Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
203134/Z/16/Z
Wellcome Trust - United Kingdom
104111/Z/14/Z
Wellcome Trust - United Kingdom
MR/P009018/1
Medical Research Council - United Kingdom
MR/N010558/1
Medical Research Council - United Kingdom
MR/N01037X/1
Medical Research Council - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
32354742
PubMed Central
PMC7294092
DOI
10.1074/jbc.ra120.012355
PII: S0021-9258(17)49420-8
Knihovny.cz E-zdroje
- Klíčová slova
- Trypanosoma brucei, differentiation, drug action, drug mechanisms, energy homeostasis, glycosomes, metabolomics, parasite metabolism, polypharmacology, proteomics, sleeping sickness, suramin, trypanosome,
- MeSH
- adenosintrifosfát metabolismus MeSH
- energetický metabolismus účinky léků MeSH
- flagella účinky léků metabolismus ultrastruktura MeSH
- glykolýza účinky léků MeSH
- kyselina pyrohroznová metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metabolom účinky léků MeSH
- mikrotělíska účinky léků metabolismus ultrastruktura MeSH
- mitochondrie účinky léků metabolismus ultrastruktura MeSH
- molekulární modely MeSH
- prolin metabolismus MeSH
- proteom metabolismus MeSH
- protonové ATPasy metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- suramin farmakologie MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- kyselina pyrohroznová MeSH
- prolin MeSH
- proteom MeSH
- protonové ATPasy MeSH
- protozoální proteiny MeSH
- suramin MeSH
Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
Department of Biological and Medical Sciences Oxford Brookes University Oxford United Kingdom
Department of Pathology University of Cambridge Cambridge United Kingdom
School of Life Sciences University of Dundee Dundee Scotland United Kingdom
School of Life Sciences University of Nottingham Nottingham United Kingdom
Zobrazit více v PubMed
Barrett M. P., Vincent I. M., Burchmore R. J., Kazibwe A. J., and Matovu E. (2011) Drug resistance in human African trypanosomiasis. Future Microbiol. 6, 1037–1047 10.2217/fmb.11.88 PubMed DOI
Field M. C., Horn D., Fairlamb A. H., Ferguson M. A., Gray D. W., Read K. D., De Rycker M., Torrie L. S., Wyatt P. G., Wyllie S., and Gilbert I. H. (2017) Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol. 15, 217–231 10.1038/nrmicro.2016.193 PubMed DOI PMC
Fairlamb A. H., and Horn D. (2018) Melarsoprol resistance in African trypanosomiasis. Trends Parasitol. 34, 481–492 10.1016/j.pt.2018.04.002 PubMed DOI
Giordani F., Morrison L. J., Rowan T. G., de Koning H. P., Barrett M. P. (2016) The animal trypanosomiases and their chemotherapy: a review. Parasitology 143, 1862–1889 10.1017/S0031182016001268 PubMed DOI PMC
Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., Wishart D. S., Xia J. (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 10.1093/nar/gky310 PubMed DOI PMC
Mesu V. K. B. K., Kalonji W. M., Bardonneau C., Mordt O. V., Blesson S., Simon F., Delhomme S., Bernhard S., Kuziena W., Lubaki J. F., Vuvu S. L., Ngima P. N., Mbembo H. M., Ilunga M., Bonama A. K., et al. (2018) Oral fexinidazole for late-stage African PubMed DOI
Akama T., Zhang Y. K., Freund Y. R., Berry P., Lee J., Easom E. E., Jacobs R. T., Plattner J. J., Witty M. J., Peter R., Rowan T. G., Gillingwater K., Brun R., Nare B., Mercer L., et al. (2018) Identification of a 4-fluorobenzyl l-valinate amide benzoxaborole (AN11736) as a potential development candidate for the treatment of Animal African Trypanosomiasis (AAT). Bioorg. Med. Chem. Lett. 28, 6–10 10.1016/j.bmcl.2017.11.028 PubMed DOI PMC
