Comprehensive characterization of European house dust contaminants: Concentrations and profiles, geographical variability, and implications for chemical regulation and health risk

. 2024 Dec 20 ; 957 () : 177639. [epub] 20241202

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39626414

Grantová podpora
EPA999999 Intramural EPA - United States

This study investigated the concentration profiles and geographical variability of contaminants in house dust across Europe. A collaborative trial (CT) was organized by the NORMAN network using pooled dust and advanced chromatographic and mass spectrometric techniques combined with suspect screening and non-target screening (NTS). Over 1200 anthropogenic compounds were tentatively identified. Additionally, seventy-five individual samples were subjected to target analysis and NTS. The median concentrations of most contaminants varied <3-fold across Europe, and the contaminant profile of European dust was similar to that of North American dust, which was investigated in a previous CT. This similarity may be attributed to the use of similar consumer articles and building materials throughout the developed world. Multivariate data analysis revealed geographical trends in contaminant distribution, with north-south gradients across Europe. Geographical trends were more frequently found for compounds with rapid release (pharmaceuticals, personal care products, fragrances, pesticides, biocides) and smoke-related compounds. The concentrations of chlorinated paraffins, polycyclic aromatic hydrocarbons (PAHs), perfluorinated alkyl substances and stimulants generally increased from north to south, whereas the biocides levels decreased from north to south. Despite widespread presence of in-use contaminants in dusts, some of the highest risks come from compounds that have been restricted for decades or more. These include di(2-ethylhexyl) phthalate (DEHP), polychlorinated biphenyl (PCB) 118 and polybrominated diphenyl ethers 47, 99, and 153. DEHP remains the most abundant contaminant in European house dust, while the other compounds are classified as persistent organic pollutants (POPs). Moreover, there is a striking lack of reliable toxicity data, particularly for emerging compounds. For instance, although acceptable daily intakes (ADIs) were examined for 202 compounds, only 46 had consensus-based ADI values. The results highlight the need for proactive measures to prevent hazardous chemicals from entering the market and for careful selection of substitute chemicals, when such are needed, to avoid regrettable substitutions.

AFIN TS 86167 Augsburg Germany

Aristotle University of Thessaloniki Department of Chemistry GR 54 124 Thessaloniki Greece

Environmental Institute 97241 Koš Slovak Republic

Finnish Institute for Health and Welfare Department of Public Health FI 00271 Helsinki Finland

Flemish Institute for Technological Research 2400 Mol Belgium

Health Canada Environmental Health Science and Research Bureau 51 Sir Frederick Banting Driveway Ottawa ON K1A 0K9 Canada

IDAEA CSIC Water Environmental and Food Chemistry Unit 08034 Barcelona Spain

INEGI Institute of Science and Innovation in Mechanical and Industrial Engineering 4200 465 Porto Portugal

INERIS Parc Technologique Alata BP2 60550 Verneuil en Halatte France

INERIS Parc Technologique Alata BP2 60550 Verneuil en Halatte France; Hydrosciences Montpellier Univ Montpellier IMT Mines Ales IRD CNRS Ales 30100 France

IVL Swedish Environmental Research Institute SE 100 31 Stockholm Sweden

Memorial University of Newfoundland 45 Arctic Ave St John's Newfoundland and Labrador A1C 5S7 Canada

Nanjing University Nanjing Jiangsu Province 210023 China

National and Kapodistrian University of Athens Department of Chemistry 15771 Athens Greece

National and Kapodistrian University of Athens Department of Chemistry 15771 Athens Greece; Environmental Institute 97241 Koš Slovak Republic

NILU 2027 Kjeller Norway

NTNU Department of Chemistry 7491 Trondheim Norway; Department of Analytical Chemistry Nutrition and Food Sciences Aquatic One Health Research Center Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain

Örebro University Man Technology Environment Linköping University SE 581 83 Linköping Sweden

RECETOX Faculty of Science Masaryk University 611 37 Brno Czech Republic

The Queensland Alliance for Environmental Health Sciences The University of Queensland Woolloongabba QLD 4102 Australia

Umeå University Department of Chemistry SE 901 87 Umeå Sweden

United States Environmental Protection Agency Durham NC 27709 USA

Univ Rennes Inserm EHESP Irset UMR_S 1085 F 35000 Rennes France

University of Antwerp Toxicological Centre 2610 Wilrijk Belgium

University of Birmingham School of Geography Earth and Environmental Sciences Birmingham B15 2TT United Kingdom

University of Bordeaux CNRS Bordeaux INP EPOC UMR 5805 LPTC F 33600 Pessac France

University of Córdoba Department of Analytical Chemistry 14071 Córdoba Spain

University of Gdansk Faculty of Chemistry Wita Stwosza 63 80 308 Gdansk Poland

University of Luxembourg Luxembourg Centre for Systems Biomedicine L 4367 Belvaux Luxembourg

