A.; Busch W.; Desaintes C.; Gourmelon A.; Grafström R.; Harrill J.; et al. New approach methodologies in human regulatory toxicology – Not if, but how and when!. Environ. Int. 2023, 178, 10808210.1016/j.envint.2023.108082. PubMed DOI PMC

Sager J. E.; Yu J.; Ragueneau-Majlessi I.; Isoherranen N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug Metab. Dispos. 2015, 43 (11), 1823–1837. 10.1124/dmd.115.065920. PubMed DOI PMC

Wang X.; Zhao X.; Shi D.; Dong Z.; Zhang X.; Liang W.; Liu L.; Wang X.; Wu F. Integrating Physiologically Based Pharmacokinetic Modeling-Based Forward Dosimetry and in Vitro Bioassays to Improve the Risk Assessment of Organophosphate Esters on Human Health. Environ. Sci. Technol. 2023, 57 (4), 1764–1775. 10.1021/acs.est.2c04576. PubMed DOI

Müller F. A.; Stamou M.; Englert F. H.; Frenzel O.; Diedrich S.; Suter-Dick L.; Wambaugh J. F.; Sturla S. J. In vitro to in vivo extrapolation and high-content imaging for simultaneous characterization of chemically induced liver steatosis and markers of hepatotoxicity. Arch. Toxicol. 2023, 97 (6), 1701–1721. 10.1007/s00204-023-03490-8. PubMed DOI PMC

Tollefsen K. E.; Scholz S.; Cronin M. T.; Edwards S. W.; de Knecht J.; Crofton K.; Garcia-Reyero N.; Hartung T.; Worth A.; Patlewicz G. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regul. Toxicol. Pharmacol. 2014, 70 (3), 629–640. 10.1016/j.yrtph.2014.09.009. PubMed DOI

González-Domínguez R.; Jáuregui O.; Queipo-Ortuño M. I.; Andrés-Lacueva C. Characterization of the Human Exposome by a Comprehensive and Quantitative Large-Scale Multianalyte Metabolomics Platform. Anal. Chem. 2020, 92 (20), 13767–13775. 10.1021/acs.analchem.0c02008. PubMed DOI

Gu Y.; Peach J. T.; Warth B. Sample preparation strategies for mass spectrometry analysis in human exposome research: Current status and future perspectives. TrAC Trends in Analytical Chemistry 2023, 166, 11715110.1016/j.trac.2023.117151. DOI

Brack W.; Ait-Aissa S.; Burgess R. M.; Busch W.; Creusot N.; Di Paolo C.; Escher B. I.; Mark Hewitt L.; Hilscherova K.; Hollender J.; et al. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview. Sci. Total Environ. 2016, 544, 1073–1118. 10.1016/j.scitotenv.2015.11.102. PubMed DOI

Vitale C. M.; Price E. J.; Miller G. W.; David A.; Antignac J.-P.; Barouki R.; Klánová J. Analytical strategies for chemical exposomics: exploring limits and feasibility. Exposome 2021, 10.1093/exposome/osab003. DOI

Schymanski E. L.; Jeon J.; Gulde R.; Fenner K.; Ruff M.; Singer H. P.; Hollender J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. 10.1021/es5002105. PubMed DOI

Fitzgerald C. C. J.; Hedman R.; Uduwela D. R.; Paszerbovics B.; Carroll A. J.; Neeman T.; Cawley A.; Brooker L.; McLeod M. D. Profiling Urinary Sulfate Metabolites With Mass Spectrometry. Front. Mol. Biosci. 2022, 10.3389/fmolb.2022.829511. PubMed DOI PMC

Xue J.; Lai Y.; Liu C. W.; Ru H. Towards Mass Spectrometry-Based Chemical Exposome: Current Approaches, Challenges, and Future Directions. Toxics 2019, 7 (3), 41.10.3390/toxics7030041. PubMed DOI PMC

Manrai A. K.; Cui Y.; Bushel P. R.; Hall M.; Karakitsios S.; Mattingly C. J.; Ritchie M.; Schmitt C.; Sarigiannis D. A.; Thomas D. C.; et al. Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health. Annu. Rev. Public Health 2017, 38, 279–294. 10.1146/annurev-publhealth-082516-012737. PubMed DOI PMC

Andra S. S.; Austin C.; Patel D.; Dolios G.; Awawda M.; Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. Environ. Int. 2017, 100, 32–61. 10.1016/j.envint.2016.11.026. PubMed DOI PMC

Hajeb P.; Zhu L.; Bossi R.; Vorkamp K. Sample preparation techniques for suspect and non-target screening of emerging contaminants. Chemosphere 2022, 287, 13230610.1016/j.chemosphere.2021.132306. PubMed DOI

Lioy P. J.; Rappaport S. M. Exposure science and the exposome: an opportunity for coherence in the environmental health sciences. Environ. Health Perspect 2011, 119 (11), A466–467. 10.1289/ehp.1104387. PubMed DOI PMC

Musatadi M.; Andrés-Maguregi A.; De Angelis F.; Prieto A.; Anakabe E.; Olivares M.; Etxebarria N.; Zuloaga O. The role of sample preparation in suspect and non-target screening for exposome analysis using human urine. Chemosphere 2023, 339, 13969010.1016/j.chemosphere.2023.139690. PubMed DOI

Damaraju S.; Driga A.; Cook L.; Calder K.; Graham K.; Dabbs K.; Steed H.; Berendt R.; Mackey J. R.; Cass C. E.. 3.02 - Considerations on Dealing with Tissues and Cell Samples (Include Tissue Banking). In Comprehensive Sampling and Sample Preparation; Pawliszyn J., Ed.; Academic Press, 2012; pp 21–31.

Guthrie J. W.3.01 - General Considerations when Dealing with Biological Fluid Samples. In Comprehensive Sampling and Sample Preparation; Pawliszyn J., Ed.; Academic Press, 2012; pp 1–19.

Zhou W.; Yang S.; Wang P. G. Matrix effects and application of matrix effect factor. Bioanalysis 2017, 9 (23), 1839–1844. 10.4155/bio-2017-0214. PubMed DOI

Barupal D. K.; Fiehn O. Generating the Blood Exposome Database Using a Comprehensive Text Mining and Database Fusion Approach. Environ. Health Persp. 2019, 127 (9), 09700810.1289/EHP4713. PubMed DOI PMC

Goerdten J.; Yuan L.; Huybrechts I.; Neveu V.; Nöthlings U.; Ahrens W.; Scalbert A.; Floegel A. Reproducibility of the Blood and Urine Exposome: A Systematic Literature Review and Meta-Analysis. Cancer Epidemiology, Biomarkers & Prevention 2022, 31 (9), 1683–1692. 10.1158/1055-9965.EPI-22-0090. PubMed DOI

Tkalec Ž.; Antignac J.-P.; Bandow N.; Béen F. M.; Belova L.; Bessems J.; Le Bizec B.; Brack W.; Cano-Sancho G.; Chaker J.; et al. Innovative analytical methodologies for characterizing chemical exposure with a view to next-generation risk assessment. Environ. Int. 2024, 186, 10858510.1016/j.envint.2024.108585. PubMed DOI

Tian Z.; Zhao H.; Peter K. T.; Gonzalez M.; Wetzel J.; Wu C.; Hu X.; Prat J.; Mudrock E.; Hettinger R.; et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 2021, 371 (6525), 185–189. 10.1126/science.abd6951. PubMed DOI

Vinggaard A. M.; Bonefeld-Jørgensen E. C.; Jensen T. K.; Fernandez M. F.; Rosenmai A. K.; Taxvig C.; Rodriguez-Carrillo A.; Wielsøe M.; Long M.; Olea N.; et al. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. Environ. Int. 2021, 146, 10619110.1016/j.envint.2020.106191. PubMed DOI

Chung M. K.; Rappaport S. M.; Wheelock C. E.; Nguyen V. K.; Meer T. P. v. d.; Miller G. W.; Vermeulen R.; Patel C. J. Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery. Environ. Health Persp. 2021, 129 (8), 08500110.1289/EHP8327. PubMed DOI PMC

Tian Z.; McMinn M. H.; Fang M. Effect-directed analysis and beyond: how to find causal environmental toxicants. Exposome 2023, 10.1093/exposome/osad002. DOI

Simon E.; Lamoree M. H.; Hamers T.; de Boer J. Challenges in effect-directed analysis with a focus on biological samples. TrAC Trends in Analytical Chemistry 2015, 67, 179–191. 10.1016/j.trac.2015.01.006. DOI

Semple K. T.; Doick K. J.; Jones K. C.; Burauel P.; Craven A.; Harms H. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ. Sci. Technol. 2004, 38 (12), 228A–231A. 10.1021/es040548w. PubMed DOI

Yu M.; Roszkowska A.; Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS Environmental Au 2022, 2 (1), 30–41. 10.1021/acsenvironau.1c00024. PubMed DOI PMC

Lin E. Z.; Nichols A.; Zhou Y.; Koelmel J. P.; Godri Pollitt K. J. Characterizing the external exposome using passive samplers—comparative assessment of chemical exposures using different wearable form factors. Journal of Exposure Science & Environmental Epidemiology 2023, 33 (4), 558–565. 10.1038/s41370-022-00456-3. PubMed DOI

Rusina T. P.; Smedes F.; Klanova J.; Booij K.; Holoubek I. Polymer selection for passive sampling: A comparison of critical properties. Chemosphere 2007, 68 (7), 1344–1351. 10.1016/j.chemosphere.2007.01.025. PubMed DOI

Adams R. G.; Lohmann R.; Fernandez L. A.; MacFarlane J. K.; Gschwend P. M. Polyethylene Devices: Passive Samplers for Measuring Dissolved Hydrophobic Organic Compounds in Aquatic Environments. Environ. Sci. Technol. 2007, 41 (4), 1317–1323. 10.1021/es0621593. PubMed DOI

Bohlin P.; Jones K. C.; Strandberg B. Occupational and indoor air exposure to persistent organic pollutants: A review of passive sampling techniques and needs. Journal of Environmental Monitoring 2007, 9 (6), 501–509. 10.1039/b700627f. PubMed DOI

Souza-Silva É. A.; Jiang R.; Rodríguez-Lafuente A.; Gionfriddo E.; Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. TrAC Trends in Analytical Chemistry 2015, 71, 224–235. 10.1016/j.trac.2015.04.016. DOI

Bessonneau V.; Ings J.; McMaster M.; Smith R.; Bragg L.; Servos M.; Pawliszyn J. In vivo microsampling to capture the elusive exposome. Sci. Rep. 2017, 7 (1), 4403810.1038/srep44038. PubMed DOI PMC

Kleeblatt J.; Schubert J. K.; Zimmermann R. Detection of Gaseous Compounds by Needle Trap Sampling and Direct Thermal-Desorption Photoionization Mass Spectrometry: Concept and Demonstrative Application to Breath Gas Analysis. Anal. Chem. 2015, 87 (3), 1773–1781. 10.1021/ac5039829. PubMed DOI

Bessonneau V.; Boyaci E.; Maciazek-Jurczyk M.; Pawliszyn J. In vivo solid phase microextraction sampling of human saliva for non-invasive and on-site monitoring. Anal. Chim. Acta 2015, 856, 35–45. 10.1016/j.aca.2014.11.029. PubMed DOI

Papazian S.; Fornaroli C.; Bonnefille B.; Pesquet E.; Xie H.; Martin J. W. Silicone Foam for Passive Sampling and Nontarget Analysis of Air. Environ. Sci. Tech Let 2023, 10, 989.10.1021/acs.estlett.2c00489. DOI

Koelmel J. P.; Lin E. Z.; Guo P.; Zhou J.; He J.; Chen A.; Gao Y.; Deng F.; Dong H.; Liu Y.; et al. Exploring the external exposome using wearable passive samplers - The China BAPE study. Environ. Pollut. 2021, 270, 11622810.1016/j.envpol.2020.116228. PubMed DOI

Okeme J. O.; Koelmel J. P.; Johnson E.; Lin E. Z.; Gao D.; Pollitt K. J. G. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Current Environmental Health Reports 2023, 10 (2), 84–98. 10.1007/s40572-023-00392-w. PubMed DOI

Samon S. M.; Hammel S. C.; Stapleton H. M.; Anderson K. A. Silicone wristbands as personal passive sampling devices: Current knowledge, recommendations for use, and future directions. Environ. Int. 2022, 169, 10733910.1016/j.envint.2022.107339. PubMed DOI PMC

O’Connell S. G.; Kincl L. D.; Anderson K. A. Silicone Wristbands as Personal Passive Samplers. Environ. Sci. Technol. 2014, 48 (6), 3327–3335. 10.1021/es405022f. PubMed DOI PMC

