Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei

. 2020 Jul ; 14 (7) : e0008458. [epub] 20200709

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32644992

Grantová podpora
1000320/Z/12/Z Wellcome Trust - United Kingdom
MR/P009018/1 Medical Research Council - United Kingdom
MR/N010558/1 Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
204697/Z/16/Z Wellcome Trust - United Kingdom
MR/ P009018/1 Medical Research Council - United Kingdom
203134/Z/16/Z Wellcome Trust - United Kingdom

Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.

Zobrazit více v PubMed

Capewell P, Atkins K, Weir W, Jamonneau V, Camara M, Clucas C, et al. Resolving the apparent transmission paradox of African sleeping sickness. PLoS Biol. 2019;17:e3000105 10.1371/journal.pbio.3000105 PubMed DOI PMC

Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet. 2010;375:9–15. 10.1016/S0140-6736(09)62133-4 PubMed DOI

Mehlitz D, Molyneux DH. The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission cycles: Expect the unexpected. Parasite Epidemiol Control. 2020;6:e00113. PubMed PMC

Selby R, Wamboga C, Erphas O, Mugenyi A, Jamonneau V, Waiswa C, et al. Gambian human African trypanosomiasis in North West Uganda. Are we on course for the 2020 target? PLoS Negl Trop Dis. 2019;13:e0007550 10.1371/journal.pntd.0007550 PubMed DOI PMC

Maclean L, Reiber H, Kennedy PGE, Sternberg JM. Stage Progression and Neurological Symptoms in Trypanosoma brucei rhodesiense Sleeping Sickness: Role of the CNS Inflammatory Response. PLoS Negl Trop Dis. 2012;6:e1857 10.1371/journal.pntd.0001857 PubMed DOI PMC

Baker N, Koning HP De, Mäser P, Horn D. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. 2013;29. PubMed PMC

Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, et al. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat Rev Microbiol. 2017;15:217–31. 10.1038/nrmicro.2016.193 PubMed DOI PMC

Lindner AK, Lejon V, Chappuis F, Seixas J, Kazumba L, Barrett MP, et al. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infect Dis. 2020;20:e38–46. PubMed

Pandey A, Galvani A. Strategies for Trypanosoma brucei gambiense elimination. Lancet Glob Heal. 2017;5:10–1. PubMed

Acup C, Bardosh KL, Picozzi K, Waiswa C, Welburn SC. Factors influencing passive surveillance for T. b. rhodesiense human african trypanosomiasis in Uganda. Acta Trop. 2017;165:230–9. 10.1016/j.actatropica.2016.05.009 PubMed DOI

Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. 2012;482:232–6. 10.1038/nature10771 PubMed DOI PMC

Baker N, Glover L, Munday JC, Aguinaga Andres D, Barrett MP, de Koning HP, et al. Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc Natl Acad Sci. 2012;109:10996–1001. 10.1073/pnas.1202885109 PubMed DOI PMC

De Koning HP. Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters: implications for cross-resistance with arsenicals. Mol Pharmacol. 2001;59:586–92. 10.1124/mol.59.3.586 PubMed DOI

Verkman AS. Aquaporins at a glance. J Cell Sci. 2011;124:2107–12. 10.1242/jcs.079467 PubMed DOI

Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13:259–77. 10.1038/nrd4226 PubMed DOI PMC

Hub JS, de Groot BL. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci. 2008;105:1198–203. 10.1073/pnas.0707662104 PubMed DOI PMC

Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks E-SN. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–22. 10.1126/science.1112642 PubMed DOI

Beitz E. Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Biol Cell. 2005;97:373–83. 10.1042/BC20040095 PubMed DOI

Schmidt RS, Macêdo JP, Steinmann ME, Salgado AG, Bütikofer P, Sigel E, et al. Transporters of Trypanosoma brucei—phylogeny, physiology, pharmacology. FEBS J. 2018;285:1012–23. 10.1111/febs.14302 PubMed DOI

Jeacock L, Baker N, Wiedemar N, Maser P, Horn D, Maser P, et al. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLoS Pathog. 2017;13:1–16. PubMed PMC

