Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
MSMT LO 1416
Czech Ministry of Education
PubMed
29938315
DOI
10.1007/s11120-018-0539-3
PII: 10.1007/s11120-018-0539-3
Knihovny.cz E-zdroje
- Klíčová slova
- Marine cyanobacteria, Oxygen minimum zones, Oxygen-evolving complex, Photoacclimation, Photosystem II, Prochlorococcus, Synechococcus,
- MeSH
- bakteriální proteiny chemie genetika fyziologie MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza fyziologie MeSH
- fotosystém II - proteinový komplex chemie genetika fyziologie MeSH
- genom bakteriální MeSH
- kyslík metabolismus MeSH
- molekulární modely MeSH
- průtoková cytometrie MeSH
- sinice genetika metabolismus MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chlorofyl MeSH
- fotosystém II - proteinový komplex MeSH
- kyslík MeSH
The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.
Center of Applied Ecology and Sustainability Pontificia Universidad Católica de Chile Santiago Chile
CNRS UMR 7144 Station Biologique CS 90074 29680 Roscoff France
CNRS UMR 8227 Marine Glycobiology Group Station Biologique CS 90074 29680 Roscoff France
Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
Faculty of Sciences University of South Bohemia Branišovská 37005 České Budějovice Czech Republic
Sorbonne Université Station Biologique CS 90074 29688 Roscoff cedex France
Zobrazit více v PubMed
Nat Struct Mol Biol. 2009 Mar;16(3):334-42 PubMed
Biochemistry. 1998 Feb 10;37(6):1551-8 PubMed
PLoS One. 2009;4(4):e5135 PubMed
Microbiol Mol Biol Rev. 2009 Jun;73(2):249-99 PubMed
Plant Cell. 2006 Nov;18(11):3121-31 PubMed
Photosynth Res. 2008 Oct-Dec;98(1-3):349-63 PubMed
PLoS Genet. 2007 Dec;3(12):e231 PubMed
Biochemistry. 2002 Jun 25;41(25):8004-12 PubMed
Plant Physiol. 1999 May;120(1):301-8 PubMed
PLoS One. 2007 Dec 19;2(12):e1341 PubMed
Genome Biol. 2005;6(2):R14 PubMed
Nature. 2011 May 5;473(7345):55-60 PubMed
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9 PubMed
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8319-8324 PubMed
Plant Cell Physiol. 2001 Dec;42(12):1331-7 PubMed
Nature. 2001 Feb 8;409(6821):739-43 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):9-18 PubMed
J Bacteriol. 2007 Jun;189(12):4485-93 PubMed
Plant Physiol. 1997 Dec;115(4):1473-80 PubMed
Trends Plant Sci. 2004 Jan;9(1):18-25 PubMed
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):15996-6003 PubMed
Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11126-30 PubMed
BMC Genomics. 2014 Dec 29;15:1185 PubMed
Photosynth Res. 2009 Aug-Sep;101(2-3):195-204 PubMed
ISME J. 2008 Sep;2(9):937-53 PubMed
Plant Cell. 2004 Aug;16(8):2164-75 PubMed
Proc Natl Acad Sci U S A. 1984 Feb;81(4):1107-11 PubMed
Biochemistry. 2005 Sep 13;44(36):12214-28 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):191-203 PubMed
Mol Phylogenet Evol. 2010 Jul;56(1):176-86 PubMed
Environ Microbiol Rep. 2010 Dec;2(6):728-38 PubMed
Plant Cell Physiol. 2000 Dec;41(12):1354-64 PubMed
J Biol Chem. 1995 Mar 24;270(12):6901-7 PubMed
Int J Syst Evol Microbiol. 2000 Sep;50 Pt 5:1833-47 PubMed
Plant Cell Physiol. 2002 Aug;43(8):932-8 PubMed
Science. 2004 Mar 19;303(5665):1831-8 PubMed
Genome Biol. 2008;9(5):R90 PubMed
Biochemistry. 2005 Dec 27;44(51):16939-48 PubMed
Biochemistry. 1992 Aug 18;31(32):7404-10 PubMed
Mol Plant. 2011 Nov;4(6):1052-61 PubMed
Curr Protoc Cytom. 2001 May;Chapter 11:Unit 11.11 PubMed
J Biol Chem. 2008 Feb 15;283(7):4044-50 PubMed
Sci Data. 2014 Sep 30;1:140034 PubMed
Biochim Biophys Acta. 2007 Jun;1767(6):575-82 PubMed
PLoS One. 2015 Jul 20;10(7):e0133526 PubMed
Nature. 2003 Aug 28;424(6952):1042-7 PubMed
FEBS Lett. 2007 Nov 13;581(27):5255-8 PubMed
Nat Commun. 2013;4:2705 PubMed
Plant Physiol. 1993 Jan;101(1):285-296 PubMed
Ann Rev Mar Sci. 2010;2:305-31 PubMed
ISME J. 2014 Jun;8(6):1221-36 PubMed
Photosynth Res. 2002;73(1-3):149-56 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Photosynth Res. 2014 Oct;122(1):57-67 PubMed
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2548-53 PubMed
Photosynth Res. 2008 Feb-Mar;95(2-3):147-54 PubMed
FEBS Lett. 2006 Apr 3;580(8):2117-22 PubMed
Photosynth Res. 2018 Mar;135(1-3):263-274 PubMed
Plant Physiol. 2007 Nov;145(3):668-79 PubMed
Nat Rev Microbiol. 2014 Dec;12(12):841-50 PubMed
J Biol Chem. 1997 Jul 11;272(28):17821-6 PubMed
Curr Protoc Protein Sci. 2007 Nov;Chapter 2:Unit 2.9 PubMed