Zhang N., Zoltner M., Leung K. F., Scullion P., Hutchinson S., Del Pino R. C., Vincent I. M., Zhang Y. K., Freund Y. R., Alley M. R. K., Jacobs R. T., Read K. D., Barrett M. P., Horn D., and Field M. C. (2018) Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog. 14, e1006850 10.1371/journal.ppat.1006850 PubMed DOI PMC
Wall R. J., Rico E., Lukac I., Zuccotto F., Elg S., Gilbert I. H., Freund Y., Alley M. R. K., Field M. C., Wyllie S., and Horn D. (2018) Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proc. Natl. Acad. Sci. U.S.A. 115, 9616–9621 10.1073/pnas.1807915115 PubMed DOI PMC
Begolo D., Vincent I. M., Giordani F., Pöhner I., Witty M. J., Rowan T. G., Bengaly Z., Gillingwater K., Freund Y., Wade R. C., Barrett M. P., and Clayton C. (2018) The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog. 14, e1007315 10.1371/journal.ppat.1007315 PubMed DOI PMC
Sonoiki E., Ng C. L., Lee M. C., Guo D., Zhang Y. K., Zhou Y., Alley M. R., Ahyong V., Sanz L. M., Lafuente-Monasterio M. J., Dong C., Schupp P. G., Gut J., Legac J., Cooper R. A., et al. (2017) A potent antimalarial benzoxaborole targets a PubMed DOI PMC
Alsford S., Eckert S., Baker N., Glover L., Sanchez-Flores A., Leung K. F., Turner D. J., Field M. C., Berriman M., and Horn D. (2012) High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482, 232–236 10.1038/nature10771 PubMed DOI PMC
Thomas J. A., Baker N., Hutchinson S., Dominicus C., Trenaman A., Glover L., Alsford S., and Horn D. (2018) Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl. Trop. Dis. 12, e0006980 10.1371/journal.pntd.0006980 PubMed DOI PMC
Scott A. G., Tait A., and Turner C. M. (1996) Characterisation of cloned lines of PubMed DOI
Fang Y., Ye W. X., Nei H. Y., and Wang Y. L. (1994) PubMed DOI
Abebe G., Jones T. W., and Boid R. (1983) Suramin sensitivity of stocks of PubMed DOI
Wiedemar N., Graf F. E., Zwyer M., Ndomba E., Kunz Renggli C., Cal M., Schmidt R. S., Wenzler T., and Mäser P. (2018) Beyond immune escape: a variant surface glycoprotein causes suramin resistance in PubMed DOI
Wiedemar N., Zwyer M., Zoltner M., Cal M., Field M. C., and Mäser P. (2019) Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in PubMed DOI PMC
Vansterkenburg E. L., Coppens I., Wilting J., Bos O. J., Fischer M. J., Janssen L. H., and Opperdoes F. R. (1993) The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by PubMed DOI
Pal A., Hall B. S., and Field M. C. (2002) Evidence for a non-LDL-mediated entry route for the trypanocidal drug suramin in PubMed DOI
Zoltner M., Leung K. F., Alsford S., Horn D., and Field M. C. (2015) Modulation of the surface proteome through multiple ubiquitylation pathways in African trypanosomes. PLoS Pathog. 11, e1005236 10.1371/journal.ppat.1005236 PubMed DOI PMC
McCain D. F., Wu L., Nickel P., Kassack M. U., Kreimeyer A., Gagliardi A., Collins D. C., and Zhang Z. Y. (2004) Suramin derivatives as inhibitors and activators of protein-tyrosine phosphatases. J. Biol. Chem. 279, 14713–14725 10.1074/jbc.M312488200 PubMed DOI
St. Aubin C. N., Zhou J. J., and Linsdell P. (2007) Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Mol. Pharmacol. 71, 1360–1368 10.1124/mol.106.031732 PubMed DOI
