The History of Anti-Trypanosome Vaccine Development Shows That Highly Immunogenic and Exposed Pathogen-Derived Antigens Are Not Necessarily Good Target Candidates: Enolase and ISG75 as Examples
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
G013518N
Fonds Wetenschappelijk Onderzoek
01N01518
Bijzonder Onderzoeksfonds UGent
SRP63
Vrije Universiteit Brussel
DOCPRO1, FFB190197
Universiteit Antwerpen
PubMed
34451514
PubMed Central
PMC8400590
DOI
10.3390/pathogens10081050
PII: pathogens10081050
Knihovny.cz E-zdroje
- Klíčová slova
- ISG75, enolase, trypanosomosis, vaccination,
- Publikační typ
- časopisecké články MeSH
Salivarian trypanosomes comprise a group of extracellular anthroponotic and zoonotic parasites. The only sustainable method for global control of these infection is through vaccination of livestock animals. Despite multiple reports describing promising laboratory results, no single field-applicable solution has been successful so far. Conventionally, vaccine research focusses mostly on exposed immunogenic antigens, or the structural molecular knowledge of surface exposed invariant immunogens. Unfortunately, extracellular parasites (or parasites with extracellular life stages) have devised efficient defense systems against host antibody attacks, so they can deal with the mammalian humoral immune response. In the case of trypanosomes, it appears that these mechanisms have been perfected, leading to vaccine failure in natural hosts. Here, we provide two examples of potential vaccine candidates that, despite being immunogenic and accessible to the immune system, failed to induce a functionally protective memory response. First, trypanosomal enolase was tested as a vaccine candidate, as it was recently characterized as a highly conserved enzyme that is readily recognized during infection by the host antibody response. Secondly, we re-addressed a vaccine approach towards the Invariant Surface Glycoprotein ISG75, and showed that despite being highly immunogenic, trypanosomes can avoid anti-ISG75 mediated parasitemia control.
Zobrazit více v PubMed
Mogk S., Boßelmann C.M., Mudogo C.N., Stein J., Wolburg H., Duszenko M. African trypanosomes and brain infection—The unsolved question. Biol. Rev. 2017;92:1675–1687. doi: 10.1111/brv.12301. PubMed DOI
Kristensson K., Nygard M., Bertini G., Bentivoglio M. African trypanosome infections of the nervous system: Parasite entry and effects on sleep and synaptic functions. Prog. Neurobiol. 2010;91:152–171. doi: 10.1016/j.pneurobio.2009.12.001. PubMed DOI
Trindade S., Rijo-Ferreira F., Carvalho T., Pinto-Neves D., Guegan F., Aresta-Branco F., Bento F., Young S.A., Pinto A., Abbeele J.V.D., et al. Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice. Cell Host Microbe. 2016;19:837–848. doi: 10.1016/j.chom.2016.05.002. PubMed DOI PMC
Franco J.R., Simarro P.P., Diarra A., Jannin J.G. Epidemiology of human African trypanosomiasis. Clin. Epidemiol. 2014;6:257–275. doi: 10.2147/clep.s39728. PubMed DOI PMC
Radwanska M., Vereecke N., Deleeuw V., Pinto J., Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction with the Innate and Adaptive Mammalian Host Immune System. Front. Immunol. 2018;9:2253. doi: 10.3389/fimmu.2018.02253. PubMed DOI PMC
Capewell P., Cooper A., Clucas C., Weir W., Macleod A. A co-evolutionary arms race: Trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology. 2015;142:S108–S119. doi: 10.1017/S0031182014000602. PubMed DOI PMC
