Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
GM111749
NIH HHS - United States
MR/R015791/1
Medical Research Council - United Kingdom
204697/Z/16/Z
Wellcome - International
206385/2014-5
Science Without Borders, Brazil - International
84733
Medical Research Council - United Kingdom
R01 GM111749
NIGMS NIH HHS - United States
G0701258
Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
PubMed
32762841
PubMed Central
PMC7473772
DOI
10.7554/elife.56416
PII: 56416
Knihovny.cz E-zdroje
- Klíčová slova
- Trypanosoma brucei, aquaporin, biochemistry, chemical biology, drug resistance, drug transport, infectious disease, melarsoprol, microbiology, pentamidine,
- MeSH
- akvaporin 2 * chemie genetika metabolismus MeSH
- akvaporiny chemie genetika metabolismus MeSH
- léková rezistence účinky léků genetika MeSH
- melarsoprol farmakologie MeSH
- mutace MeSH
- pentamidin farmakologie MeSH
- trypanocidální látky farmakologie MeSH
- Trypanosoma brucei brucei * účinky léků genetika metabolismus MeSH
- trypanozomóza africká farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- akvaporin 2 * MeSH
- akvaporiny MeSH
- melarsoprol MeSH
- pentamidin MeSH
- trypanocidální látky MeSH
Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2's unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family.
African sleeping sickness is a potentially deadly illness caused by the parasite Trypanosoma brucei. The disease is treatable, but many of the current treatments are old and are becoming increasingly ineffective. For instance, resistance is growing against pentamidine, a drug used in the early stages in the disease, as well as against melarsoprol, which is deployed when the infection has progressed to the brain. Usually, cases resistant to pentamidine are also resistant to melarsoprol, but it is still unclear why, as the drugs are chemically unrelated. Studies have shown that changes in a water channel called aquaglyceroporin 2 (TbAQP2) contribute to drug resistance in African sleeping sickness; this suggests that it plays a role in allowing drugs to kill the parasite. This molecular ‘drain pipe’ extends through the surface of T. brucei, and should allow only water and a molecule called glycerol in and out of the cell. In particular, the channel should be too narrow to allow pentamidine or melarsoprol to pass through. One possibility is that, in T. brucei, the TbAQP2 channel is abnormally wide compared to other members of its family. Alternatively, pentamidine and melarsoprol may only bind to TbAQP2, and then ‘hitch a ride’ when the protein is taken into the parasite as part of the natural cycle of surface protein replacement. Alghamdi et al. aimed to tease out these hypotheses. Computer models of the structure of the protein were paired with engineered changes in the key areas of the channel to show that, in T. brucei, TbAQP2 provides a much broader gateway into the cell than observed for similar proteins. In addition, genetic analysis showed that this version of TbAQP2 has been actively selected for during the evolution process of T. brucei. This suggests that the parasite somehow benefits from this wider aquaglyceroporin variant. This is a new resistance mechanism, and it is possible that aquaglyceroporins are also larger than expected in other infectious microbes. The work by Alghamdi et al. therefore provides insight into how other germs may become resistant to drugs.
