Wide-Scope Target and Suspect Screening of Antibiotics in Effluent Wastewater from Wastewater Treatment Plants in Europe

. 2023 Jan 06 ; 12 (1) : . [epub] 20230106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36671300
Odkazy

PubMed 36671300
PubMed Central PMC9854574
DOI 10.3390/antibiotics12010100
PII: antibiotics12010100
Knihovny.cz E-zdroje

The occurrence of antibiotics in the environment could result in the development of antibiotic-resistant bacteria, which could result in a public health crisis. The occurrence of 676 antibiotics and the main transformation products (TPs) was investigated in the 48 wastewater treatment plants (WWTPs) from 11 countries (Germany, Romania, Serbia, Croatia, Slovenia, Hungary, Slovakia, Czechia, Austria, Cyprus, and Greece) by target and suspect screening. Target screening involved the investigation of antibiotics with reference standards (40 antibiotics). Suspect screening covered 676 antibiotics retrieved from the NORMAN Substance Database (antibiotic list on NORMAN network). Forty-seven antibiotics were detected in effluent wastewater samples: thirty-two by target screening and fifteen additional ones by suspect screening. An ecotoxicological risk assessment was performed based on occurrence data and predicted no effect concentration (PNEC), which involved the derivation of frequency of appearance (FoA), frequency of PNEC exceedance (FoE), and extent of PNEC exceedance (EoE). Azithromycin, erythromycin, clarithromycin, ofloxacin, and ciprofloxacin were prioritized as the calculated risk score was above 1. The median of antibiotics' load to freshwater ecosystems was 0.59 g/day/WWTP. The detection of antibiotics across countries indicates the presence of antibiotics in the ecosystems of Europe, which may trigger unwanted responses from the ecosystem, including antibiotic resistance.

Zobrazit více v PubMed

Meek R.W., Vyas H., Piddock L.J. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? PLoS Biol. 2015;13:e1002266. doi: 10.1371/journal.pbio.1002266. PubMed DOI PMC

Jendrzejewska N., Karwowska E. The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Sci. Technol. 2018;77:2320–2326. doi: 10.2166/wst.2018.153. PubMed DOI

Grenni P., Ancona V., Caracciolo A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018;136:25–39. doi: 10.1016/j.microc.2017.02.006. DOI

Berendonk T.U., Manaia C.M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., Burgmann H., Sorum H., Norstrom M., Pons M.N., et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015;13:310–317. doi: 10.1038/nrmicro3439. PubMed DOI

Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015;40:277–283. PubMed PMC

Datta S., Pal N.K., Nandy A.K. The antibiotic alarm. Nature. 2013;495:141. PubMed

Rosenblatt-Farrell N. The landscape of antibiotic resistance. Environ. Health Perspect. 2009;117:A244–A250. doi: 10.1289/ehp.117-a244. PubMed DOI PMC

Read A.F., Woods R.J. Antibiotic resistance management. Evol. Med. Public Health. 2014;2014:147. doi: 10.1093/emph/eou024. PubMed DOI PMC

Spellberg B., Gilbert D.N. The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. Clin. Infect. Dis. 2014;59((Suppl. 2)):S71–S75. doi: 10.1093/cid/ciu392. PubMed DOI PMC

Mohanty D. Rational Use of Antibiotics: Time to Join the War Against Superbugs. Indian J. Surg. 2019;81:304–305. doi: 10.1007/s12262-018-1812-6. DOI

Domingues C.P.F., Rebelo J.S., Pothier J., Monteiro F., Nogueira T., Dionisio F. The Perfect Condition for the Rising of Superbugs: Person-to-Person Contact and Antibiotic Use Are the Key Factors Responsible for the Positive Correlation between Antibiotic Resistance Gene Diversity and Virulence Gene Diversity in Human Metagenomes. Antibiotics. 2021;10:605. doi: 10.3390/antibiotics10050605. PubMed DOI PMC

World Health Organization: Antibiotic Resistance. 2020. [(accessed on 15 October 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.