Pays E., Vanhollebeke B., Uzureau P., Lecordier L., Pérez-Morga D. The molecular arms race between African trypanosomes and humans. Nat. Rev. Microbiol. 2014;12:575–584. doi: 10.1038/nrmicro3298. PubMed DOI
Zoll S., Lane-Serff H., Mehmood S., Schneider J., Robinson C.V., Carrington M., Higgins M.K. The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat. Microbiol. 2018;17:1–9. doi: 10.1038/s41564-017-0085-3. PubMed DOI
Truc P., Büscher P., Cuny G., Gonzatti M.I., Jannin J., Joshi P., Juyal P., Lun Z.-R., Mattioli R., Pays E., et al. Atypical Human Infections by Animal Trypanosomes. PLoS Neglect. Trop. Dis. 2013;7:e2256. doi: 10.1371/journal.pntd.0002256. PubMed DOI PMC
Chau N.V.V., Chau L.B., Desquesnes M., Herder S., Lan N.P.H., Campbell J.I., Cuong N.V., Yimming B., Chalermwong P., Jittapalapong S., et al. A Clinical and Epidemiological Investigation of the First Reported Human Infection with the Zoonotic Parasite Trypanosoma evansi in Southeast Asia. Clin. Infect. Dis. 2016;62:1002–1008. doi: 10.1093/cid/ciw052. PubMed DOI PMC
Vanhollebeke B., Truc P., Poelvoorde P., Pays A., Joshi P.P., Katti R., Jannin J.G., Pays E. Human Trypanosoma evansi Infection Linked to a Lack of Apolipoprotein L-I. N. Engl. J. Med. 2006;355:2752–2756. doi: 10.1056/NEJMoa063265. PubMed DOI
Osório A.L.A.R., Madruga C.R., Desquesnes M., Soares C.O., Ribeiro L.R.R., Costa S.C.G. da Trypanosoma (Duttonella) vivax: Its biology, epidemiology, pathogenesis, and introduction in the New World—A review. Memórias Inst. Oswaldo Cruz. 2008;103:1–13. doi: 10.1590/S0074-02762008000100001. PubMed DOI
Dyonisio G.H.S., Batista H.R., da Silva R.E., Azevedo R.C.D.F.E., Costa J.D.O.J., Manhes I.B.D.O., Tonhosolo R., Gennari S.M., Minervino A.H.H., Marcili A. Molecular Diagnosis and Prevalence of Trypanosoma vivax (Trypanosomatida: Trypanosomatidae) in Buffaloes and Ectoparasites in the Brazilian Amazon Region. J. Med. Entomol. 2020;58:403–407. doi: 10.1093/jme/tjaa145. PubMed DOI
Chávez-Larrea M.A., Medina-Pozo M.L., Cholota-Iza C.E., Jumbo-Moreira J.R., Saegerman C., Proaño-Pérez F., Ron-Román J., Reyna-Bello A. First report and molecular identification of Trypanosoma (Duttonella) vivax outbreak in cattle population from Ecuador. Transbound. Emerg. Dis. 2020;68:2422–2428. doi: 10.1111/tbed.13906. PubMed DOI
Desquesnes M., Holzmuller P., Lai D.-H., Dargantes A., Lun Z.-R., Jittaplapong S. Trypanosoma evansi and Surra: A Review and Perspectives on Origin, History, Distribution, Taxonomy, Morphology, Hosts, and Pathogenic Effects. BioMed Res. Int. 2013;2013:1–22. doi: 10.1155/2013/194176. PubMed DOI PMC
Desquesnes M., Dargantes A., Lai D.-H., Lun Z.-R., Holzmuller P., Jittapalapong S. Trypanosoma evansiand Surra: A Review and Perspectives on Transmission, Epidemiology and Control, Impact, and Zoonotic Aspects. BioMed Res. Int. 2013;2013:1–20. doi: 10.1155/2013/321237. PubMed DOI PMC
Gutierrez C., Desquesnes M., Touratier L., Büscher P. Trypanosoma evansi: Recent outbreaks in Europe. Vet. Parasitol. 2010;174:26–29. doi: 10.1016/j.vetpar.2010.08.012. PubMed DOI
Tamarit A., Gutierrez C., Arroyo R., Jimenez V., Zagalá G., Bosch I., Sirvent J., Alberola J., Alonso I., Caballero C. Trypanosoma evansi infection in mainland Spain. Vet. Parasitol. 2010;167:74–76. doi: 10.1016/j.vetpar.2009.09.050. PubMed DOI