Chemistry Department Georgia State University Atlanta United States
Department of Biochemistry University of Cambridge Cambridge United Kingdom
Department of Chemistry University of Liverpool Liverpool United Kingdom
Institute of Infection Immunity and Inflammation University of Glasgow Glasgow United Kingdom
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Instituto de Química Médica CSIC Madrid Spain
IOTA Pharmaceuticals Ltd St Johns Innovation Centre Cambridge United Kingdom
Laboratory for Medicinal Chemistry University of Ghent Ghent Belgium
School of Life Sciences University of Dundee Dundee United Kingdom
Zobrazit více v PubMed
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Alkhaldi AA, Creek DJ, Ibrahim H, Kim DH, Quashie NB, Burgess KE, Changtam C, Barrett MP, Suksamrarn A, de Koning HP. Potent trypanocidal curcumin analogs bearing a monoenone linker motif act on Trypanosoma brucei by forming an adduct with trypanothione. Molecular Pharmacology. 2015;87:451–464. doi: 10.1124/mol.114.096016. PubMed DOI
Alkhaldi AAM, Martinek J, Panicucci B, Dardonville C, Zíková A, de Koning HP. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei. International Journal for Parasitology: Drugs and Drug Resistance. 2016;6:23–34. doi: 10.1016/j.ijpddr.2015.12.002. PubMed DOI PMC
Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. The EMBO Journal. 2003;22:4991–5002. doi: 10.1093/emboj/cdg481. PubMed DOI PMC
Alsford S, Kawahara T, Glover L, Horn D. Tagging a T. brucei RRNA locus improves stable transfection efficiency and circumvents inducible expression position effects. Molecular and Biochemical Parasitology. 2005;144:142–148. doi: 10.1016/j.molbiopara.2005.08.009. PubMed DOI PMC
Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. 2012;482:232–236. doi: 10.1038/nature10771. PubMed DOI PMC
Alsford S, Horn D. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Molecular and Biochemical Parasitology. 2008;161:76–79. doi: 10.1016/j.molbiopara.2008.05.006. PubMed DOI PMC
Baker N, Glover L, Munday JC, Aguinaga Andrés D, Barrett MP, de Koning HP, Horn D. Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. PNAS. 2012;109:10996–11001. doi: 10.1073/pnas.1202885109. PubMed DOI PMC
Baker N, de Koning HP, Mäser P, Horn D. Drug resistance in african trypanosomiasis: the melarsoprol and pentamidine story. Trends in Parasitology. 2013;29:110–118. doi: 10.1016/j.pt.2012.12.005. PubMed DOI PMC
Barrett MP, Vincent IM, Burchmore RJ, Kazibwe AJ, Matovu E. Drug resistance in human african trypanosomiasis. Future Microbiology. 2011;6:1037–1047. doi: 10.2217/fmb.11.88. PubMed DOI
Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, Ammonia, and protons. PNAS. 2006;103:269–274. doi: 10.1073/pnas.0507225103. PubMed DOI PMC
Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA. A survey of the role of noncovalent sulfur interactions in drug design. Journal of Medicinal Chemistry. 2015;58:4383–4438. doi: 10.1021/jm501853m. PubMed DOI
Brameld KA, Kuhn B, Reuter DC, Stahl M. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. Journal of Chemical Information and Modeling. 2008;48:1–24. doi: 10.1021/ci7002494. PubMed DOI
Bridges DJ, Gould MK, Nerima B, Mäser P, Burchmore RJ, de Koning HP. Loss of the high-affinity pentamidine transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in african trypanosomes. Molecular Pharmacology. 2007;71:1098–1108. doi: 10.1124/mol.106.031351. PubMed DOI
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human african trypanosomiasis. The Lancet. 2017;390:2397–2409. doi: 10.1016/S0140-6736(17)31510-6. PubMed DOI
Carter NS, Berger BJ, Fairlamb AH. Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. The Journal of Biological Chemistry. 1995;270:28153–28157. doi: 10.1074/jbc.270.47.28153. PubMed DOI