Paulus G.K., Hornstra L.M., Alygizakis N., Slobodnik J., Thomaidis N., Medema G. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int. J. Hyg. Environ. Health. 2019;222:635–644. doi: 10.1016/j.ijheh.2019.01.004. PubMed DOI

Chen C.X., Aris A., Yong E.L., Noor Z.Z. A review of antibiotic removal from domestic wastewater using the activated sludge process: Removal routes, kinetics and operational parameters. Environ. Sci. Pollut. Res. Int. 2022;29:4787–4802. doi: 10.1007/s11356-021-17365-x. PubMed DOI

Elsheikh A.H., Saba A.I., Panchal H., Shanmugan S., Alsaleh N.A., Ahmadein M. Artificial Intelligence for Forecasting the Prevalence of COVID-19 Pandemic: An Overview. Healthcare. 2021;9:1614. doi: 10.3390/healthcare9121614. PubMed DOI PMC

NORMAN NORMAN Suspect List Exchange—NORMAN SLE. 2021. [(accessed on 15 October 2021)]. Available online: https://www.norman-network.com/nds/SLE/

Rodriguez-Mozaz S., Vaz-Moreira I., Varela Della Giustina S., Llorca M., Barcelo D., Schubert S., Berendonk T.U., Michael-Kordatou I., Fatta-Kassinos D., Martinez J.L., et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020;140:105733. doi: 10.1016/j.envint.2020.105733. PubMed DOI

Alygizakis N.A., Besselink H., Paulus G.K., Oswald P., Hornstra L.M., Oswaldova M., Medema G., Thomaidis N.S., Behnisch P.A., Slobodnik J. Characterization of wastewater effluents in the Danube River Basin with chemical screening, in vitro bioassays and antibiotic resistant genes analysis. Environ. Int. 2019;127:420–429. doi: 10.1016/j.envint.2019.03.060. PubMed DOI

Wang K., Zhuang T., Su Z., Chi M., Wang H. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. Sci. Total Environ. 2021;788:147811. doi: 10.1016/j.scitotenv.2021.147811. PubMed DOI

Kortesmaki E., Ostman J.R., Meierjohann A., Brozinski J.M., Eklund P., Kronberg L. Occurrence of Antibiotics in Influent and Effluent from 3 Major Wastewater-Treatment Plants in Finland. Environ. Toxicol. Chem. 2020;39:1774–1789. doi: 10.1002/etc.4805. PubMed DOI

Koch D.E., Bhandari A., Closb L., Hunter R.P. Azithromycin extraction from municipal wastewater and quantitation using liquid chromatography/mass spectrometry. J. Chromatogr. A. 2005;1074:17–22. doi: 10.1016/j.chroma.2005.03.052. PubMed DOI

Walters E., McClellan K., Halden R.U. Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Res. 2010;44:6011–6020. doi: 10.1016/j.watres.2010.07.051. PubMed DOI PMC

Sadeghi M., Sadeghi R., Ghasemi B., Mardani G., Ahmadi A. Removal of Azithromycin from Aqueous Solution Using UV- Light Alone and UV Plus Persulfate (UV/Na2S2O8) Processes. Iran. J. Pharm. Res. 2018;17:54–64. PubMed PMC

Xu W., Zhang G., Li X., Zou S., Li P., Hu Z., Li J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res. 2007;41:4526–4534. doi: 10.1016/j.watres.2007.06.023. PubMed DOI

Kulkarni P., Olson N.D., Raspanti G.A., Rosenberg Goldstein R.E., Gibbs S.G., Sapkota A., Sapkota A.R. Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water. Int. J. Environ. Res. Public Health. 2017;14:668. doi: 10.3390/ijerph14060668. PubMed DOI PMC

da Silva Rodrigues D.A., da Cunha C., do Espirito Santo D.R., de Barros A.L.C., Pereira A.R., de Queiroz Silva S., da Fonseca Santiago A., de Cassia Franco Afonso R.J. Removal of cephalexin and erythromycin antibiotics, and their resistance genes, by microalgae-bacteria consortium from wastewater treatment plant secondary effluents. Environ. Sci. Pollut. Res. Int. 2021;28:67822–67832. doi: 10.1007/s11356-021-15351-x. PubMed DOI

Gnida A., Felis E., Ziembinska-Buczynska A., Luczkiewicz A., Surmacz-Gorska J., Olanczuk-Neyman K. Evidence of mutations conferring resistance to clarithromycin in wastewater and activated sludge. 3 Biotech. 2020;10:7. doi: 10.1007/s13205-019-1989-9. PubMed DOI PMC