Defontis M., Richartz J., Engelmann N., Bauer C., Schwierk V.M., Büscher P., Moritz A. Canine Trypanosoma evansi infection introduced into Germany. Vet. Clin. Path. 2012;41:369–374. doi: 10.1111/j.1939-165X.2012.00454.x. PubMed DOI
Desquesnes M., Bossard G., Patrel D., Herder S., Patout O., Lepetitcolin E., Thevenon S., Berthier D., Pavlovic D., Brugidou R., et al. First outbreak of Trypanosoma evansi in camels in metropolitan France. Vet. Rec. 2008;162:750–752. doi: 10.1136/vr.162.23.750. PubMed DOI
Rodríguez N.F., Tejedor-Junco M.T., González-Martín M., Gutierrez C. Stomoxys calcitrans as possible vector of Trypanosoma evansi among camels in an affected area of the Canary Islands, Spain. Rev. Soc. Bras. Med. Trop. 2014;47:510–512. doi: 10.1590/0037-8682-0210-2013. PubMed DOI
Baldacchino F., Desquesnes M., Mihok S., Foil L.D., Duvallet G., Jittapalapong S. Tabanids: Neglected subjects of research, but important vectors of disease agents! Infect. Genet. Evol. 2014;28:596–615. doi: 10.1016/j.meegid.2014.03.029. PubMed DOI
Aregawi W.G., Agga G.E., Abdi R.D., Büscher P. Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasite Vector. 2019;12:1–25. doi: 10.1186/s13071-019-3311-4. PubMed DOI PMC
Magez S., Torres J.E.P., Oh S., Radwanska M. Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens. 2021;10:679. doi: 10.3390/pathogens10060679. PubMed DOI PMC
Bangs J.D. Evolution of Antigenic Variation in African Trypanosomes: Variant Surface Glycoprotein Expression, Structure, and Function. Bioessays. 2018;40:1800181. doi: 10.1002/bies.201800181. PubMed DOI PMC
Schwede A., Macleod O.J.S., MacGregor P., Carrington M. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins? PLoS Pathog. 2015;11:e1005259. doi: 10.1371/journal.ppat.1005259. PubMed DOI PMC
Mugnier M.R., Cross G.A., Papavasiliou N. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science. 2015;347:1470–1473. doi: 10.1126/science.aaa4502. PubMed DOI PMC
McCulloch R., Cobbold C.A., Figueiredo L., Jackson A., Morrison L.J., Mugnier M.R., Papavasiliou N., Schnaufer A., Matthews K. Emerging challenges in understanding trypanosome antigenic variation. Emerg. Top. Life Sci. 2017;1:585–592. doi: 10.1042/etls20170104. PubMed DOI PMC
Pinger J., Nešić D., Ali L., Aresta-Branco F., Lilic M., Chowdhury S., Kim H.-S., Verdi J., Raper J., Ferguson M.A.J., et al. African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nat. Microbiol. 2018;3:932–938. doi: 10.1038/s41564-018-0187-6. PubMed DOI PMC
Engstler M., Pfohl T., Herminghaus S., Boshart M., Wiegertjes G., Heddergott N., Overath P. Hydrodynamic Flow-Mediated Protein Sorting on the Cell Surface of Trypanosomes. Cell. 2007;131:505–515. doi: 10.1016/j.cell.2007.08.046. PubMed DOI
Dean S.D., Matthews K.R. Restless Gossamers: Antibody Clearance by Hydrodynamic Flow Forces Generated at the Surface of Motile Trypanosome Parasites. Cell Host Microbe. 2007;2:279–281. doi: 10.1016/j.chom.2007.10.006. PubMed DOI PMC
Devine D.V., Falk R.J., Balber A.E. Restriction of the alternative pathway of human complement by intact Trypanosoma brucei subsp. gambiense. Infect. Immun. 1986;52:223–229. doi: 10.1128/iai.52.1.223-229.1986. PubMed DOI PMC
Pinger J., Chowdhury S., Papavasiliou F.N. Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat. Commun. 2017;8:1–9. doi: 10.1038/s41467-017-00959-w. PubMed DOI PMC