Carter NS, Fairlamb AH. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 1993;361:173–176. doi: 10.1038/361173a0. PubMed DOI
Carvalho AS, Salomão K, Castro SL, Conde TR, Zamith HP, Caffarena ER, Hall BS, Wilkinson SR, Boechat N. Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme. Memórias Do Instituto Oswaldo Cruz. 2014;109:315–323. doi: 10.1590/0074-0276140497. PubMed DOI PMC
Chein RJ, Corey EJ. Strong conformational preferences of heteroaromatic ethers and electron pair repulsion. Organic Letters. 2010;12:132–135. doi: 10.1021/ol9025364. PubMed DOI
de Koning HP, Watson CJ, Jarvis SM. Characterization of a nucleoside/proton symporter in procyclic Trypanosoma brucei brucei. Journal of Biological Chemistry. 1998;273:9486–9494. doi: 10.1074/jbc.273.16.9486. PubMed DOI
de Koning HP, MacLeod A, Barrett MP, Cover B, Jarvis SM. Further evidence for a link between melarsoprol resistance and P2 transporter function in african trypanosomes. Molecular and Biochemical Parasitology. 2000;106:181–185. doi: 10.1016/S0166-6851(99)00206-6. PubMed DOI
de Koning HP. Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters: implications for cross-resistance with arsenicals. Molecular Pharmacology. 2001a;59:586–592. doi: 10.1124/mol.59.3.586. PubMed DOI
de Koning HP. Transporters in african trypanosomes: role in drug action and resistance. International Journal for Parasitology. 2001b;31:512–522. doi: 10.1016/S0020-7519(01)00167-9. PubMed DOI
de Koning HP, Anderson LF, Stewart M, Burchmore RJS, Wallace LJM, Barrett MP. The trypanocide diminazene aceturate is accumulated predominantly through the TbAT1 purine transporter: additional insights on diamidine resistance in african trypanosomes. Antimicrobial Agents and Chemotherapy. 2004;48:1515–1519. doi: 10.1128/AAC.48.5.1515-1519.2004. PubMed DOI PMC
de Koning HP, Jarvis SM. Hypoxanthine uptake through a purine-selective nucleobase transporter in Trypanosoma brucei brucei procyclic cells is driven by protonmotive force. European Journal of Biochemistry. 1997a;247:1102–1110. doi: 10.1111/j.1432-1033.1997.01102.x. PubMed DOI
de Koning HP, Jarvis SM. Purine nucleobase transport in bloodstream forms of Trypanosoma brucei is mediated by two novel transporters. Molecular and Biochemical Parasitology. 1997b;89:245–258. doi: 10.1016/S0166-6851(97)00129-1. PubMed DOI
de Koning HP, Jarvis SM. A highly selective, high-affinity transporter for uracil in Trypanosoma brucei Brucei: evidence for proton-dependent transport. Biochemistry and Cell Biology. 1998;76:853–858. doi: 10.1139/o98-086. PubMed DOI
de Koning HP, Jarvis SM. Adenosine transporters in bloodstream forms of Trypanosoma brucei: substrate recognition motifs and affinity for trypanocidal drugs. Molecular Pharmacology. 1999;56:1162–1170. doi: 10.1124/mol.56.6.1162. PubMed DOI
de Koning HP, Jarvis SM. Uptake of pentamidine in Trypanosoma brucei is mediated by the P2 adenosine transporter and at least one novel, unrelated transporter. Acta Tropica. 2001;80:245–250. doi: 10.1016/S0001-706X(01)00177-2. PubMed DOI
Demmel L, Schmidt K, Lucast L, Havlicek K, Zankel A, Koestler T, Reithofer V, de Camilli P, Warren G. The endocytic activity of the flagellar pocket in Trypanosoma brucei is regulated by an adjacent phosphatidylinositol phosphate kinase. Journal of Cell Science. 2014;127:2351–2364. doi: 10.1242/jcs.146894. PubMed DOI PMC
Fairlamb AH, Carter NS, Cunningham M, Smith K. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Molecular and Biochemical Parasitology. 1992;53:213–222. doi: 10.1016/0166-6851(92)90023-D. PubMed DOI
Field MC, Carrington M. The trypanosome flagellar pocket. Nature Reviews Microbiology. 2009;7:775–786. doi: 10.1038/nrmicro2221. PubMed DOI
Frommel TO, Balber AE. Flow cytofluorimetric analysis of drug accumulation by multidrug-resistant Trypanosoma brucei and T. b. rhodesiense. Molecular and Biochemical Parasitology. 1987;26:183–191. doi: 10.1016/0166-6851(87)90142-3. PubMed DOI