Basturk I., Varank G., Murat-Hocaoglu S., Yazici-Guvenc S., Can-Güven E., Oktem-Olgun E.E., Canli O. Simultaneous degradation of cephalexin, ciprofloxacin, and clarithromycin from medical laboratory wastewater by electro-Fenton process. J. Environ. Chem. Eng. 2021;9:104666. doi: 10.1016/j.jece.2020.104666. DOI

Kummerer K., al-Ahmad A., Mersch-Sundermann V. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere. 2000;40:701–710. doi: 10.1016/S0045-6535(99)00439-7. PubMed DOI

Brown K.D., Kulis J., Thomson B., Chapman T.H., Mawhinney D.B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006;366:772–783. doi: 10.1016/j.scitotenv.2005.10.007. PubMed DOI

Jones-Lepp T.L., Stevens R. Pharmaceuticals and personal care products in biosolids/sewage sludge: The interface between analytical chemistry and regulation. Anal. Bioanal. Chem. 2007;387:1173–1183. doi: 10.1007/s00216-006-0942-z. PubMed DOI

Jelić A., Gros M., Petrović M., Ginebreda A., Barceló D. Occurrence and Elimination of Pharmaceuticals During Conventional Wastewater Treatment. In: Guasch H., Ginebreda A., Geiszinger A., editors. Emerging and Priority Pollutants in Rivers. Springer; Berlin/Heidelberg, Germany: 2012. pp. 1–23.

Yu R., Wu Z. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Microporous Mesoporous Mater. 2020;308:110494. doi: 10.1016/j.micromeso.2020.110494. DOI

Rodrigues-Silva C., Porto R., dos Santos S., Schneider J., Rath S. Fluoroquinolones in Hospital Wastewater: Analytical Method, Occurrence, Treatment with Ozone and Residual Antimicrobial Activity Evaluation. J. Braz. Chem. Soc. 2019;30:1447–1458. doi: 10.21577/0103-5053.20190040. DOI

Minato Y., Dawadi S., Kordus S.L., Sivanandam A., Aldrich C.C., Baughn A.D. Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole. Nat. Commun. 2018;9:1003. doi: 10.1038/s41467-018-03447-x. PubMed DOI PMC

Eliopoulos G.M., Moellering R.C., Jr. Antibiotic synergism and antimicrobial combinations in clinical infections. Rev. Infect. Dis. 1982;4:282–293. doi: 10.1093/clinids/4.2.282. PubMed DOI

Xu X., Xu L., Yuan G., Wang Y., Qu Y., Zhou M. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci. Rep. 2018;8:7237. doi: 10.1038/s41598-018-25714-z. PubMed DOI PMC

Hegreness M., Shoresh N., Damian D., Hartl D., Kishony R. Accelerated evolution of resistance in multidrug environments. Proc. Natl. Acad. Sci. USA. 2008;105:13977–13981. doi: 10.1073/pnas.0805965105. PubMed DOI PMC

Pena-Miller R., Lahnemann D., Schulenburg H., Ackermann M., Beardmore R. The optimal deployment of synergistic antibiotics: A control-theoretic approach. J. R. Soc. Interface. 2012;9:2488–2502. doi: 10.1098/rsif.2012.0279. PubMed DOI PMC

Chait R., Craney A., Kishony R. Antibiotic interactions that select against resistance. Nature. 2007;446:668–671. doi: 10.1038/nature05685. PubMed DOI

Uluseker C., Kaster K.M., Thorsen K., Basiry D., Shobana S., Jain M., Kumar G., Kommedal R., Pala-Ozkok I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021;12:717809. doi: 10.3389/fmicb.2021.717809. PubMed DOI PMC

Agerstrand M., Berg C., Bjorlenius B., Breitholtz M., Brunstrom B., Fick J., Gunnarsson L., Larsson D.G., Sumpter J.P., Tysklind M., et al. Improving environmental risk assessment of human pharmaceuticals. Environ. Sci. Technol. 2015;49:5336–5345. doi: 10.1021/acs.est.5b00302. PubMed DOI

Bengtsson-Palme J., Larsson D.G. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016;86:140–149. doi: 10.1016/j.envint.2015.10.015. PubMed DOI