Jobst K. J.; Arora A.; Pollitt K. G.; Sled J. G. Dried blood spots for the identification of bioaccumulating organic compounds: Current challenges and future perspectives. Current Opinion in Environmental Science & Health 2020, 15, 66–73. 10.1016/j.coesh.2020.07.001. PubMed DOI PMC

Kocur A.; Pawinski T. Volumetric Absorptive Microsampling in Therapeutic Drug Monitoring of Immunosuppressive Drugs-From Sampling and Analytical Issues to Clinical Application. Int. J. Mol. Sci. 2023, 24 (1), 681.10.3390/ijms24010681. PubMed DOI PMC

Nemkov T.; Yoshida T.; Nikulina M.; D’Alessandro A. High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage. Front Physiol 2022, 13, 83324210.3389/fphys.2022.833242. PubMed DOI PMC

Jacobson T. A.; Bae Y.; Kler J. S.; Iyer R.; Zhang R.; Montgomery N. D.; Nunes D.; Pleil J. D.; Funk W. E. Advancing Global Health Surveillance of Mycotoxin Exposures using Minimally Invasive Sampling Techniques: A State-of-the-Science Review. Environ. Sci. Technol. 2024, 58 (8), 3580–3594. 10.1021/acs.est.3c04981. PubMed DOI PMC

Jain A.; Morris M.; Lin E. Z.; Khan S. A.; Ma X.; Deziel N. C.; Godri Pollitt K. J.; Johnson C. H. Hemoglobin normalization outperforms other methods for standardizing dried blood spot metabolomics: A comparative study. Science of The Total Environment 2023, 854, 15871610.1016/j.scitotenv.2022.158716. PubMed DOI

Berndt A. E. Sampling Methods. Journal of Human Lactation 2020, 36 (2), 224–226. 10.1177/0890334420906850. PubMed DOI

Fisher C. M.; Peter K. T.; Newton S. R.; Schaub A. J.; Sobus J. R. Approaches for assessing performance of high-resolution mass spectrometry–based non-targeted analysis methods. Anal. Bioanal. Chem. 2022, 414 (22), 6455–6471. 10.1007/s00216-022-04203-3. PubMed DOI PMC

Manz K. E.; Yamada K.; Scheidl L.; La Merrill M. A.; Lind L.; Pennell K. D. Targeted and Nontargeted Detection and Characterization of Trace Organic Chemicals in Human Serum and Plasma Using QuEChERS Extraction. Toxicol. Sci. 2021, 185 (1), 77–88. 10.1093/toxsci/kfab121. PubMed DOI PMC

Tulipani S.; Llorach R.; Urpi-Sarda M.; Andres-Lacueva C. Comparative Analysis of Sample Preparation Methods To Handle the Complexity of the Blood Fluid Metabolome: When Less Is More. Anal. Chem. 2013, 85 (1), 341–348. 10.1021/ac302919t. PubMed DOI

Al-Salhi R.; Monfort C.; Bonvallot N.; David A. Analytical strategies to profile the internal chemical exposome and the metabolome of human placenta. Anal. Chim. Acta 2022, 1219, 33998310.1016/j.aca.2022.339983. PubMed DOI

Mertens H.; Noll B.; Schwerdtle T.; Abraham K.; Monien B. H. Less is more: a methodological assessment of extraction techniques for per- and polyfluoroalkyl substances (PFAS) analysis in mammalian tissues. Anal. Bioanal. Chem. 2023, 415 (24), 5925–5938. 10.1007/s00216-023-04867-5. PubMed DOI PMC

De Baere S.; Ochieng P. E.; Kemboi D. C.; Scippo M.-L.; Okoth S.; Lindahl J. F.; Gathumbi J. K.; Antonissen G.; Croubels S. Development of High-Throughput Sample Preparation Procedures for the Quantitative Determination of Aflatoxins in Biological Matrices of Chickens and Cattle Using UHPLC-MS/MS. Toxins 2023, 15 (1), 37.10.3390/toxins15010037. PubMed DOI PMC

Zeleke G.; De Baere S.; Suleman S.; Devreese M. Development and Validation of a Reliable UHPLC-MS/MS Method for Simultaneous Quantification of Macrocyclic Lactones in Bovine Plasma. Molecules 2022, 27 (3), 998.10.3390/molecules27030998. PubMed DOI PMC

Tanoue R.; Nozaki K.; Nomiyama K.; Kunisue T.; Tanabe S. Rapid analysis of 65 pharmaceuticals and 7 personal care products in plasma and whole-body tissue samples of fish using acidic extraction, zirconia-coated silica cleanup, and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2020, 1631, 46158610.1016/j.chroma.2020.461586. PubMed DOI

Pourchet M.; Narduzzi L.; Jean A.; Guiffard I.; Bichon E.; Cariou R.; Guitton Y.; Hutinet S.; Vlaanderen J.; Meijer J.; et al. Non-targeted screening methodology to characterise human internal chemical exposure: Application to halogenated compounds in human milk. Talanta 2021, 225, 12197910.1016/j.talanta.2020.121979. PubMed DOI

Taylor P. J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clinical Biochemistry 2005, 38 (4), 328–334. 10.1016/j.clinbiochem.2004.11.007. PubMed DOI

Matuszewski B. K.; Constanzer M. L.; Chavez-Eng C. M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC–MS/MS. Anal. Chem. 2003, 75 (13), 3019–3030. 10.1021/ac020361s. PubMed DOI

Stahnke H.; Kittlaus S.; Kempe G.; Alder L. Reduction of Matrix Effects in Liquid Chromatography–Electrospray Ionization–Mass Spectrometry by Dilution of the Sample Extracts: How Much Dilution is Needed?. Anal. Chem. 2012, 84 (3), 1474–1482. 10.1021/ac202661j. PubMed DOI

Greer B.; Chevallier O.; Quinn B.; Botana L. M.; Elliott C. T. Redefining dilute and shoot: The evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. TrAC Trends in Analytical Chemistry 2021, 141, 11628410.1016/j.trac.2021.116284. DOI

Alcántara-Durán J.; Moreno-González D.; Beneito-Cambra M.; García-Reyes J. F. Dilute-and-shoot coupled to nanoflow liquid chromatography high resolution mass spectrometry for the determination of drugs of abuse and sport drugs in human urine. Talanta 2018, 182, 218–224. 10.1016/j.talanta.2018.01.081. PubMed DOI

Atapattu S. N.; Rosenfeld J. M. Analytical derivatizations in environmental analysis. Journal of Chromatography A 2022, 1678, 46334810.1016/j.chroma.2022.463348. PubMed DOI

Lai Z.; Fiehn O. Mass spectral fragmentation of trimethylsilylated small molecules. Mass Spectrom. Rev. 2018, 37 (3), 245–257. 10.1002/mas.21518. PubMed DOI

Metz T. O.; Baker E. S.; Schymanski E. L.; Renslow R. S.; Thomas D. G.; Causon T. J.; Webb I. K.; Hann S.; Smith R. D.; Teeguarden J. G. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?. Bioanalysis 2017, 9 (1), 81–98. 10.4155/bio-2016-0244. PubMed DOI PMC

Skoog D. A.; West D. M.; Holler F. J.; Crouch S. R.. Fundamentals of Analytical Chemistry; Cengage Learning, 2013.

May J. C.; McLean J. A. Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation. Anal. Chem. 2015, 87 (3), 1422–1436. 10.1021/ac504720m. PubMed DOI PMC

Shanmuganathan M.; Kroezen Z.; Gill B.; Azab S.; de Souza R. J.; Teo K. K.; Atkinson S.; Subbarao P.; Desai D.; Anand S. S.; et al. The maternal serum metabolome by multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform and standardized data workflow for large-scale epidemiological studies. Nat. Protoc. 2021, 16 (4), 1966–1994. 10.1038/s41596-020-00475-0. PubMed DOI

Fiehn O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114 (1), 30.34.31–30.34.32. 10.1002/0471142727.mb3004s114. PubMed DOI PMC

Fiehn O.; Kopka J.; Dörmann P.; Altmann T.; Trethewey R. N.; Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000, 18 (11), 1157–1161. 10.1038/81137. PubMed DOI

Gago-Ferrero P.; Díaz-Cruz M. S.; Barceló D. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal. Bioanal. Chem. 2012, 404 (9), 2597–2610. 10.1007/s00216-012-6067-7. PubMed DOI

Mol H. G. J.; Plaza-Bolaños P.; Zomer P.; de Rijk T. C.; Stolker A. A. M.; Mulder P. P. J. Toward a Generic Extraction Method for Simultaneous Determination of Pesticides, Mycotoxins, Plant Toxins, and Veterinary Drugs in Feed and Food Matrixes. Anal. Chem. 2008, 80 (24), 9450–9459. 10.1021/ac801557f. PubMed DOI

Kanakaki C.; Traka T.; Thomaidis N. S. Development and validation of multi-analyte methods for the determination of migrating substances from plastic food contact materials by GC-EI-QqQ-MS and GC-APCI-QTOF-MS. Front. Sustain. Food Syst. 2023, 10.3389/fsufs.2023.1159002. DOI

Wong J. K. Y.; Choi T. L. S.; Kwok K. Y.; Lei E. N. Y.; Wan T. S. M. Doping control analysis of 121 prohibited substances in equine hair by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 158, 189–203. 10.1016/j.jpba.2018.05.043. PubMed DOI

Thevis M.; Thomas A.; Pop V.; Schänzer W. Ultrahigh pressure liquid chromatography-(tandem) mass spectrometry in human sports drug testing: possibilities and limitations. J. Chromatogr A 2013, 1292, 38–50. 10.1016/j.chroma.2012.12.048. PubMed DOI

Rampler E.; Abiead Y. E.; Schoeny H.; Rusz M.; Hildebrand F.; Fitz V.; Koellensperger G. Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics—Standardization, Coverage, and Throughput. Anal. Chem. 2021, 93 (1), 519–545. 10.1021/acs.analchem.0c04698. PubMed DOI PMC

Flasch M.; Fitz V.; Rampler E.; Ezekiel C. N.; Koellensperger G.; Warth B. Integrated Exposomics/Metabolomics for Rapid Exposure and Effect Analyses. JACS Au 2022, 2 (11), 2548–2560. 10.1021/jacsau.2c00433. PubMed DOI PMC

González-Gaya B.; Lopez-Herguedas N.; Bilbao D.; Mijangos L.; Iker A. M.; Etxebarria N.; Irazola M.; Prieto A.; Olivares M.; Zuloaga O. Suspect and non-target screening: the last frontier in environmental analysis. Analytical Methods 2021, 13 (16), 1876–1904. 10.1039/D1AY00111F. PubMed DOI

Dürig W.; Lindblad S.; Golovko O.; Gkotsis G.; Aalizadeh R.; Nika M.-C.; Thomaidis N.; Alygizakis N. A.; Plassmann M.; Haglund P.; et al. What is in the fish? Collaborative trial in suspect and non-target screening of organic micropollutants using LC- and GC-HRMS. Environ. Int. 2023, 181, 10828810.1016/j.envint.2023.108288. PubMed DOI

Manz K. E.; Dodson R. E.; Liu Y.; Scheidl L.; Burks S.; Dunn F.; Gairola R.; Lee N. F.; Walker E. D.; Pennell K. D.; et al. Effects of Corsi-Rosenthal boxes on indoor air contaminants: non-targeted analysis using high resolution mass spectrometry. Journal of Exposure Science & Environmental Epidemiology 2023, 33 (4), 537–547. 10.1038/s41370-023-00577-3. PubMed DOI PMC

Misra B. B.; Olivier M. High Resolution GC-Orbitrap-MS Metabolomics Using Both Electron Ionization and Chemical Ionization for Analysis of Human Plasma. J. Proteome Res. 2020, 19 (7), 2717–2731. 10.1021/acs.jproteome.9b00774. PubMed DOI PMC

Brack W.; Hollender J.; de Alda M. L.; Müller C.; Schulze T.; Schymanski E.; Slobodnik J.; Krauss M. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environmental Sciences Europe 2019, 31 (1), 62.10.1186/s12302-019-0230-0. DOI

Morris C. B.; Poland J. C.; May J. C.; McLean J. A.. Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules. In Ion Mobility-Mass Spectrometry: Methods and Protocols; Paglia G., Astarita G., Eds.; Springer US, 2020; pp 1–31. PubMed PMC

Zhou Z.; Luo M.; Chen X.; Yin Y.; Xiong X.; Wang R.; Zhu Z.-J. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. Nat. Commun. 2020, 11 (1), 4334.10.1038/s41467-020-18171-8. PubMed DOI PMC

Baker E. S.; Hoang C.; Uritboonthai W.; Heyman H. M.; Pratt B.; MacCoss M.; MacLean B.; Plumb R.; Aisporna A.; Siuzdak G. METLIN-CCS: an ion mobility spectrometry collision cross section database. Nat. Methods 2023, 20, 1836.10.1038/s41592-023-02078-5. PubMed DOI PMC