Pan W., Ogunremi O., Wei G., Shi M., Tabel H. CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: Diverse effect on subsequent synthesis of tumor necrosis factor α and nitric oxide. Microbes Infect. 2006;8:1209–1218. doi: 10.1016/j.micinf.2005.11.009. PubMed DOI
Liu G., Fu Y., Yosri M., Chen Y., Sun P., Xu J., Zhang M., Sun D., Strickland A.B., Mackey Z.B., et al. CRIg plays an essential role in intravascular clearance of bloodborne parasites by interacting with complement. Proc. Natl. Acad. Sci. USA. 2019;116:24214–24220. doi: 10.1073/pnas.1913443116. PubMed DOI PMC
Dagenais T.R., Demick K.P., Bangs J.D., Forest K.T., Paulnock D.M., Mansfield J.M. T-Cell Responses to the Trypanosome Variant Surface Glycoprotein Are Not Limited to Hypervariable Subregions. Infect. Immun. 2009;77:141–151. doi: 10.1128/IAI.00729-08. PubMed DOI PMC
Frenkel D., Zhang F., Guirnalda P., Haynes C., Bockstal V., Radwanska M., Magez S., Black S.J. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells. PLoS Pathog. 2016;12:e1005733. doi: 10.1371/journal.ppat.1005733. PubMed DOI PMC
Bockstal V., Guirnalda P., Caljon G., Goenka R., Telfer J.C., Frenkel D., Radwanska M., Magez S., Black S.J. T. brucei Infection Reduces B Lymphopoiesis in Bone Marrow and Truncates Compensatory Splenic Lymphopoiesis through Transitional B-Cell Apoptosis. PLoS Pathog. 2011;7:e1002089. doi: 10.1371/journal.ppat.1002089. PubMed DOI PMC
Obishakin E., Trez C., Magez S. Chronic Trypanosoma congolense infections in mice cause a sustained disruption of the B-cell homeostasis in the bone marrow and spleen. Parasite Immunol. 2014;36:187–198. doi: 10.1111/pim.12099. PubMed DOI
Blom-Potar M.C., Chamond N., Cosson A., Jouvion G., Droin-Bergère S., Huerre M., Minoprio P. Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions. PLoS Neglect. Trop. Dis. 2010;4:e793. doi: 10.1371/journal.pntd.0000793. PubMed DOI PMC
Radwanska M., Guirnalda P., Trez C.D., Ryffel B., Black S., Magez S. Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathog. 2008;4:e1000078. doi: 10.1371/journal.ppat.1000078. PubMed DOI PMC
Magez S., Schwegmann A., Atkinson R., Claes F., Drennan M., Baetselier P.D., Brombacher F. The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice. PLoS Pathog. 2008;4:e1000122. doi: 10.1371/journal.ppat.1000122. PubMed DOI PMC
McNae I.W., Kinkead J., Malik D., Yen L.-H., Walker M.K., Swain C., Webster S.P., Gray N., Fernandes P.M., Myburgh E., et al. Fast acting allosteric phosphofructokinase inhibitors block trypanosome glycolysis and cure acute African trypanosomiasis in mice. Nat. Commun. 2021;12:1–10. doi: 10.1038/s41467-021-21273-6. PubMed DOI PMC
Opperdoes F.R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome. Febs Lett. 1977;80:360–364. doi: 10.1016/0014-5793(77)80476-6. PubMed DOI
Visser N., Opperdoes F.R. Glycolysis in Trypanosoma brucei. Eur. J. Biochem. 1980;103:623–632. doi: 10.1111/j.1432-1033.1980.tb05988.x. PubMed DOI
Szöör B., Haanstra J.R., Gualdrón-López M., Michels P.A. Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Curr. Opin. Microbiol. 2014;22:79–87. doi: 10.1016/j.mib.2014.09.006. PubMed DOI
Haanstra J.R., González-Marcano E.B., Gualdrón-López M., Michels P.A. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim. Biophys. Acta. 2016;1863:1038–1048. doi: 10.1016/j.bbamcr.2015.09.015. PubMed DOI