Wu K., Chong R. A., Yu Q., Bai J., Spratt D. E., Ching K., Lee C., Miao H., Tappin I., Hurwitz J., Zheng N., Shaw G. S., Sun Y., Felsenfeld D. P., Sanchez R., et al. (2016) Suramin inhibits cullin-RING E3 ubiquitin ligases. Proc. Natl. Acad. Sci. U.S.A. 113, E2011–E2018 10.1073/pnas.1601089113 PubMed DOI PMC
Stein C. A., LaRocca R. V., Thomas R., McAtee N., and Myers C. E. (1989) Suramin: an anticancer drug with a unique mechanism of action. J. Clin. Oncol. 7, 499–508 10.1200/JCO.1989.7.4.499 PubMed DOI
Albulescu I. C., Kovacikova K., Tas A., Snijder E. J., and van Hemert M. J. (2017) Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res. 143, 230–236 10.1016/j.antiviral.2017.04.016 PubMed DOI
Tan C. W., Sam I. C., Chong W. L., Lee V. S., and Chan Y. F. (2017) Polysulfonate suramin inhibits Zika virus infection. Antiviral Res. 143, 186–194 10.1016/j.antiviral.2017.04.017 PubMed DOI
Naviaux R. K., Curtis B., Li K., Naviaux J. C., Bright A. T., Reiner G. E., Westerfield M., Goh S., Alaynick W. A., Wang L., Capparelli E. V., Adams C., Sun J., Jain S., He F., et al. (2017) Low-dose suramin in autism spectrum disorder: a small, phase I/II, randomized clinical trial. Ann. Clin. Transl. Neurol. 4, 491–505 10.1002/acn3.424 PubMed DOI PMC
Schuetz A., Min J., Antoshenko T., Wang C. L., Allali-Hassani A., Dong A., Loppnau P., Vedadi M., Bochkarev A., Sternglanz R., and Plotnikov A. N. (2007) Structural basis of inhibition of the human NAD PubMed DOI
Michels P. A., Bringaud F., Herman M., and Hannaert V. (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim. Biophys. Acta 1763, 1463–1477 10.1016/j.bbamcr.2006.08.019 PubMed DOI
Morgan H. P., McNae I. W., Nowicki M. W., Zhong W., Michels P. A., Auld D. S., Fothergill-Gilmore L. A., and Walkinshaw M. D. (2011) The trypanocidal drug suramin and other trypan blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site. J. Biol. Chem. 286, 31232–31240 10.1074/jbc.M110.212613 PubMed DOI PMC
Willson M., Callens M., Kuntz D. A., Perié J., and Opperdoes F. R. (1993) Synthesis and activity of inhibitors highly specific for the glycolytic enzymes from PubMed DOI
Rotureau B., Subota I., and Bastin P. (2011) Molecular bases of cytoskeleton plasticity during the PubMed DOI
Leung K. F., Riley F. S., Carrington M., and Field M. C. (2011) Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes. Eukaryot. Cell 10, 916–931 10.1128/EC.05012-11 PubMed DOI PMC
Alsford S., Field M. C., and Horn D. (2013) Receptor-mediated endocytosis for drug delivery in African trypanosomes: fulfilling Paul Ehrlich's vision of chemotherapy. Trends Parasitol. 29, 207–212 10.1016/j.pt.2013.03.004 PubMed DOI
Zoltner M., Horn D., de Koning H. P., and Field M. C. (2016) Exploiting the Achilles' heel of membrane trafficking in trypanosomes. Curr. Opin. Microbiol. 34, 97–103 10.1016/j.mib.2016.08.005 PubMed DOI PMC
Natesan S. K., Peacock L., Leung K. F., Gibson W., and Field M. C. (2010) Evidence that low endocytic activity is not directly responsible for human serum resistance in the insect form of African trypanosomes. BMC Res. Notes 3, 63 10.1186/1756-0500-3-63 PubMed DOI PMC
Schnaufer A., Clark-Walker G. D., Steinberg A. G., and Stuart K. (2005) The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 24, 4029–4040 10.1038/sj.emboj.7600862 PubMed DOI PMC
Šubrtová K., Panicucci B., and Zíková A. (2015) ATPaseTb2, a unique membrane-bound F PubMed DOI PMC