Feuerstein M. L.; Hernández-Mesa M.; Kiehne A.; Le Bizec B.; Hann S.; Dervilly G.; Causon T. Comparability of Steroid Collision Cross Sections Using Three Different IM-HRMS Technologies: An Interplatform Study. J. Am. Soc. Mass Spectrom. 2022, 33 (10), 1951–1959. 10.1021/jasms.2c00196. PubMed DOI PMC

Celma A.; Sancho J. V.; Schymanski E. L.; Fabregat-Safont D.; Ibáñez M.; Goshawk J.; Barknowitz G.; Hernández F.; Bijlsma L. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 2020, 54 (23), 15120–15131. 10.1021/acs.est.0c05713. PubMed DOI

Izquierdo-Sandoval D.; Fabregat-Safont D.; Lacalle-Bergeron L.; Sancho J. V.; Hernández F.; Portoles T. Benefits of Ion Mobility Separation in GC-APCI-HRMS Screening: From the Construction of a CCS Library to the Application to Real-World Samples. Anal. Chem. 2022, 94 (25), 9040–9047. 10.1021/acs.analchem.2c01118. PubMed DOI PMC

Mairinger T.; Causon T. J.; Hann S. The potential of ion mobility–mass spectrometry for non-targeted metabolomics. Curr. Opin. Chem. Biol. 2018, 42, 9–15. 10.1016/j.cbpa.2017.10.015. PubMed DOI

Gonzalez de Vega R.; Cameron A.; Clases D.; Dodgen T. M.; Doble P. A.; Bishop D. P. Simultaneous targeted and non-targeted analysis of per- and polyfluoroalkyl substances in environmental samples by liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry and mass defect analysis. J. Chromatogr A 2021, 1653, 46242310.1016/j.chroma.2021.462423. PubMed DOI

Tu J.; Zhou Z.; Li T.; Zhu Z.-J. The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification. TrAC Trends in Analytical Chemistry 2019, 116, 332–339. 10.1016/j.trac.2019.03.017. DOI

Giles K.; Ujma J.; Wildgoose J.; Pringle S.; Richardson K.; Langridge D.; Green M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91 (13), 8564–8573. 10.1021/acs.analchem.9b01838. PubMed DOI

Foster M.; Rainey M.; Watson C.; Dodds J. N.; Kirkwood K. I.; Fernández F. M.; Baker E. S. Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. Environ. Sci. Technol. 2022, 56 (12), 9133–9143. 10.1021/acs.est.2c00201. PubMed DOI PMC

Chouinard C. D.; Cruzeiro V. W. D.; Roitberg A. E.; Yost R. A. Experimental and Theoretical Investigation of Sodiated Multimers of Steroid Epimers with Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28 (2), 323–331. 10.1007/s13361-016-1525-7. PubMed DOI PMC

Kyle J. E.; Zhang X.; Weitz K. K.; Monroe M. E.; Ibrahim Y. M.; Moore R. J.; Cha J.; Sun X.; Lovelace E. S.; Wagoner J.; et al. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 2016, 141 (5), 1649–1659. 10.1039/C5AN02062J. PubMed DOI PMC

Jeanne Dit Fouque K.; Ramirez C. E.; Lewis R. L.; Koelmel J. P.; Garrett T. J.; Yost R. A.; Fernandez-Lima F. Effective Liquid Chromatography–Trapped Ion Mobility Spectrometry–Mass Spectrometry Separation of Isomeric Lipid Species. Anal. Chem. 2019, 91 (8), 5021–5027. 10.1021/acs.analchem.8b04979. PubMed DOI

Wojcik R.; Nagy G.; Attah I. K.; Webb I. K.; Garimella S. V. B.; Weitz K. K.; Hollerbach A.; Monroe M. E.; Ligare M. R.; Nielson F. F.; et al. SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes. Anal. Chem. 2019, 91 (18), 11952–11962. 10.1021/acs.analchem.9b02808. PubMed DOI PMC

Watson J. T.; Sparkman O. D.. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation; Wiley, 2007.

Finkelstein J. Development of ionization methods. Nat. Methods 2015, 12 (1), 6–7. 10.1038/nmeth.3538. DOI

Beale D. J.; Pinu F. R.; Kouremenos K. A.; Poojary M. M.; Narayana V. K.; Boughton B. A.; Kanojia K.; Dayalan S.; Jones O. A. H.; Dias D. A. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 2018, 14 (11), 152.10.1007/s11306-018-1449-2. PubMed DOI

Baumeister T. U. H.; Ueberschaar N.; Pohnert G. Gas-Phase Chemistry in the GC Orbitrap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2019, 30 (4), 573–580. 10.1007/s13361-018-2117-5. PubMed DOI

Hong S.; Kang W.; Su Y.; Guo Y. Analysis of Trace-Level Volatile Compounds in Fresh Turf Crop (Lolium perenne L.) by Gas Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Chin. J. Chem. 2013, 31 (10), 1329–1335. 10.1002/cjoc.201300414. DOI

Omer E.; Bichon E.; Hutinet S.; Royer A. L.; Monteau F.; Germon H.; Hill P.; Remaud G.; Dervilly-Pinel G.; Cariou R.; et al. Toward the characterisation of non-intentionally added substances migrating from polyester-polyurethane lacquers by comprehensive gas chromatography-mass spectrometry technologies. J. Chromatogr A 2019, 1601, 327–334. 10.1016/j.chroma.2019.05.024. PubMed DOI

Vogel P.; Lazarou C.; Gazeli O.; Brandt S.; Franzke J.; Moreno-González D. Study of Controlled Atmosphere Flexible Microtube Plasma Soft Ionization Mass Spectrometry for Detection of Volatile Organic Compounds as Potential Biomarkers in Saliva for Cancer. Anal. Chem. 2020, 92 (14), 9722–9729. 10.1021/acs.analchem.0c01063. PubMed DOI

Alon T.; Amirav A. How enhanced molecular ions in Cold EI improve compound identification by the NIST library. Rapid Commun. Mass Spectrom. 2015, 29 (23), 2287–2292. 10.1002/rcm.7392. PubMed DOI

Margolin Eren K. J.; Elkabets O.; Amirav A. A comparison of electron ionization mass spectra obtained at 70 eV, low electron energies, and with cold EI and their NIST library identification probabilities. Journal of Mass Spectrometry 2020, 55 (12), e464610.1002/jms.4646. PubMed DOI

Tsizin S.; Bokka R.; Keshet U.; Alon T.; Fialkov A. B.; Tal N.; Amirav A. Comparison of electrospray LC–MS, LC–MS with Cold EI and GC–MS with Cold EI for sample identification. Int. J. Mass Spectrom. 2017, 422, 119–125. 10.1016/j.ijms.2017.09.006. DOI

Dougherty R. C.Positive and Negative Chemical Ionization Mass Spectrometry. In Mass Spectrometry in Environmental Sciences; Karasek F. W., Hutzinger O., Safe S., Eds.; Springer US, 1985; pp 77–91.

Capellades J.; Junza A.; Samino S.; Brunner J. S.; Schabbauer G.; Vinaixa M.; Yanes O. Exploring the Use of Gas Chromatography Coupled to Chemical Ionization Mass Spectrometry (GC-CI-MS) for Stable Isotope Labeling in Metabolomics. Anal. Chem. 2021, 93 (3), 1242–1248. 10.1021/acs.analchem.0c02998. PubMed DOI

Ayala-Cabrera J. F.; Montero L.; Meckelmann S. W.; Uteschil F.; Schmitz O. J. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part I: Current ion source developments and improvements in ionization strategies. Anal. Chim. Acta 2023, 1238, 34035310.1016/j.aca.2022.340353. PubMed DOI

Niu Y.; Liu J.; Yang R.; Zhang J.; Shao B. Atmospheric pressure chemical ionization source as an advantageous technique for gas chromatography-tandem mass spectrometry. TrAC Trends in Analytical Chemistry 2020, 132, 11605310.1016/j.trac.2020.116053. DOI

de Hoffmann E.Mass Spectrometry: Principles and Applications; John Wiley & Sons, 2007.

Li X.; Dorman F. L.; Helm P. A.; Kleywegt S.; Simpson A.; Simpson M. J.; Jobst K. J. Nontargeted Screening Using Gas Chromatography–Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential. Molecules 2021, 26 (22), 6911.10.3390/molecules26226911. PubMed DOI PMC

Singh R. R.; Aminot Y.; Héas-Moisan K.; Preud’homme H.; Munschy C. Cracked and shucked: GC-APCI-IMS-HRMS facilitates identification of unknown halogenated organic chemicals in French marine bivalves. Environ. Int. 2023, 178, 10809410.1016/j.envint.2023.108094. PubMed DOI

Konermann L.; Ahadi E.; Rodriguez A. D.; Vahidi S. Unraveling the Mechanism of Electrospray Ionization. Anal. Chem. 2013, 85 (1), 2–9. 10.1021/ac302789c. PubMed DOI

De O. Silva R.; De Menezes M. G.G.; De Castro R. C.; De A. Nobre C.; Milhome M. A.L.; Do Nascimento R. F. Efficiency of ESI and APCI ionization sources in LC-MS/MS systems for analysis of 22 pesticide residues in food matrix. Food Chem. 2019, 297, 12493410.1016/j.foodchem.2019.06.001. PubMed DOI

Martínez-Villalba A.; Moyano E.; Galceran M. T. Ultra-high performance liquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry for the analysis of benzimidazole compounds in milk samples. Journal of Chromatography A 2013, 1313, 119–131. 10.1016/j.chroma.2013.08.073. PubMed DOI

Xue J.; Domingo-Almenara X.; Guijas C.; Palermo A.; Rinschen M. M.; Isbell J.; Benton H. P.; Siuzdak G. Enhanced in-Source Fragmentation Annotation Enables Novel Data Independent Acquisition and Autonomous METLIN Molecular Identification. Anal. Chem. 2020, 92 (8), 6051–6059. 10.1021/acs.analchem.0c00409. PubMed DOI PMC

Bernardo-Bermejo S.; Xue J.; Hoang L.; Billings E.; Webb B.; Honders M. W.; Venneker S.; Heijs B.; Castro-Puyana M.; Marina M. L.; et al. Quantitative multiple fragment monitoring with enhanced in-source fragmentation/annotation mass spectrometry. Nat. Protoc. 2023, 18 (4), 1296–1315. 10.1038/s41596-023-00803-0. PubMed DOI PMC

Xue J.; Zhu J.; Hu L.; Yang J.; Lv Y.; Zhao F.; Liu Y.; Zhang T.; Cai Y.; Fang M. EISA-EXPOSOME: One Highly Sensitive and Autonomous Exposomic Platform with Enhanced in-Source Fragmentation/Annotation. Anal. Chem. 2023, 95, 17228.10.1021/acs.analchem.3c02697. PubMed DOI

Singh R. R.; Chao A.; Phillips K. A.; Xia X. R.; Shea D.; Sobus J. R.; Schymanski E. L.; Ulrich E. M. Expanded coverage of non-targeted LC-HRMS using atmospheric pressure chemical ionization: a case study with ENTACT mixtures. Anal Bioanal Chem. 2020, 412 (20), 4931–4939. 10.1007/s00216-020-02716-3. PubMed DOI PMC

Richard A. M.; Huang R.; Waidyanatha S.; Shinn P.; Collins B. J.; Thillainadarajah I.; Grulke C. M.; Williams A. J.; Lougee R. R.; Judson R. S.; et al. The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chem. Res. Toxicol. 2021, 34 (2), 189–216. 10.1021/acs.chemrestox.0c00264. PubMed DOI PMC

Xian F.; Hendrickson C. L.; Marshall A. G. High Resolution Mass Spectrometry. Anal. Chem. 2012, 84 (2), 708–719. 10.1021/ac203191t. PubMed DOI

Zubarev R. A.; Makarov A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85 (11), 5288–5296. 10.1021/ac4001223. PubMed DOI

Kind T.; Fiehn O. Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 2006, 7 (1), 234.10.1186/1471-2105-7-234. PubMed DOI PMC

Balogh M. P. Debating resolution and mass accuracy. LC-GC N. Am. 2004, 22 (2), 118.

Siuzdak G.The Expanding Role of Mass Spectrometry in Biotechnology; MCC Press, 2006.

Ni Y.; Su M.; Qiu Y.; Jia W.; Du X. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Anal. Chem. 2016, 88 (17), 8802–8811. 10.1021/acs.analchem.6b02222. PubMed DOI PMC

Worsfold P.; Townshend A.; Poole C. F.; Miró M.. Encyclopedia of Analytical Science; Elsevier Science, 2019.