Zobrazit více v PubMed

Aalizadeh R, Alygizakis NA, Schymanski EL, Krauss M, Schulze T, Ibáñez M, McEachran AD, Chao A, Williams AJ, Gago-Ferrero P, Covaci A, Moschet C, Young TM, Hollender J, Slobodnik J, Thomaidis NS, 2021. Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening. Anal. Chem. 93, 11601–11611. 10.1021/acs.analchem.1c02348. PubMed DOI

Aalizadeh R, Nikolopoulou V, Alygizakis N, Slobodnik J, Thomaidis NS, 2022. A novel workflow for semi-quantification of emerging contaminants in environmental samples analyzed by LC-HRMS. Anal. Bioanal. Chem. 414, 7435–7450. 10.1007/s00216-022-04084-6. PubMed DOI

Abdallah MAE, Harrad S, Covaci A, 2008. Hexabromocyclododecanes and Tetrabromobisphenol-a in in indoor air and dust in Birmingham, UK: implications for human exposure. Environ. Sci. Technol. 42, 6855–6861. 10.1021/es801110a. PubMed DOI

Alygizakis N, Lestremau F, Gago-Ferrero P, Gil-Solsona R, Arturi K, Hollender J, Schymanski EL, Dulio V, Slobodnik J, Thomaidis NS, 2023. Towards a harmonized identification scoring system in LC-HRMS/MS based non-target screening (NTS) of emerging contaminants. TrAC Trends Anal. Chem. 159, 116944. 10.1016/j.trac.2023.116944. DOI

Ansari GAS, Kaphalia BS, Khan MF, 1995. Fatty acid conjugates of xenobiotics. Toxicol. Lett. 75, 1–17. 10.1016/0378-4274(94)03171-3. PubMed DOI

Bromham L, Skeels A, Schneemann H, Dinnage R, Hua X, 2021. There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk. Nat. Hum. Behav. 5, 878–891. 10.1038/s41562-020-01039-8. PubMed DOI

Chan AYL, Yuen ASC, Tsai DHT, Wallis CY Lau WCY, Jani YH, Hsia Y, Osborn DPJ, Hayes JF, Besag FMC, Lai ECC, Wei L, Taxis K, Wong JCK, Kenneth K. C. Man K.K.C., 2023. Gabapentinoid consumption in 65 countries and regions from 2008 to 2018: a longitudinal trend study. Nat. Commun. 14, 5005. DOI: 10.1038/s41467-023-40637-8. PubMed DOI PMC

CosIng, 2024. EU Cosmetic ingredient database. https://single-market-economy.ec.europa.eu/sectors/cosmetics/cosmetic-ingredient-database_en (assessed 25 August 2024).

Demirtepe H, Melymuk L, Diamond ML, Bajard L, Vojta S, Prokeš R, Sáňka O, Klánovà J, Palkovičovà Murínová L, Richterová D, Rašplová V, Trnovec T, 2019. Linking past uses of legacy SVOCs with today’s indoor levels and human exposure. Environ. Int. 127, 653–663. 10.1016/j.envint.2019.04.001. PubMed DOI

Dionisio KL, Phillips K, Price PS, Grulke CM, Williams A, Biryol D, Hong T, Isaacs KK, 2018. The chemical and products database, a resource for exposure-relevant data on chemicals in consumer products. Sci. Data 5, 180125. 10.1038/sdata.2018.125. PubMed DOI PMC

EASTMAN, 2024. Safety data sheet DIMLA TM 1214. https://www.eastman.com/en/products/product-detail/71103637/dimethyldodecylamine-dimla-1214 (accessed 30 April 2024).

EEB News, 2024. The great detox – largest ever ban of toxic chemicals announced by EU. https://eeb.org/the-great-detox-largest-ever-ban-of-toxic-chemicals-announced-by-eu/ (accessed 23 May 2024).

EFA, 2024. European Federation of allergy and airways diseases patients association, The THADE Report: Towards Healthy Air in Dwellings in Europe. Ed. Franchi M https://ec.europa.eu/health/ph_projects/2001/pollution/fp_pollution_2001_frep_02.pdf (assessed 23 May 2024).

EU, 2018. Commission regulation on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact. O. J. 2018/213.

European Commission, 2003. Children’s Health and Environment Program, Introduction to Risk Assessment. https://ec.europa.eu/health/ph_projects/2003/action3/docs/2003_3_09_a23_en.pdf (Accessed March 21, 2024).

Eustat, 2024. Birth rate in the EU −27 (‰ inhab). 2011–2022. https://en.eustat.eus/elementos/ele0009800/ti_birth-rate-in-the-eu-27—inhab-2011-2022/tbl0009916_i.html.