Richardson J.B., Lee K.-Y., Mireji P., Enyaru J., Sistrom M., Aksoy S., Zhao H., Caccone A. Genomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification. PLoS Neglect. Trop. Dis. 2017;11:e0005949. doi: 10.1371/journal.pntd.0005949. PubMed DOI PMC
Moreno S.A., Nava M. Trypanosoma evansi is alike to Trypanosoma brucei brucei in the subcellular localisation of glycolytic enzymes. Memórias Inst. Oswaldo Cruz. 2015;110:468–475. doi: 10.1590/0074-02760150024. PubMed DOI PMC
Rivero L.A., Concepción J.L., Quintero-Troconis E., Quiñones W., Michels P.A.M., Acosta H. Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp. Parasitol. 2016;165:7–15. doi: 10.1016/j.exppara.2016.03.003. PubMed DOI
Hannaert V., Albert M.-A., Rigden D.J., Giotto M.T.D.S., Thiemann O., Garratt R.C., Roy J.V., Opperdoes F.R., Michels P.A. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. Eur. J. Biochem. 2003;270:3205–3213. doi: 10.1046/j.1432-1033.2003.03692.x. PubMed DOI
Giotto M.T.D.S., Hannaert V., Vertommen D., Navarro M.V.D.A.S., Rider M.H., Michels P.A., Garratt R.C., Rigden D.J. The Crystal Structure of Trypanosoma brucei Enolase: Visualisation of the Inhibitory Metal Binding Site III and Potential as Target for Selective, Irreversible Inhibition. J. Mol. Biol. 2003;331:653–665. doi: 10.1016/S0022-2836(03)00752-6. PubMed DOI
Navarro M.V.D.A.S., Dias S.M.G., Mello L.V., Giotto M.T.D.S., Gavalda S., Blonski C., Garratt R.C., Rigden D.J. Structural flexibility in Trypanosoma brucei enolase revealed by X-ray crystallography and molecular dynamics. FEBS J. 2007;274:5077–5089. doi: 10.1111/j.1742-4658.2007.06027.x. PubMed DOI
Grébaut P., Chuchana P., Brizard J.-P., Demettre E., Seveno M., Bossard G., Jouin P., Vincendeau P., Bengaly Z., Boulangé A., et al. Identification of total and differentially expressed excreted–secreted proteins from Trypanosoma congolense strains exhibiting different virulence and pathogenicity. Int. J. Parasitol. 2009;39:1137–1150. doi: 10.1016/j.ijpara.2009.02.018. PubMed DOI
Geiger A., Hirtz C., Bécue T., Bellard E., Centeno D., Gargani D., Rossignol M., Cuny G., Peltier J.-B. Exocytosis and protein secretion in Trypanosoma. BMC Microbiol. 2010;10:1–17. doi: 10.1186/1471-2180-10-20. PubMed DOI PMC
Nten C.M.A., Sommerer N., Rofidal V., Hirtz C., Rossignol M., Cuny G., Peltier J.-B., Geiger A. Excreted/Secreted Proteins from Trypanosome Procyclic Strains. J. Biomed. Biotechnol. 2010;2010:212817. doi: 10.1155/2010/212817. PubMed DOI PMC
Szempruch A.J., Sykes S.E., Kieft R., Dennison L., Becker A.C., Gartrell A., Martin W.J., Nakayasu E.S., Almeida I.C., Hajduk S.L., et al. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia. Cell. 2016;164:246–257. doi: 10.1016/j.cell.2015.11.051. PubMed DOI PMC
Li Z., Torres J.E.P., Goossens J., Vertommen D., Caljon G., Sterckx Y.G.J., Magez S. An Unbiased Immunization Strategy Results in the Identification of Enolase as a Potential Marker for Nanobody-Based Detection of Trypanosoma evansi. Vaccines. 2020;8:415. doi: 10.3390/vaccines8030415. PubMed DOI PMC
Avilán L., Gualdrón-López M., Quiñones W., González-González L., Hannaert V., Michels P.A., Concepción J.L. Enolase: A key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target. Enzyme Res. 2011;2011:932549. doi: 10.4061/2011/932549. PubMed DOI PMC
Quiñones W., Peña P., Domingo-Sananes M., Cáceres A., Michels P.A.M., Avilan L., Concepción J.L. Leishmania mexicana: Molecular cloning and characterization of enolase. Exp. Parasitol. 2007;116:241–251. doi: 10.1016/j.exppara.2007.01.008. PubMed DOI