Geng X, McDermott J, Lundgren J, Liu L, Tsai KJ, Shen J, Liu Z. Role of AQP9 in transport of monomethyselenic acid and selenite. BioMetals. 2017;30:747–755. doi: 10.1007/s10534-017-0042-x. PubMed DOI PMC
Ghaddar K, Merhi A, Saliba E, Krammer EM, Prévost M, André B. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases. Molecular and Cellular Biology. 2014;34:4447–4463. doi: 10.1128/MCB.00699-14. PubMed DOI PMC
Giordani F, Morrison LJ, Rowan TG, DE Koning HP, Barrett MP. The animal trypanosomiases and their chemotherapy: a review. Parasitology. 2016;143:1862–1889. doi: 10.1017/S0031182016001268. PubMed DOI PMC
Gournas C, Papageorgiou I, Diallinas G. The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Molecular BioSystems. 2008;4:404–416. doi: 10.1039/b719777b. PubMed DOI
Gournas C, Amillis S, Vlanti A, Diallinas G. Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Molecular Microbiology. 2010;75:246–260. doi: 10.1111/j.1365-2958.2009.06997.x. PubMed DOI
Gournas C, Saliba E, Krammer EM, Barthelemy C, Prévost M, André B. Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Molecular Biology of the Cell. 2017;28:2819–2832. doi: 10.1091/mbc.e17-02-0104. PubMed DOI PMC
Graf FE, Ludin P, Wenzler T, Kaiser M, Brun R, Pyana PP, Büscher P, de Koning HP, Horn D, Mäser P. Aquaporin 2 mutations in Trypanosoma brucei gambiense field isolates correlate with decreased susceptibility to pentamidine and melarsoprol. PLOS Neglected Tropical Diseases. 2013;7:e2475. doi: 10.1371/journal.pntd.0002475. PubMed DOI PMC
Graf FE, Baker N, Munday JC, de Koning HP, Horn D, Mäser P. Chimerization at the AQP2-AQP3 locus is the genetic basis of melarsoprol-pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. International Journal for Parasitology: Drugs and Drug Resistance. 2015;5:65–68. doi: 10.1016/j.ijpddr.2015.04.002. PubMed DOI PMC
Graf FE, Ludin P, Arquint C, Schmidt RS, Schaub N, Kunz-Renggli C, Munday JC, Krezdorn J, Baker N, Horn D, Balmer O, Caccone A, De Koning HP, Mäser P. Comparative genomics of drug resistance of the sleeping sickness parasite Trypanosoma brucei rhodesiense. Cellular and Molecular Life Sciences : CMLS. 2016;73:3387–3400. doi: 10.1007/s00018-016-2173-6. PubMed DOI PMC
Hutchinson R, Gibson W. Rediscovery of Trypanosoma ( Pycnomonas ) suis , a tsetse-transmitted trypanosome closely related to T. brucei. Infection, Genetics and Evolution. 2015;36:381–388. doi: 10.1016/j.meegid.2015.10.018. PubMed DOI
Jarzynski C. Nonequilibrium equality for free energy differences. Physical Review Letters. 1997;78:2690–2693. doi: 10.1103/PhysRevLett.78.2690. DOI
Jeacock L, Baker N, Wiedemar N, Mäser P, Horn D. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLOS Pathogens. 2017;13:e1006307. doi: 10.1371/journal.ppat.1006307. PubMed DOI PMC
Jensen BC, Ramasamy G, Vasconcelos EJ, Ingolia NT, Myler PJ, Parsons M. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics. 2014;15:911. doi: 10.1186/1471-2164-15-911. PubMed DOI PMC
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of Computational Chemistry. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Molecular Aspects of Medicine. 2013;34:108–120. doi: 10.1016/j.mam.2013.01.001. PubMed DOI
Keener JM, Babst M. Quality control and substrate-dependent downregulation of the nutrient transporter Fur4. Traffic. 2013;14:412–427. doi: 10.1111/tra.12039. PubMed DOI PMC
Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The Journal of Physical Chemistry B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC
Langreth SG, Balber AE. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. The Journal of Protozoology. 1975;22:40–55. doi: 10.1111/j.1550-7408.1975.tb00943.x. PubMed DOI