Song J, Baker N, Rothert M, Henke B, Jeacock L, Horn D, et al. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2. PLoS Pathog. 2016;12:1–14. PubMed PMC

Bassarak B, Uzcátegui NL, Schönfeld C, Duszenko M. Functional Characterization of Three Aquaglyceroporins from Trypanosoma brucei in Osmoregulation and Glycerol Transport. Cell Physiol Biochem. 2011;27:411–20. 10.1159/000327968 PubMed DOI

Uzcategui NL, Szallies A, Pavlovic-Djuranovic S, Palmada M, Figarella K, Boehmer C, et al. Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei. J Biol Chem. 2004;279:42669–76. 10.1074/jbc.M404518200 PubMed DOI

Quintana JF, Del Pino RC, Yamada K, Zhang N, Field MC. Adaptation and therapeutic exploitation of the plasma membrane of African trypanosomes. Genes. 2018;9. PubMed PMC

Sui H, Han B, Lee J, Walian P, Jap B. Structural basis of water-specific transport through the AQP1 water channel. Nature. 2001;414:872–8. 10.1038/414872a PubMed DOI

Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, et al. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathog. 2015;11:1–20. PubMed PMC

Munday JC, Eze AA, Baker N, Glover L, Clucas C, Andrés DA, et al. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother. 2014;69:651–63. 10.1093/jac/dkt442 PubMed DOI PMC

Graf FE, Baker N, Munday JC, de Koning HP, Horn D, Mäser P. Chimerization at the AQP2-AQP3 locus is the genetic basis of melarsoprol-pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. Int J Parasitol Drugs Drug Resist. 2015;5:65–8. 10.1016/j.ijpddr.2015.04.002 PubMed DOI PMC

Graf FE, Ludin P, Wenzler T, Kaiser M, Brun R, Pyana PP, et al. Aquaporin 2 Mutations in Trypanosoma brucei gambiense Field Isolates Correlate with Decreased Susceptibility to Pentamidine and Melarsoprol. PLoS Negl Trop Dis. 2013;7. PubMed PMC

Pyana PP, Lukusa IN, Ngoyi DM, van Reet N, Kaiser M, Shamamba SK Bin, et al. Isolation of Trypanosoma brucei gambiense from cured and relapsed sleeping sickness patients and adaptation to laboratory mice. PLoS Negl Trop Dis. 2011;5:1–6. PubMed PMC

Graf FE, Baker N, Munday JC, Koning HP De, Horn D, Mäser P. Chimerization at the AQP2 –AQP3 locus is the genetic basis of melarsoprol–pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. Int J Parasitol Drugs Drug Resist. 2015;5:65–8. 10.1016/j.ijpddr.2015.04.002 PubMed DOI PMC

Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS Pathog. 2015;11:1–26. PubMed PMC

Raz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68:139–47. 10.1016/s0001-706x(97)00079-x PubMed DOI

Currier RB, Cooper A, Burrell-Saward H, MacLeod A, Alsford S. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PLoS Pathog. 2018;14:1–26. PubMed PMC

Emmerich CH, Cohen P. Optimising methods for the preservation, capture and identi fi cation of ubiquitin chains and ubiquitylated proteins by immunoblotting. Biochem Biophys Res Commun. 2016;466:1–14. PubMed PMC

Sali A, Blundell T. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. 10.1006/jmbi.1993.1626 PubMed DOI

Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinforma. 2016;54. PubMed PMC

Gotfryd K, Mosca A, Missel J, Truelsen S, Wang K, Spulber M, et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun. 2018;9:4749 10.1038/s41467-018-07176-z PubMed DOI PMC

Notredame C, Higgins D, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302:205–17. 10.1006/jmbi.2000.4042 PubMed DOI

Thompson J, Higgins D, Gibson T. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. 10.1093/nar/22.22.4673 PubMed DOI PMC

Laskowski R, MacArthur M, Moss D, Thornton J. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cyrstallography. 1993;26:283–91.

Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proc ACM /. 2006;11–7.

Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J Chem Theory Comput. 2016;12:281–96. 10.1021/acs.jctc.5b00864 PubMed DOI

Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–41.