Heikes DL, Griffitt KR, 1979. Mass spectrometric identification and gas-liquid chromatographic determination of 2-chloroethyl esters of fatty acids in spices and foods. J. Assoc. Off. Anal. Chem. 62, 786–791. PubMed

Hilton DC, Jones RS, Sjodin A, 2010. A method for rapid, non-targeted screening for environmental contaminants in household dust. J. Chromatogr. A 1217, 6851–6856. 10.1016/jchroma.2010.08.039. PubMed DOI

Hollender J, Schymanski E, Ahrens L, Alygizakis N, Been F, Bijlsma L, Brunner A, Celma A, Fildier A, Fu Q, Gago-Ferrero P, Gil-Solsona R, Haglund P, Hansen M, Kaserzon S, Kruve A, Lamoree M, Margoum C, Meijer J, Merel S, Rauert C, Rostkowski P, Samanipour S, Schulze B, Schulze T, Singh R, Slobodnik J, Steininger-Mairinger T, Thomaidis N, Togola A, Vorkamp K, Vulliet E, Zhu L, Krauss M, 2023. NORMAN guidance on suspect and non-target screening in environmental monitoring. Environ. Sci. Eur. 35, 75. 10.1186/s12302-023-00779-4. DOI

Jensen KG Determination of ethylene oxide residues in processed food products by gas-liquid chromatography after derivatization, 1988. Z. Lebensm. Unters. Forsch. 187, 535 540. PubMed

Karlsson P, Nakitanda AO, Löfling L, Cesta CE, 2021. Patterns of prescription dispensation and over-the-counter medication sales in Sweden during the COVID-19 pandemic. PloS One 16(8), e0253944. DOI: 0.1371/journal.pone.0253944. PubMed PMC

Kristensen KB, Karlstad Ö, Martikainen JE, Pottegård A, Wastesson JW, Zoega H, Schmidt M, 2019. Nonaspirin nonsteroidal antiinflammatory drug use in the Nordic countries from a cardiovascular risk perspective, 2000–2016: a drug utilization study. Pharmacoteraphy 39, 150–160. 10.1002/phar.2217. PubMed DOI

Kutarna S, Tang S, Hu X, Peng H, 2021. Enhanced nontarget screening algorithm reveals highly abundant chlorinated azo dye compounds in house dust. Environ. Sci. Technol. 55, 4729–4739. 10.1021/acs.est.0c06382. PubMed DOI

Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, Neumann S, Trausinger G, Sinner F, Pieber T, Magnes C, 2015. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16, 118. 10.1186/s12859-015-0562-8. PubMed DOI PMC

Loos M, Singer H, 2017. Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data. J. Chem. 9, 12. 10.1186/s13321-017-0197-z. PubMed DOI PMC

Marklund M, Andersson B, Haglund P, 2003. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 53, 1137–1146. 10.1016/S0045-6535(03)00666-0. PubMed DOI

Mitra D, Chu Y, Cetin K, 2022. COVID-19 impacts on residential occupancy schedules and activities in U.S. homes in 2020 using ATUS. Appl. Energy 324, 119765. 10.1016/j.apenergy.2022.119765. PubMed DOI PMC

Morean B, 2009. Fragrance and Perfume in West Europe. CBS. Creative Encounters Working Paper No. 23.

Moschet C, Anumol T, Lew BM, Bennett DH, Young TH, 2018. Household dust as a repository of chemical accumulation: new insights from a comprehensive high-resolution mass spectrometric study. Environ. Sci. Technol. 52, 2878–2887. 10.1021/acs.est.7b05767. PubMed DOI PMC

Nardi I, Palladion D, 2021. How pandemic affects occupants’ buildings perception: questionnaires investigation and preliminary results. E3S Web of Conferences 312, 02011. 10.1051/e3sconf/202131202011. DOI

Papadopoulos A, Vlachogiannis D, Maggos T, Sfetsos A, Karayiannis MI, 2013. A semi-quantitative approach for analysing low-volatile organic compounds in house dust using an SFE method: Significant common features and particular differences of the extracts. J. Supercrit. Fluids 82, 268–281. 10.1016/j.supflu.2013.07.014. DOI

Parsons BA, Marney LC, Siegler WC, Hoggard JC, Wright BW, Synovec RE, 2015. Tile-based fisher ratio analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC–TOFMS) data using a null distribution approach. Anal. Chem. 87, 3812–3819. 10.1021/ac504472s. PubMed DOI

Phillips KA, John F, Wambaugh JF, Grulke CM, Dionisioc KI, Isaacsc KK, 2017. High-throughput screening of chemicals as functional substitutes using structure-based classification models. Green Chem. 19, 1063. 10.1039/c6gc02744j. PubMed DOI PMC