Link M., von der Ohe P.C., Voss K., Schafer R.B. Comparison of dilution factors for German wastewater treatment plant effluents in receiving streams to the fixed dilution factor from chemical risk assessment. Sci. Total Environ. 2017;598:805–813. doi: 10.1016/j.scitotenv.2017.04.180. PubMed DOI

Freeling F., Alygizakis N.A., von der Ohe P.C., Slobodnik J., Oswald P., Aalizadeh R., Cirka L., Thomaidis N.S., Scheurer M. Occurrence and potential environmental risk of surfactants and their transformation products discharged by wastewater treatment plants. Sci. Total Environ. 2019;681:475–487. doi: 10.1016/j.scitotenv.2019.04.445. PubMed DOI

Thomaidis N.S., Gago-Ferrero P., Ort C., Maragou N.C., Alygizakis N.A., Borova V.L., Dasenaki M.E. Reflection of Socioeconomic Changes in Wastewater: Licit and Illicit Drug Use Patterns. Environ. Sci. Technol. 2016;50:10065–10072. doi: 10.1021/acs.est.6b02417. PubMed DOI

Schymanski E.L., Jeon J., Gulde R., Fenner K., Ruff M., Singer H.P., Hollender J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI

Mohammed Taha H., Aalizadeh R., Alygizakis N., Antignac J.P., Arp H.P.H., Bade R., Baker N., Belova L., Bijlsma L., Bolton E.E., et al. The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. Environ. Sci. Eur. 2022;34:104. doi: 10.1186/s12302-022-00680-6. PubMed DOI PMC

Alygizakis N.A., Oswald P., Thomaidis N.S., Schymanski E.L., Aalizadeh R., Schulze T., Oswaldova M., Slobodnik J. NORMAN digital sample freezing platform: A European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. TrAC Trends Anal. Chem. 2019;115:129–137. doi: 10.1016/j.trac.2019.04.008. DOI

Aalizadeh R., Alygizakis N.A., Schymanski E.L., Krauss M., Schulze T., Ibanez M., McEachran A.D., Chao A., Williams A.J., Gago-Ferrero P., et al. Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening. Anal. Chem. 2021;93:11601–11611. doi: 10.1021/acs.analchem.1c02348. PubMed DOI

Djoumbou-Feunang Y., Pon A., Karu N., Zheng J., Li C., Arndt D., Gautam M., Allen F., Wishart D.S. CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification. Metabolites. 2019;9:72. doi: 10.3390/metabo9040072. PubMed DOI PMC

Alygizakis N., Galani A., Rousis N.I., Aalizadeh R., Dimopoulos M.A., Thomaidis N.S. Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. Sci. Total Environ. 2021;799:149230. doi: 10.1016/j.scitotenv.2021.149230. PubMed DOI PMC

Chen X., Reynolds C.H. Performance of Similarity Measures in 2D Fragment-Based Similarity Searching:  Comparison of Structural Descriptors and Similarity Coefficients. J. Chem. Inf. Comput. Sci. 2002;42:1407–1414. doi: 10.1021/ci025531g. PubMed DOI

von der Ohe P.C., Dulio V., Slobodnik J., De Deckere E., Kuhne R., Ebert R.U., Ginebreda A., De Cooman W., Schuurmann G., Brack W. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci. Total Environ. 2011;409:2064–2077. doi: 10.1016/j.scitotenv.2011.01.054. PubMed DOI

Dulio V., von der Ohe P.C. NORMAN Prioritisation Framework for Emerging Substances. 2013. [(accessed on 21 October 2021)]. Available online: http://www.norman-network.net/sites/default/files/norman_prioritisation_manual_15%20April2013_final_for_website.pdf.

Aalizadeh R., von der Ohe P.C., Thomaidis N.S. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by Ant Colony Optimization-Support Vector Machine QSTR models. Environ. Sci. Process Impacts. 2017;19:438–448. doi: 10.1039/C6EM00679E. PubMed DOI

Slobodnik J., Mrafkova L., Carere M., Ferrara F., Pennelli B., Schüürmann G., von der Ohe P.C. Identification of river basin specific pollutants and derivation of environmental quality standards: A case study in the Slovak Republic. TrAC Trends Anal. Chem. 2012;41:133–145. doi: 10.1016/j.trac.2012.08.008. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...