Lüscher A, de Koning HP, Mäser P. Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting. Current Pharmaceutical Design. 2007;13:555–567. doi: 10.2174/138161207780162809. PubMed DOI
Mäser P, Sütterlin C, Kralli A, Kaminsky R. Nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science. 1999;285:242–244. doi: 10.1126/science.285.5425.242. PubMed DOI
Monnerat S, Almeida Costa CI, Forkert AC, Benz C, Hamilton A, Tetley L, Burchmore R, Novo C, Mottram JC, Hammarton TC. Identification and functional characterisation of CRK12:cyc9, a novel Cyclin-Dependent kinase (CDK)-Cyclin complex in Trypanosoma brucei. PLOS ONE. 2013;8:e67327. doi: 10.1371/journal.pone.0067327. PubMed DOI PMC
Morgan GW, Hall BS, Denny PW, Field MC, Carrington M. The endocytic apparatus of the kinetoplastida. part II: machinery and components of the system. Trends in Parasitology. 2002;18:540–546. doi: 10.1016/S1471-4922(02)02392-9. PubMed DOI
Munday JC, Eze AA, Baker N, Glover L, Clucas C, Aguinaga Andrés D, Natto MJ, Teka IA, McDonald J, Lee RS, Graf FE, Ludin P, Burchmore RJ, Turner CM, Tait A, MacLeod A, Mäser P, Barrett MP, Horn D, De Koning HP. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. Journal of Antimicrobial Chemotherapy. 2014;69:651–663. doi: 10.1093/jac/dkt442. PubMed DOI PMC
Munday JC, Settimo L, de Koning HP. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Frontiers in Pharmacology. 2015a;6:32. doi: 10.3389/fphar.2015.00032. PubMed DOI PMC
Munday JC, Tagoe DN, Eze AA, Krezdorn JA, Rojas López KE, Alkhaldi AA, McDonald F, Still J, Alzahrani KJ, Settimo L, De Koning HP. Functional analysis of drug resistance-associated mutations in the Trypanosoma brucei adenosine transporter 1 (TbAT1) and the proposal of a structural model for the protein. Molecular Microbiology. 2015b;96:887–900. doi: 10.1111/mmi.12979. PubMed DOI PMC
P. De Koning H. The drugs of sleeping sickness: their mechanisms of action and resistance, and a brief history. Tropical Medicine and Infectious Disease. 2020;5:14. doi: 10.3390/tropicalmed5010014. PubMed DOI PMC
Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. The Journal of Chemical Physics. 2003;119:3559–3566. doi: 10.1063/1.1590311. DOI
Pyana Pati P, Van Reet N, Mumba Ngoyi D, Ngay Lukusa I, Karhemere Bin Shamamba S, Büscher P. Melarsoprol sensitivity profile of Trypanosoma brucei gambiense isolates from cured and relapsed sleeping sickness patients from the democratic republic of the Congo. PLOS Neglected Tropical Diseases. 2014;8:e3212. doi: 10.1371/journal.pntd.0003212. PubMed DOI PMC
Quintana JF, Bueren-Calabuig J, Zuccotto F, de Koning HP, Horn D, Field MC. Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLOS Neglected Tropical Diseases. 2020;14:e0008458. doi: 10.1371/journal.pntd.0008458. PubMed DOI PMC
Ríos Martínez CH, Miller F, Ganeshamoorthy K, Glacial F, Kaiser M, de Koning HP, Eze AA, Lagartera L, Herraiz T, Dardonville C. A new nonpolar N-hydroxy imidazoline lead compound with improved activity in a murine model of late-stage Trypanosoma brucei brucei infection is not cross-resistant with diamidines. Antimicrobial Agents and Chemotherapy. 2015;59:890–904. doi: 10.1128/AAC.03958-14. PubMed DOI PMC
Rollo IM, Williamson J. Acquired resistance to 'Melarsen', tryparsamide and amidines in pathogenic trypanosomes after treatment with 'Melarsen' alone. Nature. 1951;167:147–148. doi: 10.1038/167147a0. PubMed DOI
Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Research. 2010;38:4946–4957. doi: 10.1093/nar/gkq237. PubMed DOI PMC
Smith TK, Bütikofer P. Lipid metabolism in Trypanosoma brucei. Molecular and Biochemical Parasitology. 2010;172:66–79. doi: 10.1016/j.molbiopara.2010.04.001. PubMed DOI PMC
Song J, Baker N, Rothert M, Henke B, Jeacock L, Horn D, Beitz E. Pentamidine is not a permeant but a nanomolar inhibitor of the Trypanosoma brucei Aquaglyceroporin-2. PLOS Pathogens. 2016;12:e1005436. doi: 10.1371/journal.ppat.1005436. PubMed DOI PMC