Vanegas G., Quiñones W., Carrasco-López C., Concepción J.L., Albericio F., Avilán L. Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitol. Res. 2007;101:1511–1516. doi: 10.1007/s00436-007-0668-7. PubMed DOI
Alsford S., Eckert S., Baker N., Glover L., Sanchez-Flores A., Leung K.F., Turner D.J., Field M.C., Berriman M., Horn D. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. 2012;482:232–236. doi: 10.1038/nature10771. PubMed DOI PMC
Wiedemar N., Zwyer M., Zoltner M., Cal M., Field M.C., Mäser P. Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in Trypanosoma brucei. Faseb Bioadv. 2019;1:595–608. doi: 10.1096/fba.2019-00033. PubMed DOI PMC
Zoltner M., Campagnaro G.D., Taleva G., Burrell A., Cerone M., Leung K.F., Achcar F., Horn D., Vaughan S., Gadelha C., et al. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J. Biol. Chem. 2020;295:8331–8347. doi: 10.1074/jbc.RA120.012355. PubMed DOI PMC
Ziegelbauer K., Overath P. Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infect. Immun. 1993;61:4540–4545. doi: 10.1128/iai.61.11.4540-4545.1993. PubMed DOI PMC
Ziegelbauer K., Overath P. Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J. Biol. Chem. 1992;267:10791–10796. doi: 10.1016/S0021-9258(19)50088-6. PubMed DOI
Ziegelbauer K., Multhaup G., Overath P. Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. J. Biol. Chem. 1992;267:10797–10803. doi: 10.1016/S0021-9258(19)50089-8. PubMed DOI
Radwanska M., Magez S., Michel A., Stijlemans B., Geuskens M., Pays E. Comparative Analysis of Antibody Responses against HSP60, Invariant Surface Glycoprotein 70, and Variant Surface Glycoprotein Reveals a Complex Antigen-Specific Pattern of Immunoglobulin Isotype Switching during Infection by Trypanosoma brucei. Infect. Immun. 2000;68:848–860. doi: 10.1128/IAI.68.2.848-860.2000. PubMed DOI PMC
Sullivan L., Wall S.J., Carrington M., Ferguson M.A.J. Proteomic Selection of Immunodiagnostic Antigens for Human African Trypanosomiasis and Generation of a Prototype Lateral Flow Immunodiagnostic Device. PLoS Neglect. Trop. Dis. 2013;7:e2087. doi: 10.1371/journal.pntd.0002087. PubMed DOI PMC
Biéler S., Waltenberger H., Barrett M.P., McCulloch R., Mottram J.C., Carrington M., Schwaeble W., McKerrow J., Phillips M.A., Michels P.A., et al. Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis. PLoS ONE. 2016;11:e0168074. doi: 10.1371/journal.pone.0168074. PubMed DOI PMC
Rudramurthy G.R., Sengupta P.P., Metilda B., Balamurugan V., Prabhudas K., Rahman H. Development of an enzyme immunoassay using recombinant invariant surface glycoprotein (rISG) 75 for serodiagnosis of bovine trypanosomosis. Indian J. Exp. Biol. 2015;53:7–15. PubMed
Rudramurthy G.R., Sengupta P.P., Ligi M., Rahman H. An inhibition enzyme immuno assay exploring recombinant invariant surface glycoprotein and monoclonal antibodies for surveillance of surra in animals. Biologicals. 2017;46:148–152. doi: 10.1016/j.biologicals.2017.02.004. PubMed DOI
Koumandou V.L., Boehm C., Horder K.A., Field M.C. Evidence for Recycling of Invariant Surface Transmembrane Domain Proteins in African Trypanosomes. Eukaryot. Cell. 2013;12:330–342. doi: 10.1128/EC.00273-12. PubMed DOI PMC
Leung K.F., Riley F.S., Carrington M., Field M.C. Ubiquitylation and Developmental Regulation of Invariant Surface Protein Expression in Trypanosomes. Eukaryot. Cell. 2011;10:916–931. doi: 10.1128/EC.05012-11. PubMed DOI PMC