Llorca M.; Farré M.; Picó Y.; Barceló D. Study of the performance of three LC-MS/MS platforms for analysis of perfluorinated compounds. Anal Bioanal Chem. 2010, 398 (3), 1145–1159. 10.1007/s00216-010-3911-5. PubMed DOI

Michalski A.; Damoc E.; Hauschild J. P.; Lange O.; Wieghaus A.; Makarov A.; Nagaraj N.; Cox J.; Mann M.; Horning S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell Proteomics 2011, 10 (9), M111.01101510.1074/mcp.M111.011015. PubMed DOI PMC

Scheltema R. A.; Hauschild J. P.; Lange O.; Hornburg D.; Denisov E.; Damoc E.; Kuehn A.; Makarov A.; Mann M. The Q Exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol. Cell Proteomics 2014, 13 (12), 3698–3708. 10.1074/mcp.M114.043489. PubMed DOI PMC

Eichhorn P.; Pérez S.; Barceló D.. Chapter 5 - Time-of-Flight Mass Spectrometry Versus Orbitrap-Based Mass Spectrometry for the Screening and Identification of Drugs and Metabolites: Is There a Winner? In Comprehensive Analytical Chemistry; Fernandez-Alba A. R., Ed.; Elsevier, 2012; Vol. 58, pp 217–272.

Makarov A.; Denisov E.; Lange O. Performance Evaluation of a High-field Orbitrap Mass Analyzer. J. Am. Soc. Mass Spectrom. 2009, 20 (8), 1391–1396. 10.1016/j.jasms.2009.01.005. PubMed DOI

Eliuk S.; Makarov A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu. Rev. Anal Chem. (Palo Alto Calif) 2015, 8, 61–80. 10.1146/annurev-anchem-071114-040325. PubMed DOI

Hu Q.; Noll R. J.; Li H.; Makarov A.; Hardman M.; Graham Cooks R. The Orbitrap: a new mass spectrometer. J. Mass Spectrom 2005, 40 (4), 430–443. 10.1002/jms.856. PubMed DOI

Kaufmann A.; Walker S. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers. Rapid Commun. Mass Spectrom. 2017, 31 (22), 1915–1926. 10.1002/rcm.7981. PubMed DOI

Johnson R. Forming fragments. Nat. Methods 2015, 12 (1), 14–14. 10.1038/nmeth.3533. PubMed DOI

Cooks R. G. Special feature: Historical. Collision-induced dissociation: Readings and commentary. Journal of Mass Spectrometry 1995, 30 (9), 1215–1221. 10.1002/jms.1190300902. DOI

de Hoffmann E. Tandem mass spectrometry: A primer. Journal of Mass Spectrometry 1996, 31 (2), 129–137. 10.1002/(SICI)1096-9888(199602)31:2<129::AID-JMS305>3.0.CO;2-T. DOI

Bourmaud A.; Gallien S.; Domon B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications. Proteomics 2016, 16 (15–16), 2146–2159. 10.1002/pmic.201500543. PubMed DOI

Vaniya A.; Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. TrAC Trends in Analytical Chemistry 2015, 69, 52–61. 10.1016/j.trac.2015.04.002. PubMed DOI PMC

Li J.; Smith L. S.; Zhu H.-J. Data-independent acquisition (DIA): An emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters. Drug Discovery Today: Technologies 2021, 39, 49–56. 10.1016/j.ddtec.2021.06.006. PubMed DOI PMC

Krasny L.; Huang P. H. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Molecular Omics 2021, 17 (1), 29–42. 10.1039/D0MO00072H. PubMed DOI

Zhang F.; Ge W.; Ruan G.; Cai X.; Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics 2020, 20 (17–18), e190027610.1002/pmic.201900276. PubMed DOI

Meier F.; Geyer P. E.; Virreira Winter S.; Cox J.; Mann M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 2018, 15 (6), 440–448. 10.1038/s41592-018-0003-5. PubMed DOI

Wu J.; Wang H.; Zhao X.; Qiu H.; Li N. High sensitivity and high-confidence compound identification with a flexible BoxCar acquisition method. J. Pharm. Biomed. Anal. 2022, 219, 11497310.1016/j.jpba.2022.114973. PubMed DOI

Liu K.; Song Y.; Liu Y.; Peng M.; Li H.; Li X.; Feng B.; Xu P.; Su D. An integrated strategy using UPLC–QTOF-MSE and UPLC–QTOF-MRM (enhanced target) for pharmacokinetics study of wine processed Schisandra Chinensis fructus in rats. J. Pharm. Biomed. Anal. 2017, 139, 165–178. 10.1016/j.jpba.2017.02.043. PubMed DOI

Castro G.; Ramil M.; Cela R.; Rodríguez I. Identification and determination of emerging pollutants in sewage sludge driven by UPLC-QTOF-MS data mining. Science of The Total Environment 2021, 778, 14625610.1016/j.scitotenv.2021.146256. PubMed DOI

Collins B. C.; Hunter C. L.; Liu Y.; Schilling B.; Rosenberger G.; Bader S. L.; Chan D. W.; Gibson B. W.; Gingras A.-C.; Held J. M.; et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 2017, 8 (1), 291.10.1038/s41467-017-00249-5. PubMed DOI PMC

Koopmans F.; Ho J. T. C.; Smit A. B.; Li K. W. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA. PROTEOMICS 2018, 18 (1), 170030410.1002/pmic.201700304. PubMed DOI PMC

Meier F.; Brunner A.-D.; Frank M.; Ha A.; Bludau I.; Voytik E.; Kaspar-Schoenefeld S.; Lubeck M.; Raether O.; Bache N.; et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 2020, 17 (12), 1229–1236. 10.1038/s41592-020-00998-0. PubMed DOI

Heil L. R.; Damoc E.; Arrey T. N.; Pashkova A.; Denisov E.; Petzoldt J.; Peterson A. C.; Hsu C.; Searle B. C.; Shulman N.; et al. Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition. J. Proteome Res. 2023, 22 (10), 3290–3300. 10.1021/acs.jproteome.3c00357. PubMed DOI PMC

Guo J.; Huan T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography–Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92 (12), 8072–8080. 10.1021/acs.analchem.9b05135. PubMed DOI

Nikolskiy I.; Mahieu N. G.; Chen Y. Jr.; Tautenhahn R.; Patti G. J. An Untargeted Metabolomic Workflow to Improve Structural Characterization of Metabolites. Anal. Chem. 2013, 85 (16), 7713–7719. 10.1021/ac400751j. PubMed DOI PMC

van Herwerden D.; O’Brien J. W.; Lege S.; Pirok B. W. J.; Thomas K. V.; Samanipour S. Cumulative Neutral Loss Model for Fragment Deconvolution in Electrospray Ionization High-Resolution Mass Spectrometry Data. Anal. Chem. 2023, 95 (33), 12247–12255. 10.1021/acs.analchem.3c00896. PubMed DOI PMC

Pejchinovski M.; Klein J.; Ramírez-Torres A.; Bitsika V.; Mermelekas G.; Vlahou A.; Mullen W.; Mischak H.; Jankowski V. Comparison of higher energy collisional dissociation and collision-induced dissociation MS/MS sequencing methods for identification of naturally occurring peptides in human urine. Proteomics Clin Appl. 2015, 9 (5–6), 531–542. 10.1002/prca.201400163. PubMed DOI

Peters-Clarke T.; Coon J.; Riley N.. Instrumentation at the Leading Edge of Proteomics; American Chemical Society (ACS), 2023. PubMed

Chen X.; Wang Z.; Wong Y.-L. E.; Wu R.; Zhang F.; Chan T.-W. D. Electron-ion reaction-based dissociation: A powerful ion activation method for the elucidation of natural product structures. Mass Spectrom. Rev. 2018, 37 (6), 793–810. 10.1002/mas.21563. PubMed DOI

Brodbelt J. S.; Morrison L. J.; Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev. 2020, 120 (7), 3328–3380. 10.1021/acs.chemrev.9b00440. PubMed DOI PMC

Baba T.; Campbell J. L.; Le Blanc J. C. Y.; Baker P. R. S. In-depth sphingomyelin characterization using electron impact excitation of ions from organics and mass spectrometry[S]. J. Lipid Res. 2016, 57 (5), 858–867. 10.1194/jlr.M067199. PubMed DOI PMC

Kong F.; Keshet U.; Shen T.; Rodriguez E.; Fiehn O. LibGen: Generating High Quality Spectral Libraries of Natural Products for EAD-, UVPD-, and HCD-High Resolution Mass Spectrometers. Anal. Chem. 2023, 95 (46), 16810–16818. 10.1021/acs.analchem.3c02263. PubMed DOI PMC

Wang J.; Chow W.; Wong J. W.; Chang J. Applications of nDATA for screening, quantitation, and identification of pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap all ion fragmentation and data independent acquisition. J. Mass Spectrom 2021, 56 (9), e478310.1002/jms.4783. PubMed DOI

Wang J.; Chow W.; Wong J. W.; Leung D.; Chang J.; Li M. Non-target data acquisition for target analysis (nDATA) of 845 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Anal Bioanal Chem. 2019, 411 (7), 1421–1431. 10.1007/s00216-019-01581-z. PubMed DOI

Wong; Wang J. W.; Chang J.; Chow J. S.; Carlson W.; Rajski R.; Fernández-Alba A. R.; Self R.; Cooke W. K.; Lock C. M.; et al. Multilaboratory Collaborative Study of a Nontarget Data Acquisition for Target Analysis (nDATA) Workflow Using Liquid Chromatography-High-Resolution Accurate Mass Spectrometry for Pesticide Screening in Fruits and Vegetables. J. Agric. Food Chem. 2021, 69 (44), 13200–13216. 10.1021/acs.jafc.1c04437. PubMed DOI

Wong J. W.; Wang J.; Chow W.; Carlson R.; Jia Z.; Zhang K.; Hayward D. G.; Chang J. S. Perspectives on Liquid Chromatography-High-Resolution Mass Spectrometry for Pesticide Screening in Foods. J. Agric. Food Chem. 2018, 66 (37), 9573–9581. 10.1021/acs.jafc.8b03468. PubMed DOI

Manjarrés D. P.; Montemurro N.; Pérez S. Development of a USE/d-SPE and targeted DIA-Orbitrap-MS acquisition methodology for the analysis of wastewater-derived organic pollutants in fish tissues and body fluids. MethodsX 2022, 9, 10170510.1016/j.mex.2022.101705. PubMed DOI PMC

Hollender J.; Schymanski E. L.; Ahrens L.; Alygizakis N.; Béen F.; Bijlsma L.; Brunner A. M.; Celma A.; Fildier A.; Fu Q.; et al. NORMAN guidance on suspect and non-target screening in environmental monitoring. Environmental Sciences Europe 2023, 35 (1), 75.10.1186/s12302-023-00779-4. DOI

Uppal K.; Walker D. I.; Liu K.; Li S.; Go Y.-M.; Jones D. P. Computational Metabolomics: A Framework for the Million Metabolome. Chem. Res. Toxicol. 2016, 29 (12), 1956–1975. 10.1021/acs.chemrestox.6b00179. PubMed DOI PMC

Liu X.; Locasale J. W. Metabolomics: A Primer. Trends Biochem. Sci. 2017, 42 (4), 274–284. 10.1016/j.tibs.2017.01.004. PubMed DOI PMC

Thompson J. W.; Adams K. J.; Adamski J.; Asad Y.; Borts D.; Bowden J. A.; Byram G.; Dang V.; Dunn W. B.; Fernandez F.; et al. International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis. Anal. Chem. 2019, 91 (22), 14407–14416. 10.1021/acs.analchem.9b02908. PubMed DOI PMC

Bowden J. A.; Heckert A.; Ulmer C. Z.; Jones C. M.; Koelmel J. P.; Abdullah L.; Ahonen L.; Alnouti Y.; Armando A. M.; Asara J. M.; et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J. Lipid Res. 2017, 58 (12), 2275–2288. 10.1194/jlr.M079012. PubMed DOI PMC

Gago-Ferrero P.; Bletsou A. A.; Damalas D. E.; Aalizadeh R.; Alygizakis N. A.; Singer H. P.; Hollender J.; Thomaidis N. S. Wide-scope target screening of > 2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard Mater. 2020, 387, 12171210.1016/j.jhazmat.2019.121712. PubMed DOI

Ulrich E. M.; Sobus J. R.; Grulke C. M.; Richard A. M.; Newton S. R.; Strynar M. J.; Mansouri K.; Williams A. J. EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal. Bioanal. Chem. 2019, 411 (4), 853–866. 10.1007/s00216-018-1435-6. PubMed DOI PMC

Place B. J.; Ulrich E. M.; Challis J. K.; Chao A.; Du B.; Favela K.; Feng Y.-L.; Fisher C. M.; Gardinali P.; Hood A.; et al. An Introduction to the Benchmarking and Publications for Non-Targeted Analysis Working Group. Anal. Chem. 2021, 93 (49), 16289–16296. 10.1021/acs.analchem.1c02660. PubMed DOI PMC

Peter K. T.; Phillips A. L.; Knolhoff A. M.; Gardinali P. R.; Manzano C. A.; Miller K. E.; Pristner M.; Sabourin L.; Sumarah M. W.; Warth B.; et al. Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal. Chem. 2021, 93 (41), 13870–13879. 10.1021/acs.analchem.1c02621. PubMed DOI PMC

Mohammed Taha H.; Aalizadeh R.; Alygizakis N.; Antignac J.-P.; Arp H. P. H.; Bade R.; Baker N.; Belova L.; Bijlsma L.; Bolton E. E.; et al. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. Environmental Sciences Europe 2022, 34 (1), 104.10.1186/s12302-022-00680-6. PubMed DOI PMC

Shi C.; Yang J.; You Z.; Zhang Z.; Fang M. Suspect screening analysis by tandem mass spectra from metabolomics to exposomics. TrAC Trends in Analytical Chemistry 2024, 175, 11769910.1016/j.trac.2024.117699. DOI

Mistrik R.mzCLOUD: A spectral tree library for the Identification of “unknown unknowns”, 2018; Vol. 255.