Taladriz A, Healy A, Flores Pérez EJ, Herrero García V, Ríos Martínez C, Alkhaldi AA, Eze AA, Kaiser M, de Koning HP, Chana A, Dardonville C. Synthesis and structure-activity analysis of new phosphonium salts with potent activity against african trypanosomes. Journal of Medicinal Chemistry. 2012;55:2606–2622. doi: 10.1021/jm2014259. PubMed DOI
Teka IA, Kazibwe AJ, El-Sabbagh N, Al-Salabi MI, Ward CP, Eze AA, Munday JC, Mäser P, Matovu E, Barrett MP, de Koning HP. The diamidine diminazene aceturate is a substrate for the high-affinity pentamidine transporter: implications for the development of high resistance levels in trypanosomes. Molecular Pharmacology. 2011;80:110–116. doi: 10.1124/mol.111.071555. PubMed DOI PMC
Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, Muñóz-Torres M, de Koning HP, Magez S, Garcia-Salcedo JA. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLOS Pathogens. 2015;11:e1004942. doi: 10.1371/journal.ppat.1004942. PubMed DOI PMC
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD. CHARMM general force field: a force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force field. Journal of Computational Chemistry. 2010;31:671–690. doi: 10.1002/jcc.21367. PubMed DOI PMC
Vincent IM, Creek D, Watson DG, Kamleh MA, Woods DJ, Wong PE, Burchmore RJ, Barrett MP. A molecular mechanism for eflornithine resistance in african trypanosomes. PLOS Pathogens. 2010;6:e1001204. doi: 10.1371/journal.ppat.1001204. PubMed DOI PMC
Wallace LJ, Candlish D, De Koning HP. Different substrate recognition motifs of human and trypanosome nucleobase transporters. selective uptake of purine antimetabolites. The Journal of Biological Chemistry. 2002;277:26149–26156. doi: 10.1074/jbc.M202835200. PubMed DOI
Wang MZ, Zhu X, Srivastava A, Liu Q, Sweat JM, Pandharkar T, Stephens CE, Riccio E, Parman T, Munde M, Mandal S, Madhubala R, Tidwell RR, Wilson WD, Boykin DW, Hall JE, Kyle DE, Werbovetz KA. Novel arylimidamides for treatment of visceral leishmaniasis. Antimicrobial Agents and Chemotherapy. 2010;54:2507–2516. doi: 10.1128/AAC.00250-10. PubMed DOI PMC
Ward CP, Wong PE, Burchmore RJ, de Koning HP, Barrett MP. Trypanocidal furamidine analogues: influence of pyridine nitrogens on trypanocidal activity, transport kinetics, and resistance patterns. Antimicrobial Agents and Chemotherapy. 2011;55:2352–2361. doi: 10.1128/AAC.01551-10. PubMed DOI PMC
Wree D, Wu B, Zeuthen T, Beitz E. Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion. FEBS Journal. 2011;278:740–748. doi: 10.1111/j.1742-4658.2010.07993.x. PubMed DOI
Wu B, Steinbronn C, Alsterfjord M, Zeuthen T, Beitz E. Concerted action of two cation filters in the aquaporin water channel. The EMBO Journal. 2009;28:2188–2194. doi: 10.1038/emboj.2009.182. PubMed DOI PMC
Zhorov BS, Tikhonov DB. Ligand action on sodium, potassium, and calcium channels: role of permeant ions. Trends in Pharmacological Sciences. 2013;34:154–161. doi: 10.1016/j.tips.2013.01.002. PubMed DOI
Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the surface proteome through multiple ubiquitylation pathways in african trypanosomes. PLOS Pathogens. 2015;11:e1005236. doi: 10.1371/journal.ppat.1005236. PubMed DOI PMC
Zoltner M, Horn D, de Koning HP, Field MC. Exploiting the achilles' heel of membrane trafficking in trypanosomes. Current Opinion in Microbiology. 2016;34:97–103. doi: 10.1016/j.mib.2016.08.005. PubMed DOI PMC
Zoltner M, Campagnaro GD, Taleva G, Burrell A, Cerone M, Leung KF, Achcar F, Horn D, Vaughan S, Gadelha C, Zíková A, Barrett MP, de Koning HP, Field MC. Suramin exposure alters cellular metabolism and mitochondrial energy production in african trypanosomes. Journal of Biological Chemistry. 2020;295:8331–8347. doi: 10.1074/jbc.RA120.012355. PubMed DOI PMC