Radwanska M., Magez S., Dumont N., Pays A., Nolan D., Pays E. Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol. 2000;22:639–650. doi: 10.1046/j.1365-3024.2000.00348.x. PubMed DOI
Aricescu A.R., Lu W., Jones E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006;62:1243–1250. doi: 10.1107/S0907444906029799. PubMed DOI
Whitmore L., Wallace B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers. 2008;89:392–400. doi: 10.1002/bip.20853. PubMed DOI
Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R., Kikhney A.G., Petoukhov M.V., Molodenskiy D.S., Panjkovich A., Mertens H.D.T., Gruzinov A., Borges C., et al. ATSAS 3.0: Expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 2021;54:343–355. doi: 10.1107/S1600576720013412. PubMed DOI PMC
Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 1992;25:495–503. doi: 10.1107/S0021889892001663. DOI
Hajizadeh N.R., Franke D., Jeffries C.M., Svergun D.I. Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. Sci. Rep. 2018;8:1–13. doi: 10.1038/s41598-018-25355-2. PubMed DOI PMC
Franke D., Svergun D.I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Cryst. 2009;42:342–346. doi: 10.1107/S0021889809000338. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2020;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
Deleeuw V., Phạm H.T.T., Poorter I.D., Janssens I., Trez C.D., Radwanska M., Magez S. Trypanosoma brucei brucei causes a rapid and persistent influx of neutrophils in the spleen of infected mice. Parasite Immunol. 2019;41:e12664. doi: 10.1111/pim.12664. PubMed DOI PMC
Higgins M.K., Carrington M. Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families. Protein Sci. 2014;23:354–365. doi: 10.1002/pro.2428. PubMed DOI PMC
Blum M., Down J., Gurnett A., Carrington M., Turner M., Wiley D. A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature. 1993;362:603–609. doi: 10.1038/362603a0. PubMed DOI
Trevor C.E., Gonzalez-Munoz A.L., Macleod O.J.S., Woodcock P.G., Rust S., Vaughan T.J., Garman E.F., Minter R., Carrington M., Higgins M.K. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nat. Microbiol. 2019;4:2074–2081. doi: 10.1038/s41564-019-0589-0. PubMed DOI PMC
Bartossek T., Jones N.G., Schäfer C.S., Cvitković M.C., Glogger M., Mott H.R., Kuper J., Brennich M., Carrington M., Smith A.-S., et al. Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. Nat. Microbiol. 2017;2:1523–1532. doi: 10.1038/s41564-017-0013-6. PubMed DOI
Higgins M.K., Tkachenko O., Brown A., Reed J., Raper J., Carrington M. Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl. Acad. Sci. USA. 2013;110:1905–1910. doi: 10.1073/pnas.1214943110. PubMed DOI PMC
Iwasaki A., Omer S.B. Why and How Vaccines Work. Cell. 2020;183:290–295. doi: 10.1016/j.cell.2020.09.040. PubMed DOI PMC
Pollard A.J., Bijker E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021;21:83–100. doi: 10.1038/s41577-020-00479-7. PubMed DOI PMC
Lewnard J.A., Lo N.C., Arinaminpathy N., Frost I., Laxminarayan R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature. 2020;581:94–99. doi: 10.1038/s41586-020-2238-4. PubMed DOI PMC
Wainwright M. Dyes, trypanosomiasis and DNA: A historical and critical review. Biotech. Histochem. 2010;85:341–354. doi: 10.3109/10520290903297528. PubMed DOI