Kerkhoven E. J., Achcar F., Alibu V. P., Burchmore R. J., Gilbert I. H., Trybiło M., Driessen N. N., Gilbert D., Breitling R., Bakker B. M., and Barrett M. P. (2013) Handling uncertainty in dynamic models: the pentose phosphate pathway in PubMed DOI PMC
Wiemer E. A., Michels P. A., and Opperdoes F. R. (1995) The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of PubMed DOI PMC
Sanchez M. A. (2013) Molecular identification and characterization of an essential pyruvate transporter from PubMed DOI PMC
Vanderheyden N., Wong J., and Docampo R. (2000) A pyruvate-proton symport and an H PubMed DOI PMC
Halestrap A. P., and Meredith D. (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447, 619–628 10.1007/s00424-003-1067-2 PubMed DOI
Lamour N., Rivière L., Coustou V., Coombs G. H., Barrett M. P., and Bringaud F. (2005) Proline metabolism in procyclic PubMed DOI
Spitznagel D., Ebikeme C., Biran M., Nic a' Bháird N., Bringaud F., Henehan G. T., and Nolan D. P. (2009) Alanine aminotransferase of PubMed DOI
Bringaud F., and Baltz T. (1993) Differential regulation of two distinct families of glucose transporter genes in PubMed DOI PMC
Deramchia K., Morand P., Biran M., Millerioux Y., Mazet M., Wargnies M., Franconi J. M., and Bringaud F. (2014) Contribution of pyruvate phosphate dikinase in the maintenance of the glycosomal ATP/ADP balance in the PubMed DOI PMC
Haanstra J. R., González-Marcano E. B., Gualdrón-López M., Michels P. A. (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim. Biophys. Acta 1863, 1038–1048 10.1016/j.bbamcr.2015.09.015 PubMed DOI
Urbaniak M. D., Guther M. L., and Ferguson M. A. (2012) Comparative SILAC proteomic analysis of PubMed DOI PMC
Kovářová J., Pountain A. W., Wildridge D., Weidt S., Bringaud F., Burchmore R. J. S., Achcar F., and Barrett M. P. (2018) Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of PubMed DOI PMC
Stoffel S. A., Alibu V. P., Hubert J., Ebikeme C., Portais J. C., Bringaud F., Schweingruber M. E., and Barrett M. P. (2011) Transketolase in PubMed DOI
Mantilla B. S., Marchese L., Casas-Sánchez A., Dyer N. A., Ejeh N., Biran M., Bringaud F., Lehane M. J., Acosta-Serrano A., and Silber A. M. (2017) Proline metabolism is essential for PubMed DOI PMC
Ong H. B., Lee W. S., Patterson S., Wyllie S., and Fairlamb A. H. (2015) Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage PubMed DOI PMC
Mazet M., Morand P., Biran M., Bouyssou G., Courtois P., Daulouède S., Millerioux Y., Franconi J. M., Vincendeau P., Moreau P., and Bringaud F. (2013) Revisiting the central metabolism of the bloodstream forms of PubMed DOI PMC
Cross G. A. M., Klein R. A., and Linstead D. J. (1975) Utilization of amino acids by PubMed DOI
Rivière L., van Weelden S. W., Glass P., Vegh P., Coustou V., Biran M., van Hellemond J. J., Bringaud F., Tielens A. G., and Boshart M. (2004) Acetyl:succinate CoA-transferase in procyclic PubMed DOI
Rivière L., Moreau P., Allmann S., Hahn M., Biran M., Plazolles N., Franconi J. M., Boshart M., and Bringaud F. (2009) Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proc. Natl. Acad. Sci. U.S.A. 106, 12694–12699 10.1073/pnas.0903355106 PubMed DOI PMC
Štáfková J, Mach J., Biran M., Verner Z., Bringaud F., and Tachezy J. (2016) Mitochondrial pyruvate carrier in PubMed DOI
Colasante C., Peña Diaz P., Clayton C., and Voncken F. (2009) Mitochondrial carrier family inventory of PubMed DOI
Veitch N. J., Johnson P. C., Trivedi U., Terry S., Wildridge D., and MacLeod A. (2010) Digital gene expression analysis of two life cycle stages of the human-infective parasite, PubMed DOI PMC
