An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 ES032831
NIEHS NIH HHS - United States
PubMed
36483216
PubMed Central
PMC9719826
DOI
10.1093/exposome/osac007
PII: osac007
Knihovny.cz E-zdroje
- Klíčová slova
- annotation, chemicals, confidence scale, exposomics, gas chromatography (GC), high-resolution mass spectrometry (HRMS),
- Publikační typ
- časopisecké články MeSH
Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.
Department of Chemistry University of Florida Gainesville FL USA
Department of Environmental Health Science Yale School of Public Health New Haven CT USA
MTM Research Centre Örebro University Örebro Sweden
NILU Norwegian Institute for Air Research Framsenteret Tromsø Norway
NILU Norwegian Institute for Air Research Kjeller Norway
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic
School of Engineering Brown University Providence RI USA
School of Medicine Department of Medicine Emory University Atlanta GA USA
Zobrazit více v PubMed
Prüss-Üstün A, Wolf J, Corvalán C, Organization WH, Bos R, Neira DM. Preventing Disease through HealthyEnvironments: A Global Assessment of the Burden of Disease from Environmental Risks. World Health Organization; 2016.
Landrigan PJ, Fuller R, Acosta NJR, et al. The lancet commission on pollution and health. Lancet. 2018;391(10119):462–512. 10.1016/S0140-6736(17)32345-0 PubMed DOI
Rappaport SM. Genetic factors are not the major causes of chronic diseases. PLoS ONE. 2016;11(4):e0154387. 10.1371/journal.pone.0154387 PubMed DOI PMC
Wheelock CE, Rappaport SM. The role of gene–environment interactions in lung disease: The urgent need for the exposome. Eur Respir J. 2020;55(2):1902064. 10.1183/13993003.02064-2019 PubMed DOI
Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24–32. 10.1093/ije/dyr236 PubMed DOI
Wild CP. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847–1850. 10.1158/1055-9965.EPI-05-0456 PubMed DOI
Vermeulen R, Schymanski EL, Barabási A-L, Miller GW. The exposome and health: Where chemistry meets biology. Science. 2020;367(6476):392–396. 10.1126/science.aay3164 PubMed DOI PMC
Doherty BT, Koelmel JP, Lin EZ, Romano ME, Godri Pollitt KJ. Use of exposomic methods incorporating sensors in environmental epidemiology. Curr Environ Health Rep. 2021;8(1):34–41. 10.1007/s40572-021-00306-8 PubMed DOI
Mazur DM, Detenchuk EA, Sosnova AA, Artaev VB, Lebedev AT. GC-HRMS with complementary ionization techniques for target and non-target screening for chemical exposure: Expanding the insights of the air pollution markers in Moscow snow. Sci Total Environ. 2021;761:144506. 10.1016/j.scitotenv.2020.144506 PubMed DOI
Jensen S. The PCB story. Ambio 1972;1(4):123–131.
Stokstad E. Why were salmon dying? The answer washed off the road. Science. 2020;370(6521):1145–1145. 10.1126/science.370.6521.1145 PubMed DOI
US EPA, O. What Killed the Eagles? EPA Researchers Help Solve 25+ Year Mystery, 2021. Accessed April 7, 2022. https://www.epa.gov/sciencematters/what-killed-eagles-epa-researchers-help-solve-25-year-mystery
Koelmel JP, Ulmer CZ, Jones CM, Yost RA, Bowden JA. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):766–770. 10.1016/j.bbalip.2017.02.016 PubMed DOI PMC
Scheubert K, Hufsky F, Petras D, et al. Significance estimation for large scale metabolomics annotations by spectral matching. Nat Commun. 2017;8(1):1494. 10.1038/s41467-017-01318-5 PubMed DOI PMC
Schymanski EL, Jeon J, Gulde R, et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ Sci Technol. 2014;48(4):2097–2098. 10.1021/es5002105 PubMed DOI
von Mering C, Krause R, Snel B, et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 2002;417(6887):399–403. 10.1038/nature750 PubMed DOI
Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies—challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27(12):1897–1905. 10.1007/s13361-016-1469-y PubMed DOI PMC
Schymanski EL, Gallampois CMJ, Krauss M, et al. Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties. Anal Chem. 2012;84(7):3287–3295. 10.1021/ac203471y PubMed DOI
Zhang P, Carlsten C, Chaleckis R, et al. Defining the scope of exposome studies and research needs from a multidisciplinary perspective. Environ Sci Technol Lett. 2021;8(10):839–852. 10.1021/acs.estlett.1c00648 PubMed DOI PMC
Rostkowski P, Haglund P, Aalizadeh R, et al. The strength in numbers: Comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem. 2019;411(10):1957–1977. 10.1007/s00216-019-01615-6 PubMed DOI PMC
Travis SC, Kordas K, Aga DS. Optimized workflow for unknown screening using gas chromatography high-resolution mass spectrometry expands identification of contaminants in silicone personal passive samplers. Rapid Commun Mass Spectrom. 2021;35(8):e9048. 10.1002/rcm.9048 PubMed DOI
Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 2005;56(410):219–243. 10.1093/jxb/eri069 PubMed DOI
Barwick VJ. Sources of uncertainty in gas chromatography and high-performance liquid chromatography. J Chromatogr A. 1999;849(1):13–33. 10.1016/S0021-9673(99)00537-3 DOI
Mallett T. Mass spectral libraries—reproducibility in EI, API and tandem mass spectrometry. Wiley Analytical Science 2014. https://analyticalscience.wiley.com/do/10.1002/sepspec.21735education/full/. DOI
Stein S. Mass spectral reference libraries: An ever-expanding resource for chemical identification. Anal Chem. 2012;84(17):7274–7282. 10.1021/ac301205z PubMed DOI
Kwiecien NW, Bailey DJ, Rush MJP, et al. High-resolution filtering for improved small molecule identification via GC/MS. Anal Chem. 2015;87(16):8328–8335. 10.1021/acs.analchem.5b01503 PubMed DOI PMC
Kováts E. Gas-chromatographische charakterisierung organischer verbindungen. Teil 1: Retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. HCA. 1958;41(7):1915–1932. 10.1002/hlca.19580410703 DOI
Miwa TK, Mikolajczak KL, Earle FR, Wolbt IA. Gas chromatographic characterization of fatty acids. Identification constants for mono- and tricarboxylic methyl esters. Anal Chem. 1960;32(13):1739–1742.
Aalizadeh R, Alygizakis NA, Schymanski EL, et al. Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening. Anal Chem. 2021;93(33):11601–11611. 10.1021/acs.analchem.1c02348 PubMed DOI
Hall LM, Hall LH, Kertesz TM, et al. Development of Ecom50 and retention index models for nontargeted metabolomics: Identification of 1,3-dicyclohexylurea in human serum by HPLC/mass spectrometry. J Chem Inf Model. 2012;52(5):1222–1237. 10.1021/ci300092s PubMed DOI PMC
Peng CT. Prediction of retention indices. VI: Isothermal and temperature-programmed retention indices, methylene value, functionality constant, electronic and steric effects. J Chromatogr A. 2010;1217(23):3683–3694. 10.1016/j.chroma.2010.02.005 PubMed DOI
Stein SE, Babushok VI, Brown RL, Linstrom PJ. Estimation of Kováts retention indices using group contributions. J Chem Inf Model. 2007;47(3):975–980. 10.1021/ci600548y PubMed DOI
Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J. Retention index thresholds for compound matching in GC–MS metabolite profiling. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871(2):182–190. 10.1016/j.jchromb.2008.04.042 PubMed DOI
Zellner BD, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L. Linear retention indices in gas chromatographic analysis: A review. Flavour Fragr J. 2008;23(5):297–314. 10.1002/ffj.1887 DOI
Boegelsack N, Sandau C, McMartin DW, Withey JM, O’Sullivan G. Development of retention time indices for comprehensive multidimensional gas chromatography and application to ignitable liquid residue mapping in wildfire investigations. J Chromatogr A 2021;1635:461717.10.1016/j.chroma.2020.461717 PubMed DOI