Piper RC, Dikic I, Lukacs GL. Ubiquitin-Dependent Sorting in Endocytosis. Cold Spring Harb Perspect Biol. 2014;6:a016808 10.1101/cshperspect.a016808 PubMed DOI PMC

Chung W-LL, Leung KF, Carrington M, Field MC. Ubiquitylation is required for degradation of transmembrane surface proteins in Trypanosomes. Traffic. 2008;9:1681–97. 10.1111/j.1600-0854.2008.00785.x PubMed DOI

Leung KF, Riley FS, Carrington M, Field MC. Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes. Eukaryot Cell. 2011;10:916–31. 10.1128/EC.05012-11 PubMed DOI PMC

Klein N, Neumann J, O’Neil JD, Schneider D. Folding and stability of the aquaglyceroporin GlpF: Implications for human aquaglyceroporin diseases. Biochim Biophys Acta—Biomembr. 2015;1848:622–33. PubMed

Cymer F, Schneider D. A single glutamate residue controls the oligomerization, function, and stability of the aquaglyceroporin GlpF. Biochemistry. 2010;49:279–86. 10.1021/bi901660t PubMed DOI

Schmidt V, Sturgis JN. Making Monomeric Aquaporin Z by Disrupting the Hydrophobic Tetramer Interface. ACS Omega. 2017;2:3017–27. 10.1021/acsomega.7b00261 PubMed DOI PMC

Sun G, Wu X, Wang J, Li H, Li X, Gao H, et al. A bias-reducing strategy in profiling small RNAs using Solexa. 2011;2256–62. PubMed PMC

Smith AJ, Jin BJ, Ratelade J, Verkman AS. Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes. J Cell Biol. 2014;204:559–73. 10.1083/jcb.201308118 PubMed DOI PMC

Han Z, Patil R V. Protein kinase A-dependent phosphorylation of aquaporin-1. Biochem Biophys Res Commun. 2000;273:328–32. 10.1006/bbrc.2000.2944 PubMed DOI

Moeller HB, Praetorius J, Rützler MR, Fenton RA. Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci U S A. 2010;107:424–9. 10.1073/pnas.0910683107 PubMed DOI PMC

Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S. Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem. 2010;285:40777–84. 10.1074/jbc.M110.151928 PubMed DOI PMC

Hendriks G, Koudijs M, Van Balkom BWM, Oorschot V, Klumperman J, Deen PMT, et al. Glycosylation Is Important for Cell Surface Expression of the Water Channel Aquaporin-2 but Is Not Essential for Tetramerization in the Endoplasmic Reticulum. J Biol Chem. 2004;279:2975–83. 10.1074/jbc.M310767200 PubMed DOI

Öberg F, Sjöhamn J, Fischer G, Moberg A, Pedersen A, Neutze R, et al. Glycosylation Increases the thermostability of human aquaporin 10 protein. J Biol Chem. 2011;286:31915–23. 10.1074/jbc.M111.242677 PubMed DOI PMC

Buck TM, Eledge J, Skach WR. Evidence for stabilization of aquaporin-2 folding mutants by N-linked glycosylation in endoplasmic reticulum. Am J Physiol—Cell Physiol. 2004;287:1292–9. PubMed

Zoltner M, Horn D, de Koning HP, Field MC. Exploiting the Achilles’ heel of membrane trafficking in trypanosomes. Curr Opin Microbiol. 2016;34:97–103. 10.1016/j.mib.2016.08.005 PubMed DOI PMC

J.Clague M, Urbé S. Ubiquitin: Same Molecule, Different Degradation Pathways. Cell. 2010;143:682–5. 10.1016/j.cell.2010.11.012 PubMed DOI

Tsubuki S, Saito Y, Tomioka M, Ito H, Kawashima S. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996;119:572–6. 10.1093/oxfordjournals.jbchem.a021280 PubMed DOI

Tiengwe C, Koeller CM, Bangs JD, Gilmore R. Endoplasmic reticulum–associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei. Mol Biol Cell. 2018;29:2397–409. 10.1091/mbc.E18-06-0380 PubMed DOI PMC

Tiengwe C, Muratore KA, Bangs JD. Variant Surface Glycoprotein, Transferrin Receptor, and ERAD in Trypanosoma brucei. Cell Microbiol. 2016;18:1673–88. 10.1111/cmi.12605 PubMed DOI PMC