Colasante C., Zheng F., Kemp C., and Voncken F. (2018) A plant-like mitochondrial carrier family protein facilitates mitochondrial transport of di- and tricarboxylates in PubMed DOI
Szöor B., Ruberto I., Burchmore R., and Matthews K. R. (2010) A novel phosphatase cascade regulates differentiation in PubMed DOI PMC
Silvester E., McWilliam K. R., and Matthews K. R. (2017) The cytological events and molecular control of life cycle development of PubMed DOI PMC
Dejung M., Subota I., Bucerius F., Dindar G., Freiwald A., Engstler M., Boshart M., Butter F., and Janzen C. J. (2016) Quantitative proteomics uncovers novel factors involved in developmental differentiation of PubMed DOI PMC
Chaudhuri M., Ott R. D., and Hill G. C. (2006) Trypanosome alternative oxidase: from molecule to function. Trends Parasitol. 22, 484–491 10.1016/j.pt.2006.08.007 PubMed DOI
Collins J. M., Klecker R. W. Jr, Yarchoan R., Lane H. C., Fauci A. S., Redfield R. R., Broder S., and Myers C. E. (1986) Clinical pharmacokinetics of suramin in patients with HTLV-III/LAV infection. J. Clin. Pharmacol. 26, 22–26 10.1002/j.1552-4604.1986.tb02897.x PubMed DOI
Croci R., Pezzullo M., Tarantino D., Milani M., Tsay S. C., Sureshbabu R., Tsai Y. J., Mastrangelo E., Rohayem J., Bolognesi M., and Hwu J. R. (2014) Structural bases of norovirus RNA dependent RNA polymerase inhibition by novel suramin-related compounds. PLoS ONE 9, e91765 10.1371/journal.pone.0091765 PubMed DOI PMC
Salvador G. H., Dreyer T. R., Cavalcante W. L., Matioli F. F., Dos Santos J. I., Velazquez-Campoy A., Gallacci M., and Fontes M. R. (2015) Structural and functional evidence for membrane docking and disruption sites on phospholipase A2-like proteins revealed by complexation with the inhibitor suramin. Acta Crystallogr. D Biol. Crystallogr. 71, 2066–2078 10.1107/S1399004715014443 PubMed DOI
Opoku-Temeng C., and Sintim H. O. (2016) Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chem. Commun. 52, 3754–3757 10.1039/C5CC10446G PubMed DOI
Zíková A., Verner Z., Nenarokova A., Michels P. A. M., and Lukeš J. (2017) A paradigm shift: the mitoproteomes of procyclic and bloodstream PubMed DOI PMC
Vickerman K. (1989) Trypanosome sociology and antigen variation. Parasitology 99, S37–S47 10.1017/S0031182000083402 PubMed DOI
Seed J. R., and Wenck M. A. (2003) Role of the long slender to short stumpy transition in the life cycle of the African trypanosomes. Kinetoplastid Biol. Dis. 2, 3 10.1186/1475-9292-2-3 PubMed DOI PMC
Mony B. M., MacGregor P., Ivens A., Rojas F., Cowton A., Young J., Horn D., and Matthews K. (2014) Genome-wide dissection of the quorum sensing signalling pathway in PubMed DOI PMC
Mony B. M., and Matthews K. R. (2015) Assembling the components of the quorum sensing pathway in African trypanosomes. Mol. Microbiol. 96, 220–232 10.1111/mmi.12949 PubMed DOI PMC
Saldivia M., Ceballos-Pérez G., Bart J. M., and Navarro M. (2016) The AMPKα1 pathway positively regulates the developmental transition from proliferation to quiescence in PubMed DOI PMC
Rico E., Rojas F., Mony B. M., Szoor B., MacGregor P., and Matthews K. R. (2013) Bloodstream form pre-adaptation to the tsetse fly in PubMed DOI PMC
Wenzler T., Schumann Burkard G., Schmidt R. S., Mäser P., Bergner A., Roditi I., and Brun R. (2016) A new approach to chemotherapy: drug-induced differentiation kills African trypanosomes. Sci Rep. 6, 22451 10.1038/srep22451 PubMed DOI PMC