Wang J.; P D. A.; Mistrik R.; Huang Y.; Araujo G. D.. A platform to identify endogenous metabolites using a novel high performance orbitrap MS and the mzCloud library, 2013. https://apps.thermoscientific.com/media/cmd/ASMS-TNG-Roadshow/TNG/resouces/870_PN_ASMS13_MP%20045_JWang.pdf.

Helmus R.; ter Laak T. L.; van Wezel A. P.; de Voogt P.; Schymanski E. L. patRoon: open source software platform for environmental mass spectrometry based non-target screening. Journal of Cheminformatics 2021, 13 (1), 1.10.1186/s13321-020-00477-w. PubMed DOI PMC

Ruttkies C.; Schymanski E. L.; Wolf S.; Hollender J.; Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics 2016, 8 (1), 3.10.1186/s13321-016-0115-9. PubMed DOI PMC

Talavera Andújar B.; Aurich D.; Aho V. T. E.; Singh R. R.; Cheng T.; Zaslavsky L.; Bolton E. E.; Mollenhauer B.; Wilmes P.; Schymanski E. L. Studying the Parkinson’s disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study. Anal. Bioanal. Chem. 2022, 414 (25), 7399–7419. 10.1007/s00216-022-04207-z. PubMed DOI PMC

Cajka T.; Fiehn O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88 (1), 524–545. 10.1021/acs.analchem.5b04491. PubMed DOI

Comte B.; Monnerie S.; Brandolini-Bunlon M.; Canlet C.; Castelli F.; Chu-Van E.; Colsch B.; Fenaille F.; Joly C.; Jourdan F.; et al. Multiplatform metabolomics for an integrative exploration of metabolic syndrome in older men. eBioMedicine 2021, 69, 10344010.1016/j.ebiom.2021.103440. PubMed DOI PMC

Jia S.; Xu T.; Huan T.; Chong M.; Liu M.; Fang W.; Fang M. Chemical Isotope Labeling Exposome (CIL-EXPOSOME): One High-Throughput Platform for Human Urinary Global Exposome Characterization. Environ. Sci. Technol. 2019, 53 (9), 5445–5453. 10.1021/acs.est.9b00285. PubMed DOI

James E. I.; Murphree T. A.; Vorauer C.; Engen J. R.; Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem. Rev. 2022, 122 (8), 7562–7623. 10.1021/acs.chemrev.1c00279. PubMed DOI PMC

Amer B.; Deshpande R. R.; Bird S. S. Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023, 13 (5), 648.10.3390/metabo13050648. PubMed DOI PMC

McCord J. P.; Groff L. C.; Sobus J. R. Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environ. Int. 2022, 158, 10701110.1016/j.envint.2021.107011. PubMed DOI PMC

Rager J. E.; Strynar M. J.; Liang S.; McMahen R. L.; Richard A. M.; Grulke C. M.; Wambaugh J. F.; Isaacs K. K.; Judson R.; Williams A. J.; et al. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring. Environ. Int. 2016, 88, 269–280. 10.1016/j.envint.2015.12.008. PubMed DOI

Newton S. R.; McMahen R. L.; Sobus J. R.; Mansouri K.; Williams A. J.; McEachran A. D.; Strynar M. J. Suspect screening and non-targeted analysis of drinking water using point-of-use filters. Environ. Pollut. 2018, 234, 297–306. 10.1016/j.envpol.2017.11.033. PubMed DOI PMC

Guo J.; Yu H.; Xing S.; Huan T. Addressing big data challenges in mass spectrometry-based metabolomics. Chem. Commun. 2022, 58 (72), 9979–9990. 10.1039/D2CC03598G. PubMed DOI

Yu H.; Huan T. Patterned Signal Ratio Biases in Mass Spectrometry-Based Quantitative Metabolomics. Anal. Chem. 2021, 93 (4), 2254–2262. 10.1021/acs.analchem.0c04113. PubMed DOI

Yu H.; Xing S.; Nierves L.; Lange P. F.; Huan T. Fold-Change Compression: An Unexplored But Correctable Quantitative Bias Caused by Nonlinear Electrospray Ionization Responses in Untargeted Metabolomics. Anal. Chem. 2020, 92 (10), 7011–7019. 10.1021/acs.analchem.0c00246. PubMed DOI

Liang Y.-Z.; Kvalheim O. M.; Manne R. White, grey and black multicomponent systems: A classification of mixture problems and methods for their quantitative analysis. Chemometrics and Intelligent Laboratory Systems 1993, 18 (3), 235–250. 10.1016/0169-7439(93)85001-W. DOI

He Y.; Brademan D. R.; Hutchins P. D.; Overmyer K. A.; Coon J. J. Maximizing MS/MS Acquisition for Lipidomics Using Capillary Separation and Orbitrap Tribrid Mass Spectrometer. Anal. Chem. 2022, 94 (7), 3394–3399. 10.1021/acs.analchem.1c05552. PubMed DOI PMC

Karasawa K.; Duchoslav E.; Baba T. Fast Electron Detachment Dissociation of Oligonucleotides in Electron-Nitrogen Plasma Stored in Magneto Radio-Frequency Ion Traps. Anal. Chem. 2022, 94 (44), 15510–15517. 10.1021/acs.analchem.2c04027. PubMed DOI

Di Poto C.; Tian X.; Peng X.; Heyman H. M.; Szesny M.; Hess S.; Cazares L. H. Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32 (8), 2072–2080. 10.1021/jasms.0c00467. PubMed DOI

Wang Z.; Mülleder M.; Batruch I.; Chelur A.; Textoris-Taube K.; Schwecke T.; Hartl J.; Causon J.; Castro-Perez J.; Demichev V.; et al. High-throughput proteomics of nanogram-scale samples with Zeno SWATH MS. eLife 2022, 11, e8394710.7554/eLife.83947. PubMed DOI PMC

Hernandes V. V.; Warth B. Uniting targeted (Zeno MRM-HR) and untargeted (SWATH) LC-MS in a single run for sensitive high-resolution exposomics. ChemRxiv 2024, 10.26434/chemrxiv-2024-s6sw6. DOI

Wolf C.; Behrens A.; Brungs C.; Mende E. D.; Lenz M.; Piechutta P. C.; Roblick C.; Karst U. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry - Tattoo pigment identification supported by trapped ion mobility spectrometry. Anal. Chim. Acta 2023, 1242, 34079610.1016/j.aca.2023.340796. PubMed DOI

Gago-Ferrero P.; Schymanski E. L.; Bletsou A. A.; Aalizadeh R.; Hollender J.; Thomaidis N. S. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environ. Sci. Technol. 2015, 49 (20), 12333–12341. 10.1021/acs.est.5b03454. PubMed DOI

Meijer J.; Lamoree M.; Hamers T.; Antignac J.-P.; Hutinet S.; Debrauwer L.; Covaci A.; Huber C.; Krauss M.; Walker D. I.; et al. An annotation database for chemicals of emerging concern in exposome research. Environ. Int. 2021, 152, 10651110.1016/j.envint.2021.106511. PubMed DOI

Sauvé S.; Desrosiers M. A review of what is an emerging contaminant. Chemistry Central Journal 2014, 8 (1), 15.10.1186/1752-153X-8-15. PubMed DOI PMC

Liu Y.; D’Agostino L. A.; Qu G.; Jiang G.; Martin J. W. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends in Analytical Chemistry 2019, 121, 11542010.1016/j.trac.2019.02.021. DOI

Hsu J. Y.; Shih C. L.; Liao P. C. Exposure Marker Discovery of Phthalates Using Mass Spectrometry. Mass Spectrom. 2017, 6, S0062.10.5702/massspectrometry.S0062. PubMed DOI PMC

Singer H. P.; Wössner A. E.; McArdell C. S.; Fenner K. Rapid Screening for Exposure to “Non-Target” Pharmaceuticals from Wastewater Effluents by Combining HRMS-Based Suspect Screening and Exposure Modeling. Environ. Sci. Technol. 2016, 50 (13), 6698–6707. 10.1021/acs.est.5b03332. PubMed DOI

Lai A.; Clark A. M.; Escher B. I.; Fernandez M.; McEwen L. R.; Tian Z.; Wang Z.; Schymanski E. L. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). Environ. Sci. Technol. 2022, 56 (12), 7448–7466. 10.1021/acs.est.2c00321. PubMed DOI PMC

Vega-Herrera A.; Llorca M.; Savva K.; León V. M.; Abad E.; Farré M. Screening and Quantification of Micro(Nano)Plastics and Plastic Additives in the Seawater of Mar Menor Lagoon. Front. Marine Sci. 2021, 10.3389/fmars.2021.697424. DOI

Muschket M.; Di Paolo C.; Tindall A. J.; Touak G.; Phan A.; Krauss M.; Kirchner K.; Seiler T.-B.; Hollert H.; Brack W. Identification of Unknown Antiandrogenic Compounds in Surface Waters by Effect-Directed Analysis (EDA) Using a Parallel Fractionation Approach. Environ. Sci. Technol. 2018, 52 (1), 288–297. 10.1021/acs.est.7b04994. PubMed DOI

Zhao H. N.; Hu X.; Tian Z.; Gonzalez M.; Rideout C. A.; Peter K. T.; Dodd M. C.; Kolodziej E. P. Transformation Products of Tire Rubber Antioxidant 6PPD in Heterogeneous Gas-Phase Ozonation: Identification and Environmental Occurrence. Environ. Sci. Technol. 2023, 57 (14), 5621–5632. 10.1021/acs.est.2c08690. PubMed DOI

Hu X.; Zhao H. N.; Tian Z.; Peter K. T.; Dodd M. C.; Kolodziej E. P. Chemical characteristics, leaching, and stability of the ubiquitous tire rubber-derived toxicant 6PPD-quinone. Environ. Sci. Process Impacts 2023, 25 (5), 901–911. 10.1039/D3EM00047H. PubMed DOI

Arp H. P. H.; Aurich D.; Schymanski E. L.; Sims K.; Hale S. E. Avoiding the Next Silent Spring: Our Chemical Past, Present, and Future. Environ. Sci. Technol. 2023, 57 (16), 6355–6359. 10.1021/acs.est.3c01735. PubMed DOI PMC

Safe and Sustainable by Design Chemicals and Materials—A European Assessment Framework; Publications Office of the European Union, 2022. 10.2777/86120. DOI

Rogers L.; Jensen K. F. Continuous manufacturing – the Green Chemistry promise?. Green Chem. 2019, 21 (13), 3481–3498. 10.1039/C9GC00773C. DOI

Zhu B.; Wang D.; Wei N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 2022, 40 (1), 22–37. 10.1016/j.tibtech.2021.02.008. PubMed DOI

Mulvihill M. J.; Beach E. S.; Zimmerman J. B.; Anastas P. T. Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. Annual Review of Environment and Resources 2011, 36 (1), 271–293. 10.1146/annurev-environ-032009-095500. DOI

Meadows D. H.; Wright D.. Thinking in Systems: A Primer; Chelsea Green Publishing, 2008.