Grőbler A. A polar retention index system for gas–liquid chromatography. J Chromatogr Sci 1972;10(2):128. 10.1093/chromsci/10.2.128 PubMed DOI
Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D1395. 10.1093/nar/gkaa971 PubMed DOI PMC
Schymanski EL, Kondić T, Neumann S, Thiessen PA, Zhang J, Bolton EE. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J Cheminform. 2021;13(1):19. 10.1186/s13321-021-00489-0 PubMed DOI PMC
Williams AJ, Grulke CM, Edwards J, et al. The CompTox chemistry dashboard: A community data resource for environmental chemistry. J Cheminform. 2017;9(1):61. 10.1186/s13321-017-0247-6 PubMed DOI PMC
McEachran AD, Sobus JR, Williams AJ. Identifying known unknowns using the US EPA’s CompTox chemistry dashboard. Anal Bioanal Chem. 2017;409(7):1729–1735. 10.1007/s00216-016-0139-z PubMed DOI
National Report on Human Exposure to Environmental Chemicals. Fourth national report on human exposure to environmental chemicals 2021. 10.15620/cdc:105345 DOI
Fujiyoshi T, Ikami T, Sato T, et al. Evaluation of the matrix effect on gas chromatography–mass spectrometry with carrier gas containing ethylene glycol as an analyte protectant. J Chromatogr A. 2016;1434:136–141. 10.1016/j.chroma.2015.12.085 PubMed DOI
Sakthiselvi T, Paramasivam M, Vasanthi D, Bhuvaneswari K. Persistence, dietary and ecological risk assessment of indoxacarb residue in/on tomato and soil using GC–MS. Food Chem. 2020;328:127134. 10.1016/j.foodchem.2020.127134 PubMed DOI
Borgsmüller N, Gloaguen Y, Opialla T, et al. WiPP: Workflow for improved peak picking for gas chromatography–mass spectrometry (GC-MS) data. Metabolites. 2019;9(9):171. 10.3390/metabo9090171 PubMed DOI PMC
Koelmel JP, Lin EZ, Guo P, et al. Exploring the external exposome using wearable passive samplers—the China BAPE Study. Environ Pollut. 2021;270:116228. 10.1016/j.envpol.2020.116228 PubMed DOI
Mahieu NG, Huang X, Chen Y-J, Patti GJ. Credentialing features: A platform to benchmark and optimize untargeted metabolomic methods. Anal Chem. 2014;86(19):9583–9589. 10.1021/ac503092d PubMed DOI PMC
Matsuo T, Tsugawa H, Miyagawa H, Fukusaki E. Integrated strategy for unknown EI–MS identification using quality control calibration curve, multivariate analysis, EI–MS spectral database, and retention index prediction. Anal Chem. 2017;89(12):6766–6773. 10.1021/acs.analchem.7b01010 PubMed DOI
Patterson RE, Kirpich AS, Koelmel JP, et al. Improved experimental data processing for UHPLC–HRMS/MS lipidomics applied to nonalcoholic fatty liver disease. Metabolomics. 2017;13(11):142. 10.1007/s11306-017-1280-1 DOI
Risum AB, Bro R. Using deep learning to evaluate peaks in chromatographic data. Talanta 2019;204:255–260. 10.1016/j.talanta.2019.05.053 PubMed DOI
Matyushin DD, Sholokhova A, Yu Karnaeva AE, Buryak AK. Various aspects of retention index usage for GC-MS library search: A statistical investigation using a diverse data set. Chemom Intell Lab Syst. 2020;202:104042. 10.1016/j.chemolab.2020.104042 DOI
Wei X, Koo I, Kim S, Zhang X. Compound identification in GC-MS by simultaneously evaluating the mass spectrum and retention index. Analyst. 2014;139(10):2507–2514. 10.1039/C3AN02171H PubMed DOI PMC
Kendrick E. A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem. 1963;35(13):2146–2154. 10.1021/ac60206a048 DOI
Lee ML, Vassilaros DL, White CM. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal Chem. 1979;51(6):768–773. 10.1021/ac50042a043 DOI
Škrbić B, Onjia A. Prediction of the lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network. J Chromatogr A. 2006;1108(2):279–284. 10.1016/j.chroma.2006.01.080 PubMed DOI
High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage