Beyond the VSG layer: Exploring the role of intrinsic disorder in the invariant surface glycoproteins of African trypanosomes

. 2024 Apr ; 20 (4) : e1012186. [epub] 20240422

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38648216
Odkazy

PubMed 38648216
PubMed Central PMC11065263
DOI 10.1371/journal.ppat.1012186
PII: PPATHOGENS-D-23-02245
Knihovny.cz E-zdroje

In the bloodstream of mammalian hosts, African trypanosomes face the challenge of protecting their invariant surface receptors from immune detection. This crucial role is fulfilled by a dense, glycosylated protein layer composed of variant surface glycoproteins (VSGs), which undergo antigenic variation and provide a physical barrier that shields the underlying invariant surface glycoproteins (ISGs). The protective shield's limited permeability comes at the cost of restricted access to the extracellular host environment, raising questions regarding the specific function of the ISG repertoire. In this study, we employ an integrative structural biology approach to show that intrinsically disordered membrane-proximal regions are a common feature of members of the ISG super-family, conferring the ability to switch between compact and elongated conformers. While the folded, membrane-distal ectodomain is buried within the VSG layer for compact conformers, their elongated counterparts would enable the extension beyond it. This dynamic behavior enables ISGs to maintain a low immunogenic footprint while still allowing them to engage with the host environment when necessary. Our findings add further evidence to a dynamic molecular organization of trypanosome surface antigens wherein intrinsic disorder underpins the characteristics of a highly flexible ISG proteome to circumvent the constraints imposed by the VSG coat.

Zobrazit více v PubMed

Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, Lhommé F, et al.. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science (New York, NY). 2012;337: 463–466. doi: 10.1126/science.1222753 PubMed DOI

Salmon D, Bachmaier S, Krumbholz C, Kador M, Gossmann JA, Uzureau P, et al.. Cytokinesis of Trypanosoma brucei bloodstream forms depends on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. 2012;84: 225–242. doi: 10.1111/j.1365-2958.2012.08013.x PubMed DOI

Salmon D. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response. Pathogens. 2018;7: 48. doi: 10.3390/pathogens7020048 PubMed DOI PMC

SEED JR, SECHELSKI OB, LOOMIS MR. A Survey for a Trypanocidal Factor in Primate Sera. J Protozool. 1990;37: 393–400. doi: 10.1111/j.1550-7408.1990.tb01163.x PubMed DOI

Rifkin MR. Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc Natl Acad Sci. 1978;75: 3450–3454. doi: 10.1073/pnas.75.7.3450 PubMed DOI PMC

Macleod OJS, Cook AD, Webb H, Crow M, Burns R, Redpath M, et al.. Invariant surface glycoprotein 65 of Trypanosoma brucei is a complement C3 receptor. Nat Commun. 2022;13: 5085. doi: 10.1038/s41467-022-32728-9 PubMed DOI PMC

Sülzen H, Began J, Dhillon A, Kereïche S, Pompach P, Votrubova J, et al.. Cryo-EM structures of Trypanosoma brucei gambiense ISG65 with human complement C3 and C3b and their roles in alternative pathway restriction. Nat Commun. 2023;14: 2403. doi: 10.1038/s41467-023-37988-7 PubMed DOI PMC

Bangs JD. Evolution of Antigenic Variation in African Trypanosomes: Variant Surface Glycoprotein Expression, Structure, and Function. Bioessays. 2018;40: 1800181. doi: 10.1002/bies.201800181 PubMed DOI PMC

Pinger J, Nešić D, Ali L, Aresta-Branco F, Lilic M, Chowdhury S, et al.. African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nature microbiology. 2018;3: 932. doi: 10.1038/s41564-018-0187-6 PubMed DOI PMC

Mony BM, MacGregor P, Ivens A, Rojas F, Cowton A, Young J, et al.. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature. 2013; 1–17. doi: 10.1038/nature12864 PubMed DOI PMC

Rojas F, Silvester E, Young J, Milne R, Tettey M, Houston DR, et al.. Oligopeptide Signaling through TbGPR89 Drives Trypanosome Quorum Sensing. Cell. 2019;176: 306–317.e16. doi: 10.1016/j.cell.2018.10.041 PubMed DOI PMC

Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, et al.. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia. Cell. 2016;164: 246–257. doi: 10.1016/j.cell.2015.11.051 PubMed DOI PMC

Eliaz D, Kannan S, Shaked H, Arvatz G, Tkacz ID, Binder L, et al.. Exosome secretion affects social motility in Trypanosoma brucei. Hill KL, editor. PLoS Pathogens. 2017;13: e1006245–38. doi: 10.1371/journal.ppat.1006245 PubMed DOI PMC

Hall T, Esser K. Topologic mapping of protective and nonprotective epitopes on the variant surface glycoprotein of the WRATat 1 clone of Trypanosoma brucei rhodesiense. J Immunol. 1984;132: 2059–2063. doi: 10.4049/jimmunol.132.4.2059 PubMed DOI

Cross GAM. Structure of the variant glycoproteins and surface coat of Trypanosoma brucei. Philos Trans R Soc Lond B, Biol Sci. 1984;307: 3–12. doi: 10.1098/rstb.1984.0104 PubMed DOI

Masterson WJ, Taylor D, Turner MJ. Topologic analysis of the epitopes of a variant surface glycoprotein of Trypanosoma brucei. J Immunol. 1988;140: 3194–3199. doi: 10.4049/jimmunol.140.9.3194 PubMed DOI

Overath P, Chaudhri M, Steverding D, Ziegelbauer K. Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitol Today. 1994;10: 53–58. doi: 10.1016/0169-4758(94)90393-x PubMed DOI

Bartossek T, Jones NG, Schäfer C et al.. Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. Nat Microbiol 2, 1523–1532 (2017). 10.1038/s41564-017-0013-6 PubMed DOI

Mussmann R, Engstler M, Gerrits H, Kieft R, Toaldo CB, Onderwater J, et al.. Factors Affecting the Level and Localization of the Transferrin Receptor in Trypanosoma brucei *. J Biol Chem. 2004;279: 40690–40698. doi: 10.1074/jbc.M404697200 PubMed DOI

Field MC, Carrington M. The trypanosome flagellar pocket. Nature Reviews Microbiology. 2009;7: 775–786. doi: 10.1038/nrmicro2221 PubMed DOI

Ziegelbauer K, Overath P. Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J Biol Chem. 1992;267: 10791–6. PubMed

Ziegelbauer K, Overath P. Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infect Immun. 1993;61: 4540–4545. doi: 10.1128/iai.61.11.4540-4545.1993 PubMed DOI PMC

Chung W, Leung KF, Carrington M, Field MC. Ubiquitylation is Required for Degradation of Transmembrane Surface Proteins in Trypanosomes. Traffic. 2008;9: 1681–1697. doi: 10.1111/j.1600-0854.2008.00785.x PubMed DOI

Cook AD, Carrington M, Higgins MK. Trypanosomes and complement: more than one way to die? Trends Parasitol. 2023;39: 1014–1022. doi: 10.1016/j.pt.2023.09.001 PubMed DOI PMC

Sullivan L, Wall SJ, Carrington M, Ferguson MAJ. Proteomic Selection of Immunodiagnostic Antigens for Human African Trypanosomiasis and Generation of a Prototype Lateral Flow Immunodiagnostic Device. Plos Neglect Trop D. 2013;7: e2087. doi: 10.1371/journal.pntd.0002087 PubMed DOI PMC

Magez S, Li Z, Nguyen HTT, Torres JEP, Wielendaele PV, Radwanska M, et al.. The History of Anti-Trypanosome Vaccine Development Shows That Highly Immunogenic and Exposed Pathogen-Derived Antigens Are Not Necessarily Good Target Candidates: Enolase and ISG75 as Examples. Pathogens. 2021;10: 1050. doi: 10.3390/pathogens10081050 PubMed DOI PMC

Cross GAM. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975;71: 393–417. doi: 10.1017/s003118200004717x PubMed DOI

Casas-Sanchez A, Ramaswamy R, Perally S, Haines LR, Rose C, Aguilera-Flores M, et al.. The Trypanosoma brucei MISP family of invariant proteins is co-expressed with BARP as triple helical bundle structures on the surface of salivary gland forms, but is dispensable for parasite development within the tsetse vector. PLOS Pathog. 2023;19: e1011269. doi: 10.1371/journal.ppat.1011269 PubMed DOI PMC

Makarov A, Began J, Mautone IC, Pinto E, Ferguson L, Zoltner M, et al.. The role of invariant surface glycoprotein 75 in xenobiotic acquisition by African trypanosomes. Microb Cell. 2023;10: 18. doi: 10.15698/mic2023.02.790 PubMed DOI PMC

Moon S, Janssens I, Kim KH, Stijlemans B, Magez S, Radwanska M. Detrimental Effect of Trypanosoma brucei brucei Infection on Memory B Cells and Host Ability to Recall Protective B-cell Responses. J Infect Dis. 2022;226: 528–540. doi: 10.1093/infdis/jiac112 PubMed DOI

Kavan D, Man P. MSTools—Web based application for visualization and presentation of HXMS data. Int J Mass Spectrom. 2011;302: 53–58. doi: 10.1016/j.ijms.2010.07.030 DOI

Thureau A, Roblin P, Pérez J. BioSAXS on the SWING beamline at Synchrotron SOLEIL. J Appl Crystallogr. 2021;54: 1698–1710. doi: 10.1107/s1600576721008736 DOI

Tully MD, Kieffer J, Brennich ME, Aberdam RC, Florial JB, Hutin S, et al.. BioSAXS at European Synchrotron Radiation Facility–Extremely Brilliant Source: BM29 with an upgraded source, detector, robot, sample environment, data collection and analysis software. J Synchrotron Radiat. 2023;30: 258–266. doi: 10.1107/S1600577522011286 PubMed DOI PMC

Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. Journal of Applied Crystallography. 2000;33: 218–225. Available: http://onlinelibrary.wiley.com.ezproxy.vub.ac.be:2048/store/10.1107/S0021889899015216/asset/S0021889899015216.pdf?v=1&t=gpgt3kev&s=1798c05aa7c262675ca49710f8431d86c43fbe46. DOI

Panjkovich A, Svergun DI. CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics. 2018;34: 1944–1946. doi: 10.1093/bioinformatics/btx846 PubMed DOI PMC

Hopkins JB, Gillilan RE, Skou S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Cryst (2017) 50, 1545–1553. 2017; 1–9. doi: 10.1107/S1600576717011438 PubMed DOI PMC

Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS, et al.. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr. 2021;54: 343–355. doi: 10.1107/S1600576720013412 PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596: 583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC

Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, et al.. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2022; 2021.10.04.463034. doi: 10.1101/2021.10.04.463034 DOI

Schneidman-Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Research. 2010;38: W540–4. doi: 10.1093/nar/gkq461 PubMed DOI PMC

Pelikan M, Hura G, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys. 2009;28: 174–189. doi: 10.4149/gpb_2009_02_174 PubMed DOI PMC

Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 2016;44: W424–W429. doi: 10.1093/nar/gkw389 PubMed DOI PMC

Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al.. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023;32: e4792. doi: 10.1002/pro.4792 PubMed DOI PMC

Vela SD, Svergun DI. Methods, development and applications of small-angle X-ray scattering to characterize biological macromolecules in solution. Curr Res Struct Biology. 2020;2: 164–170. doi: 10.1016/j.crstbi.2020.08.004 PubMed DOI PMC

Brosey CA, Tainer JA. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struc Biol. 2019;58: 197–213. doi: 10.1016/j.sbi.2019.04.004 PubMed DOI PMC

Đaković S, Zeelen JP, Gkeka A, Chandra M, Straaten M van, Foti K, et al.. A structural classification of the variant surface glycoproteins of the African trypanosome. PLOS Neglected Trop Dis. 2023;17: e0011621. doi: 10.1371/journal.pntd.0011621 PubMed DOI PMC

So J, Sudlow S, Sayeed A, Grudda T, Deborggraeve S, Ngoyi DM, et al.. VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains. Mbio. 2022; e02553–22. doi: 10.1128/mbio.02553-22 PubMed DOI PMC

Provencher SW, Gloeckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981;20: 33–37. doi: 10.1021/bi00504a006 PubMed DOI

Stokkum IHM van, Spoelder HJW, Bloemendal M, Grondelle R van, Groen FCA. Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem. 1990;191: 110–118. doi: 10.1016/0003-2697(90)90396-q PubMed DOI

Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, et al.. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596: 590–596. doi: 10.1038/s41586-021-03828-1 PubMed DOI PMC

Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, et al.. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods. 2019;16: 595–602. doi: 10.1038/s41592-019-0459-y PubMed DOI PMC

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al.. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373: 871–876. doi: 10.1126/science.abj8754 PubMed DOI PMC

Brookes E, Rocco M, Vachette P, Trewhella J. AlphaFold-predicted protein structures and small-angle X-ray scattering: insights from an extended examination of selected data in the Small-Angle Scattering Biological Data Bank. J Appl Crystallogr. 2023;56: 910–926. doi: 10.1107/S1600576723005344 PubMed DOI PMC

Receveur-Bréchot V. AlphaFold, small-angle X-ray scattering and ensemble modelling: a winning combination for intrinsically disordered proteins. J Appl Crystallogr. 2023;56: 1313–1314. doi: 10.1107/S1600576723008403 PubMed DOI PMC

Alderson TR, Pritišanac I, Kolarić Đ, Moses AM, Forman-Kay JD. Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2. Proc Natl Acad Sci. 2023;120: e2304302120. doi: 10.1073/pnas.2304302120 PubMed DOI PMC

Schwede A, Jones N, Engstler M, Carrington M. The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. Molecular and biochemical parasitology. 2011;175: 201–204. doi: 10.1016/j.molbiopara.2010.11.004 PubMed DOI PMC

Hempelmann A, Hartleb L, Straaten M van, Hashemi H, Zeelen JP, Bongers K, et al.. Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome. Cell Reports. 2021;37: 109923. doi: 10.1016/j.celrep.2021.109923 PubMed DOI

Miller EN, Allan LM, Turner MJ. Topological analysis of antigenic determinants on a variant surface glycoprotein of Trypanosoma brucei. Mol Biochem Parasitol. 1984;13: 67–81. doi: 10.1016/0166-6851(84)90102-6 PubMed DOI

Clarke MW, Barbet AF, Pearson TW. Structural features of antigenic determinants on variant surface glycoproteins from Trypanosoma brucei. Mol Immunol. 1987;24: 707–713. doi: 10.1016/0161-5890(87)90052-6 PubMed DOI

Freymann D, Down J, Carrington M, Turner M, Wiley D. 2.9A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. Journal Of Molecular Biology. 1990;216: 141–160. Available: message:%3CCAD0U+0Ce_Q8xzvu0Qao98pUSMiChQ21kmdUGUEypzT3ttz3pfg@mail.gmail.com%3E. doi: 10.1016/S0022-2836(05)80066-X PubMed DOI

Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, et al.. Hydrodynamic Flow-Mediated Protein Sorting on the Cell Surface of Trypanosomes. Cell. 2007;131: 505–515. doi: 10.1016/j.cell.2007.08.046 PubMed DOI

Niz MD, Brás D, Ouarné M, Pedro M, Nascimento AM, Misikova LH, et al.. Organotypic endothelial adhesion molecules are key for Trypanosoma brucei tropism and virulence. Cell Reports. 2021;36: 109741. doi: 10.1016/j.celrep.2021.109741 PubMed DOI PMC

Hemphill A, Frame I, Ross CA. The interaction of Trypanosoma congolense with endothelial cells. Parasitology. 1994;109: 631–641. doi: 10.1017/s0031182000076514 PubMed DOI

Chakrabarti P, Chakravarty D. Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophys Chem. 2022;283: 106769. doi: 10.1016/j.bpc.2022.106769 PubMed DOI

Lee R van der, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, et al.. Classification of Intrinsically Disordered Regions and Proteins. Chemical reviews. 2014;114: 6589–6631. doi: 10.1021/cr400525m PubMed DOI PMC

Rio A del, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching Single Talin Rod Molecules Activates Vinculin Binding. Science. 2009;323: 638–641. doi: 10.1126/science.1162912 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...