McAlister M. M.; Zhang Q.; Annis J.; Schweitzer R. W.; Guidotti S.; Mihelcic J. R. Systems Thinking for Effective Interventions in Global Environmental Health. Environ. Sci. Technol. 2022, 56 (2), 732–738. 10.1021/acs.est.1c04110. PubMed DOI PMC

Wang Z.; DeWitt J. C.; Higgins C. P.; Cousins I. T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?. Environ. Sci. Technol. 2017, 51 (5), 2508–2518. 10.1021/acs.est.6b04806. PubMed DOI

Casey J. S.; Jackson S. R.; Ryan J.; Newton S. R. The use of gas chromatography – high resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances. Journal of Chromatography A 2023, 1693, 46388410.1016/j.chroma.2023.463884. PubMed DOI PMC

Koelmel J. P.; Lin E. Z.; DeLay K.; Williams A. J.; Zhou Y.; Bornman R.; Obida M.; Chevrier J.; Godri Pollitt K. J. Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. Environ. Sci. Technol. 2022, 56 (4), 2191–2203. 10.1021/acs.est.1c06481. PubMed DOI

Akoueson F.; Chbib C.; Brémard A.; Monchy S.; Paul-Pont I.; Doyen P.; Dehaut A.; Duflos G. Identification of plastic additives: Py/TD-GC-HRMS method development and application on food containers. Journal of Analytical and Applied Pyrolysis 2022, 168, 10574510.1016/j.jaap.2022.105745. DOI

Hankett J. M.; Holtz J. L.; Walker-Franklin I.; Shaffer K.; Jourdan J.; Batiste D. C.; Garcia J. M.; Kaczan C.; Wohlleben W.; Ferguson L. Matrix Matters: novel insights for the extraction, preparation, and quantitation of microplastics in a freshwater mesocosm study. Microplastics and Nanoplastics 2023, 3 (1), 13.10.1186/s43591-023-00062-6. DOI

Fischer M.; Scholz-Böttcher B. M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017, 51 (9), 5052–5060. 10.1021/acs.est.6b06362. PubMed DOI

Zheng T.; Kelsey K.; Zhu C.; Pennell K. D.; Yao Q.; Manz K. E.; Zheng Y. F.; Braun J. M.; Liu Y.; Papandonatos G.; et al. Adverse birth outcomes related to concentrations of per- and polyfluoroalkyl substances (PFAS) in maternal blood collected from pregnant women in 1960–1966. Environ. Res. 2024, 241, 11701010.1016/j.envres.2023.117010. PubMed DOI

Panagopoulos Abrahamsson D.; Wang A.; Jiang T.; Wang M.; Siddharth A.; Morello-Frosch R.; Park J.-S.; Sirota M.; Woodruff T. J. A Comprehensive Non-targeted Analysis Study of the Prenatal Exposome. Environ. Sci. Technol. 2021, 55 (15), 10542–10557. 10.1021/acs.est.1c01010. PubMed DOI PMC

Warembourg C.; Anguita-Ruiz A.; Siroux V.; Slama R.; Vrijheid M.; Richiardi L.; Basagaña X. Statistical Approaches to Study Exposome-Health Associations in the Context of Repeated Exposure Data: A Simulation Study. Environ. Sci. Technol. 2023, 57 (43), 16232–16243. 10.1021/acs.est.3c04805. PubMed DOI PMC

Gibson E. A.; Goldsmith J.; Kioumourtzoglou M.-A. Complex Mixtures, Complex Analyses: an Emphasis on Interpretable Results. Current Environmental Health Reports 2019, 6 (2), 53–61. 10.1007/s40572-019-00229-5. PubMed DOI PMC

Avery C. L.; Howard A. G.; Ballou A. F.; Buchanan V. L.; Collins J. M.; Downie C. G.; Engel S. M.; Graff M.; Highland H. M.; Lee M. P.; et al. Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods. Environ. Health Persp. 2022, 130 (5), 05500110.1289/EHP9098. PubMed DOI PMC

Du X.; Dastmalchi F.; Ye H.; Garrett T. J.; Diller M. A.; Liu M.; Hogan W. R.; Brochhausen M.; Lemas D. J. Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software. Metabolomics 2023, 19 (2), 11.10.1007/s11306-023-01974-3. PubMed DOI

Siuzdak G.Activity Metabolomics and Mass Spectrometry; MCC Press: San Diego, USA, 2024. 10.63025/LCUW3037. DOI

Mahieu N. G.; Patti G. J. Systems-Level Annotation of a Metabolomics Data Set Reduces 25 000 Features to Fewer than 1000 Unique Metabolites. Anal. Chem. 2017, 89 (19), 10397–10406. 10.1021/acs.analchem.7b02380. PubMed DOI PMC

Smith C. A.; Want E. J.; O’Maille G.; Abagyan R.; Siuzdak G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78 (3), 779–787. 10.1021/ac051437y. PubMed DOI

Tsugawa H.; Cajka T.; Kind T.; Ma Y.; Higgins B.; Ikeda K.; Kanazawa M.; VanderGheynst J.; Fiehn O.; Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12 (6), 523–526. 10.1038/nmeth.3393. PubMed DOI PMC

Schmid R.; Heuckeroth S.; Korf A.; Smirnov A.; Myers O.; Dyrlund T. S.; Bushuiev R.; Murray K. J.; Hoffmann N.; Lu M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41 (4), 447–449. 10.1038/s41587-023-01690-2. PubMed DOI PMC

Yu T.; Park Y.; Johnson J. M.; Jones D. P. apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics 2009, 25 (15), 1930–1936. 10.1093/bioinformatics/btp291. PubMed DOI PMC

Misra B. B. New software tools, databases, and resources in metabolomics: updates from 2020. Metabolomics 2021, 17 (5), 49.10.1007/s11306-021-01796-1. PubMed DOI PMC

Renner G.; Reuschenbach M. Critical review on data processing algorithms in non-target screening: challenges and opportunities to improve result comparability. Anal. Bioanal. Chem. 2023, 415 (18), 4111–4123. 10.1007/s00216-023-04776-7. PubMed DOI PMC

DeFelice B. C.; Mehta S. S.; Samra S.; Čajka T.; Wancewicz B.; Fahrmann J. F.; Fiehn O. Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography–Mass Spectroscopy (LC-MS) Data Processing. Anal. Chem. 2017, 89 (6), 3250–3255. 10.1021/acs.analchem.6b04372. PubMed DOI PMC

Uppal K.; Soltow Q. A.; Strobel F. H.; Pittard W. S.; Gernert K. M.; Yu T.; Jones D. P. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinformatics 2013, 14 (1), 15.10.1186/1471-2105-14-15. PubMed DOI PMC

Delabriere A.; Warmer P.; Brennsteiner V.; Zamboni N. SLAW: A Scalable and Self-Optimizing Processing Workflow for Untargeted LC-MS. Anal. Chem. 2021, 93 (45), 15024–15032. 10.1021/acs.analchem.1c02687. PubMed DOI

Li S.; Siddiqa A.; Thapa M.; Chi Y.; Zheng S. Trackable and scalable LC-MS metabolomics data processing using asari. Nat. Commun. 2023, 14 (1), 4113.10.1038/s41467-023-39889-1. PubMed DOI PMC

Sing J. C.; Charkow J.; AlHigaylan M.; Horecka I.; Xu L.; Röst H. L. MassDash: A Web-Based Dashboard for Data-Independent Acquisition Mass Spectrometry Visualization. J. Proteome Res. 2024, 23, 2306.10.1021/acs.jproteome.4c00026. PubMed DOI

Lai Z.; Tsugawa H.; Wohlgemuth G.; Mehta S.; Mueller M.; Zheng Y.; Ogiwara A.; Meissen J.; Showalter M.; Takeuchi K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15 (1), 53–56. 10.1038/nmeth.4512. PubMed DOI PMC

Smirnov A.; Qiu Y.; Jia W.; Walker D. I.; Jones D. P.; Du X. ADAP-GC 4.0: Application of Clustering-Assisted Multivariate Curve Resolution to Spectral Deconvolution of Gas Chromatography–Mass Spectrometry Metabolomics Data. Anal. Chem. 2019, 91 (14), 9069–9077. 10.1021/acs.analchem.9b01424. PubMed DOI PMC

Aksenov A. A.; Laponogov I.; Zhang Z.; Doran S. L. F.; Belluomo I.; Veselkov D.; Bittremieux W.; Nothias L. F.; Nothias-Esposito M.; Maloney K. N.; et al. Auto-deconvolution and molecular networking of gas chromatography-mass spectrometry data. Nat. Biotechnol. 2021, 39 (2), 169–173. 10.1038/s41587-020-0700-3. PubMed DOI PMC

Lennon S.; Chaker J.; Price E. J.; Hollender J.; Huber C.; Schulze T.; Ahrens L.; Béen F.; Creusot N.; Debrauwer L.; et al. Harmonized quality assurance/quality control provisions to assess completeness and robustness of MS1 data preprocessing for LC-HRMS-based suspect screening and non-targeted analysis. TrAC Trends in Analytical Chemistry 2024, 174, 11767410.1016/j.trac.2024.117674. DOI

Yang J.; Zhao X.; Lu X.; Lin X.; Xu G. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Front Mol. Biosci 2015, 2, 4.10.3389/fmolb.2015.00004. PubMed DOI PMC

Stancliffe E.; Schwaiger-Haber M.; Sindelar M.; Murphy M. J.; Soerensen M.; Patti G. J. An Untargeted Metabolomics Workflow that Scales to Thousands of Samples for Population-Based Studies. Anal. Chem. 2022, 94 (50), 17370–17378. 10.1021/acs.analchem.2c01270. PubMed DOI PMC

Fan S.; Kind T.; Cajka T.; Hazen S. L.; Tang W. H. W.; Kaddurah-Daouk R.; Irvin M. R.; Arnett D. K.; Barupal D. K.; Fiehn O. Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data. Anal. Chem. 2019, 91 (5), 3590–3596. 10.1021/acs.analchem.8b05592. PubMed DOI PMC

Rong Z.; Tan Q.; Cao L.; Zhang L.; Deng K.; Huang Y.; Zhu Z.-J.; Li Z.; Li K. NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data. Anal. Chem. 2020, 92 (7), 5082–5090. 10.1021/acs.analchem.9b05460. PubMed DOI

Yu M.; Teitelbaum S. L.; Dolios G.; Dang L. T.; Tu P.; Wolff M. S.; Petrick L. M. Molecular Gatekeeper Discovery: Workflow for Linking Multiple Exposure Biomarkers to Metabolomics. Environ. Sci. Technol. 2022, 56 (10), 6162–6171. 10.1021/acs.est.1c04039. PubMed DOI PMC

Barupal D. K.; Mahajan P.; Fakouri-Baygi S.; Wright R. O.; Arora M.; Teitelbaum S. L. CCDB: A database for exploring inter-chemical correlations in metabolomics and exposomics datasets. Environ. Int. 2022, 164, 10724010.1016/j.envint.2022.107240. PubMed DOI PMC

Du X.; Zeisel S. H. SPECTRAL DECONVOLUTION FOR GAS CHROMATOGRAPHY MASS SPECTROMETRY-BASED METABOLOMICS: CURRENT STATUS AND FUTURE PERSPECTIVES. Computational and Structural Biotechnology Journal 2013, 4 (5), e20130101310.5936/csbj.201301013. PubMed DOI PMC

Smirnov A.; Liao Y.; Fahy E.; Subramaniam S.; Du X. ADAP-KDB: A Spectral Knowledgebase for Tracking and Prioritizing Unknown GC–MS Spectra in the NIH’s Metabolomics Data Repository. Anal. Chem. 2021, 93 (36), 12213–12220. 10.1021/acs.analchem.1c00355. PubMed DOI

Ardente A. J.; Garrett T. J.; Wells R. S.; Walsh M.; Smith C. R.; Colee J.; Hill R. C. A Targeted Metabolomics Assay to Measure Eight Purines in the Diet of Common Bottlenose Dolphins, Tursiops truncatus. J. Chromatogr. Sep. Technol. 2016, 10.4172/2157-7064.1000334. PubMed DOI PMC

Griffiths W. J.; Koal T.; Wang Y.; Kohl M.; Enot D. P.; Deigner H.-P. Targeted Metabolomics for Biomarker Discovery. Angew. Chem., Int. Ed. 2010, 49 (32), 5426–5445. 10.1002/anie.200905579. PubMed DOI

Yazd H. S.; Rubio V. Y.; Chamberlain C. A.; Yost R. A.; Garrett T. J. Metabolomic and lipidomic characterization of an X-chromosome deletion disorder in neural progenitor cells by UHPLC-HRMS. Journal of Mass Spectrometry and Advances in the Clinical Lab 2021, 20, 11–24. 10.1016/j.jmsacl.2021.05.002. PubMed DOI PMC

Koelmel J. P.; Xie H.; Price E. J.; Lin E. Z.; Manz K. E.; Stelben P.; Paige M. K.; Papazian S.; Okeme J.; Jones D. P. An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry. Exposome 2022, 10.1093/exposome/osac007. PubMed DOI PMC

Blaženović I.; Kind T.; Ji J.; Fiehn O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018, 8 (2), 31.10.3390/metabo8020031. PubMed DOI PMC