Hirumi H., and Hirumi K. (1994) Axenic culture of African trypanosome bloodstream forms. Parasitol. Today 10, 80–84 10.1016/0169-4758(94)90402-2 PubMed DOI
Alsford S., and Horn D. (2008) Single-locus targeting constructs for reliable regulated RNAi and PubMed DOI PMC
Alsford S., Kawahara T., Glover L., and Horn D. (2005) Tagging a PubMed DOI PMC
Redmond S., Vadivelu J., and Field M. C. (2003) RNAit: an automated web-based tool for the selection of RNAi targets in PubMed DOI
Gadelha C., Rothery S., Morphew M., McIntosh J. R., Severs N. J., and Gull K. (2009) Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. Proc. Natl. Acad. Sci. U.S.A. 106, 17425–17430 10.1073/pnas.0909289106 PubMed DOI PMC
Kremer J. R., Mastronarde D. N., and McIntosh J. R. (1996) Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 10.1006/jsbi.1996.0013 PubMed DOI
Koeller C. M., and Bangs J. D. (2019) Processing and targeting of cathepsin L (TbCatL) to the lysosome in PubMed DOI
Lingnau A., Zufferey R., Lingnau M., and Russell D. G. (1999) Characterization of tGLP-1, a Golgi and lysosome-associated, transmembrane glycoprotein of African trypanosomes. J. Cell Sci. 112, 3061–3070 PubMed
Chung W. L., Leung K. F., Carrington M., and Field M. C. (2008) Ubiquitylation is required for degradation of transmembrane surface proteins in trypanosomes. Traffic 9, 1681–1697 10.1111/j.1600-0854.2008.00785.x PubMed DOI
Wallace L. J., Candlish D., and De Koning H. P. (2002) Different substrate recognition motifs of human and trypanosome nucleobase transporters. Selective uptake of purine antimetabolites. J. Biol. Chem. 277, 26149–26156 10.1074/jbc.M202835200 PubMed DOI
Cox J., and Mann M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 10.1038/nbt.1511 PubMed DOI
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B. P., Carrington M., Depledge D. P., Fischer S., Gajria B., Gao X., Gardner M. J., Gingle A., Grant G., Harb O. S., Heiges M., et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38, D457–D462 10.1093/nar/gkp851 PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., Mann M., and Cox J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 10.1038/nmeth.3901 PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC
Rattigan K. M., Pountain A. W., Regnault C., Achcar F., Vincent I. M., Goodyear C. S., Barrett M. P. (2018) Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli. PLoS ONE 13, e0194126 10.1371/journal.pone.0194126 PubMed DOI PMC
Chambers M. C., Maclean B., Burke R., Amodei D., Ruderman D. L., Neumann S., Gatto L., Fischer B., Pratt B., Egertson J., Hoff K., Kessner D., Tasman N., Shulman N., Frewen B., et al. (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 10.1038/nbt.2377 PubMed DOI PMC
Gloaguen Y., Morton F., Daly R., Gurden R., Rogers S., Wandy J., Wilson D., Barrett M., and Burgess K. (2017) PiMP my metabolome: an integrated, web-based tool for LC-MS metabolomics data. Bioinformatics 33, 4007–4009 10.1093/bioinformatics/btx499 PubMed DOI PMC
Chokkathukalam A., Jankevics A., Creek D. J., Achcar F., Barrett M. P., and Breitling R. (2013) mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29, 281–283 10.1093/bioinformatics/bts674 PubMed DOI PMC
Functional differentiation of Sec13 paralogues in the euglenozoan protists
The role of invariant surface glycoprotein 75 in xenobiotic acquisition by African trypanosomes