Pinheiro HM, Touraud E, Thomas O, 2004. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments 61, 121–139. 10.1016/j.dyepig.2003.10.009. DOI

Pinto-Vidal FA, Novák J, Jílková SR, Rusina T, Vrana B, Melymuk L, Hilscherová K, 2024. Endocrine disrupting potential of total and bioaccessible extracts of dust from seven different types of indoor environment. J. Hazard. Mater. 469, 133778. 10.1016/j.jhazmat.2024.133778. PubMed DOI

Pu S, McCord JP, Bangma J, Sobus JR, 2024. Establishing performance metrics for quantitative non-targeted analysis: a demonstration using per- and polyfluoroalkyl substances. Anal. Bioanal. Chem. 416, 1249–1267. 10.1007/s00216-023-05117-4. PubMed DOI PMC

Röhler L, Bohlin-Nizzetto P, Rostkowski P, Kallenborn R, Schlabach M, 2021. Non-target and suspect characterisation of organic contaminants in ambient air – part 1: combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography. Atmos. Chem. Phys. 21, 1697–1716. 10.5194/acp-21-1697-2021. DOI

Rostkowski P, Haglund P, Aalizadeh R, Alygizakis N, Thomaidis N, Beltran Arandes J, Bohlin Nizzetto P, Booij P, Budzinski H, Brunswick P, Covaci A, Gallampois C, Grosse S, Hindle R, Ipolyi I, Jobst K, Kaserzon S, Leonards P, Lestremau F, Letzel T, Magnér J, Matsukami H, Moschet C, Oswald P, Plassmann M, Slobodnik J, Yang C, 2019. The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal. Bioanal. Chem. 411, 1957–1977. 10.1007/s00216-019-01615-6. PubMed DOI PMC

Savvaides T, Koelmel JP, Zhou Y, Lin EZ, Stelben P, Aristizabal-Henao JJ, Bowden JA, Godri Pollitt KJ, 2021. Prevalence and implications of per- and Polyfuoroalkyl substances (PFAS) in settled dust. Curr. Environ. Health Rep. 8, 323–335. 10.1007/s40572-021-00326-4. PubMed DOI PMC

Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, Schulze T, Haglund P, Letzel T, Grosse S, Thomaidis NS, Bletsou A, Zwiener C, Ibáñez M, Portolés T, De Boer R, Reid MJ, Onghena M, Kunkel U, Schulz W, Guillon A, Noyon N, Leroy G, Bados P, Bogialli S, Stipaničev D, Rostkowski P, Hollender J, 2015. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 407, 6237–6255. DOI: 10.1007/s00216-015-8681-7. PubMed DOI

Statistica, 2024. https://www.statista.com/statistics/946326/online-healthcare-cosmetics-shopping-finland-by-age/. https://www.statista.com/statistics/946326/online-healthcare-cosmetics-shopping-finland-by-age/ (assessed May 22, 2024).

Sundahl M, Sikander E, Ek-Olausson B, Hjorthage A, Rosell L, Tornevall M, 1999. Determinations of PCB within a project to develop cleanup methods for PCB-containing elastic sealant used in outdoor joints between concrete blocks in buildings. J. Environ. Monitor. 1, 383–387. 10.1039/A902528F. PubMed DOI

Taha HM, Aalizadeh R, Alygizakis N, Antignac J-P, Arp HP, Bade R, Baker N, et al. , 2022. The NORMAN suspect list exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. Environ. Sci. Eur. 34, 104. 10.1186/s12302-022-00680-6. PubMed DOI PMC

Tautenhahn R, Böttcher C, Neumann S, 2008. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504. 10.1186/1471-2105-9-504. PubMed DOI PMC

UNEP, 2019. Global chemical outlook II – from legacies to innovative solutions. ISBN no: 978–92-807–3745-5.

US CPID, 2024. U.S. Department of Health and Human Services, household products database. https://www.whatsinproducts.com/. (Accessed 22 May 2024).

US EPA, 2011. U.S. Environmental Protection Agency (EPA). (2011) exposure factors handbook: 2011 edition. National Center for environmental assessment, Washington, DC; EPA/600/R-09/052F. Available online at https://www.nrc.gov/docs/ML1400/ML14007A666.pdf.

US EPA, 2024a. Chemical and Products Database (CPDat). Database downloaded from: https://gaftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/CPDat/CPDat2020-12-16/ (accessed 15 April 2024a).

US EPA, 2024b. Functional Use Database (FUse). Database downloaded from: https://catalog.data.gov/dataset/functional-use-database-fuse (accessed 15 April 2024b).

van den Dool H, Kratz PD, 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography.J. Chromatogr. A 11, 463–471. 10.1016/S0021-9673(01)80947-X. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...