Zhang H.; Luo M.; Wang H.; Ren F.; Yin Y.; Zhu Z.-J. AllCCS2: Curation of Ion Mobility Collision Cross-Section Atlas for Small Molecules Using Comprehensive Molecular Representations. Anal. Chem. 2023, 95 (37), 13913–13921. 10.1021/acs.analchem.3c02267. PubMed DOI

Simón-Manso Y.; Lowenthal M. S.; Kilpatrick L. E.; Sampson M. L.; Telu K. H.; Rudnick P. A.; Mallard W. G.; Bearden D. W.; Schock T. B.; Tchekhovskoi D. V.; et al. Metabolite Profiling of a NIST Standard Reference Material for Human Plasma (SRM 1950): GC-MS, LC-MS, NMR, and Clinical Laboratory Analyses, Libraries, and Web-Based Resources. Anal. Chem. 2013, 85 (24), 11725–11731. 10.1021/ac402503m. PubMed DOI

Horai H.; Arita M.; Kanaya S.; Nihei Y.; Ikeda T.; Suwa K.; Ojima Y.; Tanaka K.; Tanaka S.; Aoshima K.; et al. MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry 2010, 45 (7), 703–714. 10.1002/jms.1777. PubMed DOI

Wohlgemuth G.; Mehta S. S.; Mejia R. F.; Neumann S.; Pedrosa D.; Pluskal T.; Schymanski E. L.; Willighagen E. L.; Wilson M.; Wishart D. S.; et al. SPLASH, a hashed identifier for mass spectra. Nat. Biotechnol. 2016, 34 (11), 1099–1101. 10.1038/nbt.3689. PubMed DOI PMC

Guijas C.; Montenegro-Burke J. R.; Domingo-Almenara X.; Palermo A.; Warth B.; Hermann G.; Koellensperger G.; Huan T.; Uritboonthai W.; Aisporna A. E.; et al. METLIN: A Technology Platform for Identifying Knowns and Unknowns. Anal. Chem. 2018, 90 (5), 3156–3164. 10.1021/acs.analchem.7b04424. PubMed DOI PMC

Stein S. Mass Spectral Reference Libraries: An Ever-Expanding Resource for Chemical Identification. Anal. Chem. 2012, 84 (17), 7274–7282. 10.1021/ac301205z. PubMed DOI

Kind T.; Tsugawa H.; Cajka T.; Ma Y.; Lai Z.; Mehta S. S.; Wohlgemuth G.; Barupal D. K.; Showalter M. R.; Arita M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37 (4), 513–532. 10.1002/mas.21535. PubMed DOI PMC

Papazian S.; D’Agostino L. A.; Sadiktsis I.; Froment J.; Bonnefille B.; Sdougkou K.; Xie H.; Athanassiadis I.; Budhavant K.; Dasari S.; et al. Nontarget mass spectrometry and in silico molecular characterization of air pollution from the Indian subcontinent. Communications Earth & Environment 2022, 3 (1), 35.10.1038/s43247-022-00365-1. DOI

Colby S. M.; Chang C. H.; Bade J. L.; Nunez J. R.; Blumer M. R.; Orton D. J.; Bloodsworth K. J.; Nakayasu E. S.; Smith R. D.; Ibrahim Y. M.; et al. DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data. Anal. Chem. 2022, 94 (16), 6130–6138. 10.1021/acs.analchem.1c05017. PubMed DOI PMC

Broeckling C. D.; Afsar F. A.; Neumann S.; Ben-Hur A.; Prenni J. E. RAMClust: A Novel Feature Clustering Method Enables Spectral-Matching-Based Annotation for Metabolomics Data. Anal. Chem. 2014, 86 (14), 6812–6817. 10.1021/ac501530d. PubMed DOI

Koelmel J. P.; Kummer M.; Chevallier O.; Hindle R.; Hunt K.; Camacho C. G.; Abril N.; Gill E. L.; Beecher C. W. W.; Garrett T. J.; et al. Expanding Per- and Polyfluoroalkyl Substances Coverage in Nontargeted Analysis Using Data-Independent Analysis and IonDecon. J. Am. Soc. Mass Spectrom. 2023, 34 (11), 2525–2537. 10.1021/jasms.3c00244. PubMed DOI

Koelmel J. P.; Kroeger N. M.; Gill E. L.; Ulmer C. Z.; Bowden J. A.; Patterson R. E.; Yost R. A.; Garrett T. J. Expanding Lipidome Coverage Using LC-MS/MS Data-Dependent Acquisition with Automated Exclusion List Generation. J. Am. Soc. Mass Spectrom. 2017, 28 (5), 908–917. 10.1007/s13361-017-1608-0. PubMed DOI PMC

Yu M.; Dolios G.; Petrick L. Reproducible untargeted metabolomics workflow for exhaustive MS2 data acquisition of MS1 features. Journal of Cheminformatics 2022, 14 (1), 6.10.1186/s13321-022-00586-8. PubMed DOI PMC

Cooper B.; Yang R. An assessment of AcquireX and Compound Discoverer software 3.3 for non-targeted metabolomics. Sci. Rep. 2024, 14 (1), 4841.10.1038/s41598-024-55356-3. PubMed DOI PMC

Kováts E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41 (7), 1915–1932. 10.1002/hlca.19580410703. DOI

Li M.; Wang X. R. Peak alignment of gas chromatography–mass spectrometry data with deep learning. Journal of Chromatography A 2019, 1604, 46047610.1016/j.chroma.2019.460476. PubMed DOI

Rigano F.; Arigò A.; Oteri M.; La Tella R.; Dugo P.; Mondello L. The retention index approach in liquid chromatography: An historical review and recent advances. Journal of Chromatography A 2021, 1640, 46196310.1016/j.chroma.2021.461963. PubMed DOI

Hughey C. A.; Hendrickson C. L.; Rodgers R. P.; Marshall A. G.; Qian K. Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Anal. Chem. 2001, 73 (19), 4676–4681. 10.1021/ac010560w. PubMed DOI

Zhang X.; Di Lorenzo R. A.; Helm P. A.; Reiner E. J.; Howard P. H.; Muir D. C. G.; Sled J. G.; Jobst K. J. Compositional space: A guide for environmental chemists on the identification of persistent and bioaccumulative organics using mass spectrometry. Environ. Int. 2019, 132, 10480810.1016/j.envint.2019.05.002. PubMed DOI PMC

Kind T.; Fiehn O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 2007, 8 (1), 105.10.1186/1471-2105-8-105. PubMed DOI PMC

Aron A. T.; Gentry E. C.; McPhail K. L.; Nothias L.-F.; Nothias-Esposito M.; Bouslimani A.; Petras D.; Gauglitz J. M.; Sikora N.; Vargas F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15 (6), 1954–1991. 10.1038/s41596-020-0317-5. PubMed DOI

Koelmel J. P.; Paige M. K.; Aristizabal-Henao J. J.; Robey N. M.; Nason S. L.; Stelben P. J.; Li Y.; Kroeger N. M.; Napolitano M. P.; Savvaides T.; et al. Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition. Anal. Chem. 2020, 92 (16), 11186–11194. 10.1021/acs.analchem.0c01591. PubMed DOI PMC

Koelmel J. P.; Kroeger N. M.; Ulmer C. Z.; Bowden J. A.; Patterson R. E.; Cochran J. A.; Beecher C. W. W.; Garrett T. J.; Yost R. A. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 2017, 18 (1), 331.10.1186/s12859-017-1744-3. PubMed DOI PMC

Zhao F.; Li L.; Lin P.; Chen Y.; Xing S.; Du H.; Wang Z.; Yang J.; Huan T.; Long C.; et al. HExpPredict: In Vivo Exposure Prediction of Human Blood Exposome Using a Random Forest Model and Its Application in Chemical Risk Prioritization. Environ. Health Persp. 2023, 131 (3), 03700910.1289/EHP11305. PubMed DOI PMC

Pesyna G. M.; Venkataraghavan R.; Dayringer H. E.; McLafferty F. W. Probability based matching system using a large collection of reference mass spectra. Anal. Chem. 1976, 48 (9), 1362–1368. 10.1021/ac50003a026. DOI

McLafferty F. W.; Hertel R.; Villwock R. Probability based matching of mass spectra. Rapid identification of specific compounds in mixtures. Journal of Mass Spectrometry 1974, 9, 690–702. 10.1002/oms.1210090710. DOI

Sokolow S.; K J.; Gustafson P.. The Finnigan Library Search Program, Finnigan Application Report 2, San Jose, CA; 1978. https://littlemsandsailing.com/wp-content/uploads/2015/03/finigan-incos-app-note-fixed.pdf.

Hertz H. S.; Hites R. A.; Biemann K. Identification of mass spectra by computer-searching a file of known spectra. Anal. Chem. 1971, 43 (6), 681–691. 10.1021/ac60301a009. DOI

Stein S. E.; Scott D. R. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 1994, 5 (9), 859–866. 10.1016/1044-0305(94)87009-8. PubMed DOI

Sheldon M. T.; Mistrik R.; Croley T. R. Determination of Ion Structures in Structurally Related Compounds Using Precursor Ion Fingerprinting. J. Am. Soc. Mass Spectrom. 2009, 20 (3), 370–376. 10.1016/j.jasms.2008.10.017. PubMed DOI

de Jonge N. F.; Louwen J. J. R.; Chekmeneva E.; Camuzeaux S.; Vermeir F. J.; Jansen R. S.; Huber F.; van der Hooft J. J. J. MS2Query: reliable and scalable MS2 mass spectra-based analogue search. Nat. Commun. 2023, 14 (1), 1752.10.1038/s41467-023-37446-4. PubMed DOI PMC

Li Y.; Kind T.; Folz J.; Vaniya A.; Mehta S. S.; Fiehn O. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat. Methods 2021, 18 (12), 1524–1531. 10.1038/s41592-021-01331-z. PubMed DOI PMC

Li Y.; Fiehn O. Flash entropy search to query all mass spectral libraries in real time. Nat. Methods 2023, 20 (10), 1475–1478. 10.1038/s41592-023-02012-9. PubMed DOI PMC

Cai Y.; Zhou Z.; Zhu Z.-J. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC Trends in Analytical Chemistry 2023, 158, 11690310.1016/j.trac.2022.116903. DOI

Kind T.; Liu K.-H.; Lee D. Y.; DeFelice B.; Meissen J. K.; Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 2013, 10 (8), 755–758. 10.1038/nmeth.2551. PubMed DOI PMC

Zhou J.; Weber R. J.; Allwood J. W.; Mistrik R.; Zhu Z.; Ji Z.; Chen S.; Dunn W. B.; He S.; Viant M. R. HAMMER: automated operation of mass frontier to construct in silico mass spectral fragmentation libraries. Bioinformatics 2014, 30 (4), 581–583. 10.1093/bioinformatics/btt711. PubMed DOI PMC

Tsugawa H.; Kind T.; Nakabayashi R.; Yukihira D.; Tanaka W.; Cajka T.; Saito K.; Fiehn O.; Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88 (16), 7946–7958. 10.1021/acs.analchem.6b00770. PubMed DOI PMC

Wang F.; Liigand J.; Tian S.; Arndt D.; Greiner R.; Wishart D. S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93 (34), 11692–11700. 10.1021/acs.analchem.1c01465. PubMed DOI PMC

Duhrkop K.; Shen H.; Meusel M.; Rousu J.; Bocker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (41), 12580–12585. 10.1073/pnas.1509788112. PubMed DOI PMC

Borges R. M.; Colby S. M.; Das S.; Edison A. S.; Fiehn O.; Kind T.; Lee J.; Merrill A. T.; Merz K. M. Jr; Metz T. O.; et al. Quantum Chemistry Calculations for Metabolomics. Chem. Rev. 2021, 121 (10), 5633–5670. 10.1021/acs.chemrev.0c00901. PubMed DOI PMC

Wang S.; Kind T.; Bremer P. L.; Tantillo D. J.; Fiehn O. Quantum Chemical Prediction of Electron Ionization Mass Spectra of Trimethylsilylated Metabolites. Anal. Chem. 2022, 94 (3), 1559–1566. 10.1021/acs.analchem.1c02838. PubMed DOI PMC

Liu M.; Jiang J.; Zheng J.; Huan T.; Gao B.; Fei X.; Wang Y.; Fang M. RTP: One Effective Platform to Probe Reactive Compound Transformation Products and Its Applications for a Reactive Plasticizer BADGE. Environ. Sci. Technol. 2021, 55 (23), 16034–16043. 10.1021/acs.est.1c05262. PubMed DOI

Tian S.; Cao X.; Greiner R.; Li C.; Guo A.; Wishart D. S. CyProduct: A Software Tool for Accurately Predicting the Byproducts of Human Cytochrome P450 Metabolism. J. Chem. Inf. Model. 2021, 61 (6), 3128–3140. 10.1021/acs.jcim.1c00144. PubMed DOI PMC