Krogh A, Larsson È, Heijne G Von, Sonnhammer ELL. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J Mol Biol. 2001;305:567–80. 10.1006/jmbi.2000.4315 PubMed DOI

Munday JC, Settimo L, de Koning HP. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front Pharmacol. 2015;6:1–10. 10.3389/fphar.2015.00001 PubMed DOI PMC

Radivojac P., Vacic V., Haynes C., Cocklin R. R., Mohan A., Heyen J. W., Goebl M. G., and Iakoucheva LM. Identification, Analysis and Prediction of Protein Ubiquitination Sites. Proteins Struct Funct Bioinforma. 2010;78:365–80. PubMed PMC

Carrington M, Field MC, Sergeenko T, Wang Y, Bo S. Chaperone Requirements for Biosynthesis of the Trypanosome Variant Surface Glycoprotein. PLoS One. 2010;5:e8468 10.1371/journal.pone.0008468 PubMed DOI PMC

Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol. 2016;18:1673–88. 10.1111/cmi.12605 PubMed DOI PMC

Mandal G, Sharma M, Kruse M, Sander-Juelch C, Munro LA, Wang Y, et al. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase. Mol Microbiol. 2012;85:1204–18. 10.1111/j.1365-2958.2012.08169.x PubMed DOI PMC

Sharma M, Mandal G, Mandal S, Bhattacharjee H. Functional role of lysine 12 in Leishmania major AQP1. Mol Biochem Parasitol. 2015;201:139–45. 10.1016/j.molbiopara.2015.07.005 PubMed DOI PMC

Tamma G, Robben JH, Trimpert C, Boone M, Deen PMT. Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. AJP Cell Physiol. 2011;300:C636–46. PubMed

Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin Q-H, Brown D. The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol. 2008;295:F290–4. 10.1152/ajprenal.00072.2008 PubMed DOI PMC

Nejsum LN, Zelenina M, Aperia A, Frøkiaer J, Nielsen S. Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol. 2005;288:F930–8. 10.1152/ajprenal.00291.2004 PubMed DOI

Kamsteeg EJ, Hendriks G, Boone M, Konings IBM, Oorschot V, van der Sluijs P, et al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci. 2006;103:604073103. PubMed PMC

Kitchen P, Conner MT, Bill RM, Conner AC. Structural Determinants of Oligomerization of the Aquaporin-4 Channel. J Biol Chem. 2016;291:6858–71. 10.1074/jbc.M115.694729 PubMed DOI PMC

Crane JM, Bennett JL, Verkman AS. Live Cell Analysis of Aquaporin-4 M1 / M23 Interactions and Regulated Orthogonal Array Assembly in Glial Cells. J Biol Chem. 2009;284:35850–60. 10.1074/jbc.M109.071670 PubMed DOI PMC

Jin B, Rossi A, Verkman AS. Model of Aquaporin-4 Supramolecular Assembly in Orthogonal Arrays Based on Heterotetrameric Association of M1-M23 Isoforms. Biophys J. 2011;100:2936–45. 10.1016/j.bpj.2011.05.012 PubMed DOI PMC

Furman CS, Gorelick-feldman DA, Davidson KG V., Yasumura T, Neely JD, Agre P, et al. Aquaporin-4 square array assembly: Opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci. 2003;100:13609–14. 10.1073/pnas.2235843100 PubMed DOI PMC

Silberstein C, Bouley R, Huang Y, Fang P, Pastor-soler N, Brown D, et al. Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol. 2004;287:501–11. PubMed

De Koning HP. Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters: Implications for cross-resistance with arsenicals. Mol Pharmacol. 2001;59:586–92. 10.1124/mol.59.3.586 PubMed DOI

Collett CF, Kitson C, Baker N, Steele-Stallard HB, Santrot M-V, Hutchinson S, et al. Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei. Antimicrob Agents Chemother. 2019;63:1–19. PubMed PMC

Fairlamb AH, Horn D. Melarsoprol Resistance in African Trypanosomiasis. Trends Parasitol. 2018;34:481–92. 10.1016/j.pt.2018.04.002 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...