Rouzer C.A., Cerami A. Hypertriglyceridemia associated with Trypanosoma brucei brucei infection in rabbits: Role of defective triglyceride removal. Mol. Biochem. Parasit. 1980;2:31–38. doi: 10.1016/0166-6851(80)90046-8. PubMed DOI
Beutler B., Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature. 1986;320:584–588. doi: 10.1038/320584a0. PubMed DOI
Cross G.A.M. Antigenic variation in trypanosomes. Proc. Royal. Soc. Lond. Ser. B Biol. Sci. 1978;202:55–72. doi: 10.4269/ajtmh.1977.26.240. PubMed DOI
Cross G.A.M. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975;71:393–417. doi: 10.1017/S003118200004717X. PubMed DOI
Vickerman K. Antigenic variation in trypanosomes. Nature. 1978;273:613–617. doi: 10.1038/273613a0. PubMed DOI
Cornelissen A.W.C.A., Bakkeren G.A.M., Barry J.D., Michels P.A.M., Borst P. Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Res. 1985;13:4661–4676. doi: 10.1093/nar/13.13.4661. PubMed DOI PMC
Uzcanga G.L., Perrone T., Noda J.A., Pérez-Pazos J., Medina R., Hoebeke J., Bubis J. Variant Surface Glycoprotein from Trypanosoma evansi Is Partially Responsible for the Cross-Reaction between Trypanosoma evansi and Trypanosoma vivax. Biochemistry. 2004;43:595–606. doi: 10.1021/bi0301946. PubMed DOI
Magez S., Torres J.E.P., Obishakin E., Radwanska M. Infections with Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front. Immunol. 2020;11:382. doi: 10.3389/fimmu.2020.00382. PubMed DOI PMC
Radwanska M., Nguyen H.T.T., Moon S., Obishakin E., Magez S. Trypanosomatids, Methods and Protocols. Methods Mol. Biol. 2020;2116:721–738. doi: 10.1007/978-1-0716-0294-2_42. PubMed DOI
Maharana B.R., Sudhakar N.R., Jawalagatti V., Saravanan B.C., Blake D.P., Tewari A.K. Evaluation of the Immunoprotective Potential of Recombinant Paraflagellar Rod Proteins of Trypanosoma evansi in Mice. Vaccines. 2020;8:84. doi: 10.3390/vaccines8010084. PubMed DOI PMC
Autheman D., Crosnier C., Clare S., Goulding D.A., Brandt C., Harcourt K., Tolley C., Galaway F., Khushu M., Ong H., et al. An invariant Trypanosoma vivax vaccine antigen induces protective immunity. Nature. 2021;595:1–5. doi: 10.1038/s41586-021-03597-x. PubMed DOI
Mkunza F., Olaho W.M., Powell C.N. Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense. Vaccine. 1995;13:151–154. doi: 10.1016/0264-410X(95)93128-V. PubMed DOI
Southon H.A.W., Cunningham M.P. Infectivity of Trypanosomes derived from Individual Glossina morsitans Westw. Nature. 1966;212:1477–1478. doi: 10.1038/2121477a0. PubMed DOI
Russo D.C., Grab D.J., Lonsdale-Eccles J.D., Shaw M.K., Williams D.J. Directional movement of variable surface glycoprotein-antibody complexes in Trypanosoma brucei. Eur. J. Cell Biol. 1993;62:432–441. PubMed
Dickie E.A., Giordani F., Gould M.K., Mäser P., Burri C., Mottram J.C., Rao S.P.S., Barrett M.P. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop. Med. Infect. Dis. 2020;5:29. doi: 10.3390/tropicalmed5010029. PubMed DOI PMC
Guedes R.L.M., Rodrigues C.M.F., Coatnoan N., Cosson A., Cadioli F.A., Garcia H.A., Gerber A.L., Machado R.Z., Minoprio P.M.C., Teixeira M.M.G., et al. A comparative in silico linear B-cell epitope prediction and characterization for South American and African Trypanosoma vivax strains. Genomics. 2019;111:407–417. doi: 10.1016/j.ygeno.2018.02.017. PubMed DOI
Liu T., Shi K., Li W. Deep learning methods improve linear B-cell epitope prediction. Biodata Min. 2020;13:1–3. doi: 10.1186/s13040-020-00211-0. PubMed DOI PMC