Wishart D. S; Tian S.; Allen D.; Oler E.; Peters H.; Lui V. W; Gautam V.; Djoumbou-Feunang Y.; Greiner R.; Metz T. O BioTransformer 3.0—a web server for accurately predicting metabolic transformation products. Nucleic Acids Res. 2022, 50 (W1), W115–W123. 10.1093/nar/gkac313. PubMed DOI PMC

Dührkop K.; Fleischauer M.; Ludwig M.; Aksenov A. A.; Melnik A. V.; Meusel M.; Dorrestein P. C.; Rousu J.; Böcker S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16 (4), 299–302. 10.1038/s41592-019-0344-8. PubMed DOI

Tautenhahn R.; Patti G. J.; Rinehart D.; Siuzdak G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal. Chem. 2012, 84 (11), 5035–5039. 10.1021/ac300698c. PubMed DOI PMC

Uppal K.; Walker D. I.; Jones D. P. xMSannotator: An R Package for Network-Based Annotation of High-Resolution Metabolomics Data. Anal. Chem. 2017, 89 (2), 1063–1067. 10.1021/acs.analchem.6b01214. PubMed DOI PMC

Shen X.; Yan H.; Wang C.; Gao P.; Johnson C. H.; Snyder M. P. TidyMass an object-oriented reproducible analysis framework for LC–MS data. Nat. Commun. 2022, 13 (1), 4365.10.1038/s41467-022-32155-w. PubMed DOI PMC

Shen X.; Wu S.; Liang L.; Chen S.; Contrepois K.; Zhu Z.-J.; Snyder M. metID: an R package for automatable compound annotation for LC–MS-based data. Bioinformatics 2022, 38 (2), 568–569. 10.1093/bioinformatics/btab583. PubMed DOI PMC

Schymanski E. L.; Neumann S. The Critical Assessment of Small Molecule Identification (CASMI): Challenges and Solutions. Metabolites 2013, 3 (3), 517–538. 10.3390/metabo3030517. PubMed DOI PMC

McEachran A. D.; Chao A.; Al-Ghoul H.; Lowe C.; Grulke C.; Sobus J. R.; Williams A. J. Revisiting Five Years of CASMI Contests with EPA Identification Tools. Metabolites 2020, 10 (6), 260.10.3390/metabo10060260. PubMed DOI PMC

Bertrand S.; Guitton Y.; Roullier C. Successes and pitfalls in automated dereplication strategy using liquid chromatography coupled to mass spectrometry data: A CASMI 2016 experience. Phytochemistry Letters 2017, 21, 297–305. 10.1016/j.phytol.2016.12.025. DOI

Blaženović I.; Kind T.; Torbašinović H.; Obrenović S.; Mehta S. S.; Tsugawa H.; Wermuth T.; Schauer N.; Jahn M.; Biedendieck R.; et al. Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy. Journal of Cheminformatics 2017, 9 (1), 32.10.1186/s13321-017-0219-x. PubMed DOI PMC

Xing S.; Shen S.; Xu B.; Li X.; Huan T. BUDDY: molecular formula discovery via bottom-up MS/MS interrogation. Nat. Methods 2023, 20 (6), 881–890. 10.1038/s41592-023-01850-x. PubMed DOI

Hecht H.; Rojas W. Y.; Ahmad Z.; Křenek A.; Klánová J.; EJ P. Quantum chemistry based prediction of electron ionization mass spectra for environmental chemicals. ChemRxiv 2024, 10.26434/chemrxiv-2024-2ngwq-v2. DOI

Wolf S.; Schmidt S.; Müller-Hannemann M.; Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 2010, 11 (1), 148.10.1186/1471-2105-11-148. PubMed DOI PMC

Ruttkies C.; Neumann S.; Posch S. Improving MetFrag with statistical learning of fragment annotations. BMC Bioinformatics 2019, 20 (1), 376.10.1186/s12859-019-2954-7. PubMed DOI PMC

Phinney K. W.; Ballihaut G.; Bedner M.; Benford B. S.; Camara J. E.; Christopher S. J.; Davis W. C.; Dodder N. G.; Eppe G.; Lang B. E.; et al. Development of a Standard Reference Material for Metabolomics Research. Anal. Chem. 2013, 85 (24), 11732–11738. 10.1021/ac402689t. PubMed DOI PMC

Hampel D.; Shahab-Ferdows S.; Hossain M.; Islam M. M.; Ahmed T.; Allen L. H. Validation and Application of Biocrates AbsoluteIDQ(®) p180 Targeted Metabolomics Kit Using Human Milk. Nutrients 2019, 11 (8), 1733.10.3390/nu11081733. PubMed DOI PMC

Lippa K. A.; Aristizabal-Henao J. J.; Beger R. D.; Bowden J. A.; Broeckling C.; Beecher C.; Clay Davis W.; Dunn W. B.; Flores R.; Goodacre R.; et al. Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics 2022, 18 (4), 24.10.1007/s11306-021-01848-6. PubMed DOI PMC

Hoang C.; Uritboonthai W.; Hoang L.; Billings E. M.; Aisporna A.; Nia F. A.; Derks R. J. E.; Williamson J. R.; Giera M.; Siuzdak G. Tandem Mass Spectrometry across Platforms. Anal. Chem. 2024, 96 (14), 5478–5488. 10.1021/acs.analchem.3c05576. PubMed DOI PMC

Samanipour S.; Choi P.; O’Brien J. W.; Pirok B. W. J.; Reid M. J.; Thomas K. V. From Centroided to Profile Mode: Machine Learning for Prediction of Peak Width in HRMS Data. Anal. Chem. 2021, 93 (49), 16562–16570. 10.1021/acs.analchem.1c03755. PubMed DOI PMC

Wilkinson M. D.; Dumontier M.; Aalbersberg I. J.; Appleton G.; Axton M.; Baak A.; Blomberg N.; Boiten J.-W.; da Silva Santos L. B.; Bourne P. E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 2016, 3 (1), 16001810.1038/sdata.2016.18. PubMed DOI PMC

Martens L.; Chambers M.; Sturm M.; Kessner D.; Levander F.; Shofstahl J.; Tang W. H.; Römpp A.; Neumann S.; Pizarro A. D.; et al. mzML—a Community Standard for Mass Spectrometry Data*. Mol. Cell. Proteomics 2011, 10 (1), R110.00013310.1074/mcp.R110.000133. PubMed DOI PMC

Lin S. M.; Zhu L.; Winter A. Q.; Sasinowski M.; Kibbe W. A. What is mzXML good for?. Expert Review of Proteomics 2005, 2 (6), 839–845. 10.1586/14789450.2.6.839. PubMed DOI

Larralde M.; Lawson T. N.; Weber R. J. M.; Moreno P.; Haug K.; Rocca-Serra P.; Viant M. R.; Steinbeck C.; Salek R. M. mzML2ISA and nmrML2ISA: generating enriched ISA-Tab metadata files from metabolomics XML data. Bioinformatics 2017, 33 (16), 2598–2600. 10.1093/bioinformatics/btx169. PubMed DOI PMC

Hoffmann N.; Rein J.; Sachsenberg T.; Hartler J.; Haug K.; Mayer G.; Alka O.; Dayalan S.; Pearce J. T. M.; Rocca-Serra P.; et al. mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics. Anal. Chem. 2019, 91 (5), 3302–3310. 10.1021/acs.analchem.8b04310. PubMed DOI PMC

Misra B. B. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. Analytical Methods 2021, 13 (20), 2265–2282. 10.1039/D1AY00173F. PubMed DOI

Uclés S.; Lozano A.; Sosa A.; Parrilla Vázquez P.; Valverde A.; Fernández-Alba A. R. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 2017, 174, 72–81. 10.1016/j.talanta.2017.05.068. PubMed DOI

Raposo F.; Barceló D. Challenges and strategies of matrix effects using chromatography-mass spectrometry: An overview from research versus regulatory viewpoints. TrAC Trends in Analytical Chemistry 2021, 134, 11606810.1016/j.trac.2020.116068. DOI

Price E. J.; Palát J.; Coufaliková K.; Kukučka P.; Codling G.; Vitale C. M.; Koudelka Š.; Klánová J. Open, High-Resolution EI+ Spectral Library of Anthropogenic Compounds. Front. Public Health 2021, 10.3389/fpubh.2021.622558. PubMed DOI PMC

RECETOX High-resolution filtering workflow; Zenodo, 2024. 10.5281/zenodo.11212089. DOI

Kwiecien N. W.; Bailey D. J.; Rush M. J. P.; Cole J. S.; Ulbrich A.; Hebert A. S.; Westphall M. S.; Coon J. J. High-Resolution Filtering for Improved Small Molecule Identification via GC/MS. Anal. Chem. 2015, 87 (16), 8328–8335. 10.1021/acs.analchem.5b01503. PubMed DOI PMC

Maitre L.; Guimbaud J.-B.; Warembourg C.; Güil-Oumrait N.; Petrone P. M.; Chadeau-Hyam M.; Vrijheid M.; Basagaña X.; Gonzalez J. R. State-of-the-art methods for exposure-health studies: Results from the exposome data challenge event. Environ. Int. 2022, 168, 10742210.1016/j.envint.2022.107422. PubMed DOI

Tzoulaki I.; Ebbels T. M. D.; Valdes A.; Elliott P.; Ioannidis J. P. A. Design and Analysis of Metabolomics Studies in Epidemiologic Research: A Primer on -Omic Technologies. American Journal of Epidemiology 2014, 180 (2), 129–139. 10.1093/aje/kwu143. PubMed DOI

Kalia V.; Walker D. I.; Krasnodemski K. M.; Jones D. P.; Miller G. W.; Kioumourtzoglou M.-A. Unsupervised dimensionality reduction for exposome research. Current Opinion in Environmental Science & Health 2020, 15, 32–38. 10.1016/j.coesh.2020.05.001. PubMed DOI PMC

Momeni Z.; Hassanzadeh E.; Saniee Abadeh M.; Bellazzi R. A survey on single and multi omics data mining methods in cancer data classification. Journal of Biomedical Informatics 2020, 107, 10346610.1016/j.jbi.2020.103466. PubMed DOI

Bobb J. F.; Valeri L.; Claus Henn B.; Christiani D. C.; Wright R. O.; Mazumdar M.; Godleski J. J.; Coull B. A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16 (3), 493–508. 10.1093/biostatistics/kxu058. PubMed DOI PMC

Carrico C.; Gennings C.; Wheeler D. C.; Factor-Litvak P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. Journal of Agricultural, Biological, and Environmental Statistics 2015, 20 (1), 100–120. 10.1007/s13253-014-0180-3. PubMed DOI PMC

Gibson E. A.; Nunez Y.; Abuawad A.; Zota A. R.; Renzetti S.; Devick K. L.; Gennings C.; Goldsmith J.; Coull B. A.; Kioumourtzoglou M.-A. An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length. Environmental Health 2019, 18 (1), 76.10.1186/s12940-019-0515-1. PubMed DOI PMC

Sarker I. H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science 2021, 2 (6), 420.10.1007/s42979-021-00815-1. PubMed DOI PMC

Zhang J. D.; Xue C.; Kolachalama V. B.; Donald W. A. Interpretable Machine Learning on Metabolomics Data Reveals Biomarkers for Parkinson’s Disease. ACS Central Science 2023, 9 (5), 1035–1045. 10.1021/acscentsci.2c01468. PubMed DOI PMC

MacKinnon D. P.; Fairchild A. J.; Fritz M. S. Mediation Analysis. Annual Review of Psychology 2007, 58 (1), 593–614. 10.1146/annurev.psych.58.110405.085542. PubMed DOI PMC

Davies N. M.; Holmes M. V.; Smith G. D. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 2018, 362, k601.10.1136/bmj.k601. PubMed DOI PMC

Sanderson E.; Glymour M. M.; Holmes M. V.; Kang H.; Morrison J.; Munafò M. R.; Palmer T.; Schooling C. M.; Wallace C.; Zhao Q.; et al. Mendelian randomization. Nature Reviews Methods Primers 2022, 2 (1), 6.10.1038/s43586-021-00092-5. PubMed DOI PMC

Gao P.; Shen X. T.; Zhang X. Y.; Jiang C.; Zhang S.; Zhou X.; Rose S. M. S. F.; Snyder M. Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res. 2022, 32 (6), 1199–1214. 10.1101/gr.276521.121. PubMed DOI PMC

Koelmel J. P.; Stelben P.; McDonough C. A.; Dukes D. A.; Aristizabal-Henao J. J.; Nason S. L.; Li Y.; Sternberg S.; Lin E.; Beckmann M.; et al. FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Anal. Bioanal. Chem. 2022, 414 (3), 1201–1215. 10.1007/s00216-021-03392-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...