Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex

. 2018 Oct ; 138 (1) : 57-71. [epub] 20180625

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29938315

Grantová podpora
MSMT LO 1416 Czech Ministry of Education

Odkazy

PubMed 29938315
DOI 10.1007/s11120-018-0539-3
PII: 10.1007/s11120-018-0539-3
Knihovny.cz E-zdroje

The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.

Zobrazit více v PubMed

Nat Struct Mol Biol. 2009 Mar;16(3):334-42 PubMed

Biochemistry. 1998 Feb 10;37(6):1551-8 PubMed

PLoS One. 2009;4(4):e5135 PubMed

Microbiol Mol Biol Rev. 2009 Jun;73(2):249-99 PubMed

Plant Cell. 2006 Nov;18(11):3121-31 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):349-63 PubMed

PLoS Genet. 2007 Dec;3(12):e231 PubMed

Biochemistry. 2002 Jun 25;41(25):8004-12 PubMed

Plant Physiol. 1999 May;120(1):301-8 PubMed

PLoS One. 2007 Dec 19;2(12):e1341 PubMed

Genome Biol. 2005;6(2):R14 PubMed

Nature. 2011 May 5;473(7345):55-60 PubMed

Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9 PubMed

Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8319-8324 PubMed

Plant Cell Physiol. 2001 Dec;42(12):1331-7 PubMed

Nature. 2001 Feb 8;409(6821):739-43 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):9-18 PubMed

J Bacteriol. 2007 Jun;189(12):4485-93 PubMed

Plant Physiol. 1997 Dec;115(4):1473-80 PubMed

Trends Plant Sci. 2004 Jan;9(1):18-25 PubMed

Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):15996-6003 PubMed

Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11126-30 PubMed

BMC Genomics. 2014 Dec 29;15:1185 PubMed

Photosynth Res. 2009 Aug-Sep;101(2-3):195-204 PubMed

ISME J. 2008 Sep;2(9):937-53 PubMed

Plant Cell. 2004 Aug;16(8):2164-75 PubMed

Proc Natl Acad Sci U S A. 1984 Feb;81(4):1107-11 PubMed

Biochemistry. 2005 Sep 13;44(36):12214-28 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):191-203 PubMed

Mol Phylogenet Evol. 2010 Jul;56(1):176-86 PubMed

Environ Microbiol Rep. 2010 Dec;2(6):728-38 PubMed

Plant Cell Physiol. 2000 Dec;41(12):1354-64 PubMed

J Biol Chem. 1995 Mar 24;270(12):6901-7 PubMed

Int J Syst Evol Microbiol. 2000 Sep;50 Pt 5:1833-47 PubMed

Plant Cell Physiol. 2002 Aug;43(8):932-8 PubMed

Science. 2004 Mar 19;303(5665):1831-8 PubMed

Genome Biol. 2008;9(5):R90 PubMed

Biochemistry. 2005 Dec 27;44(51):16939-48 PubMed

Biochemistry. 1992 Aug 18;31(32):7404-10 PubMed

Mol Plant. 2011 Nov;4(6):1052-61 PubMed

Curr Protoc Cytom. 2001 May;Chapter 11:Unit 11.11 PubMed

J Biol Chem. 2008 Feb 15;283(7):4044-50 PubMed

Sci Data. 2014 Sep 30;1:140034 PubMed

Biochim Biophys Acta. 2007 Jun;1767(6):575-82 PubMed

PLoS One. 2015 Jul 20;10(7):e0133526 PubMed

Nature. 2003 Aug 28;424(6952):1042-7 PubMed

FEBS Lett. 2007 Nov 13;581(27):5255-8 PubMed

Nat Commun. 2013;4:2705 PubMed

Plant Physiol. 1993 Jan;101(1):285-296 PubMed

Ann Rev Mar Sci. 2010;2:305-31 PubMed

ISME J. 2014 Jun;8(6):1221-36 PubMed

Photosynth Res. 2002;73(1-3):149-56 PubMed

Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed

Photosynth Res. 2014 Oct;122(1):57-67 PubMed

Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2548-53 PubMed

Photosynth Res. 2008 Feb-Mar;95(2-3):147-54 PubMed

FEBS Lett. 2006 Apr 3;580(8):2117-22 PubMed

Photosynth Res. 2018 Mar;135(1-3):263-274 PubMed

Plant Physiol. 2007 Nov;145(3):668-79 PubMed

Nat Rev Microbiol. 2014 Dec;12(12):841-50 PubMed

J Biol Chem. 1997 Jul 11;272(28):17821-6 PubMed

Curr Protoc Protein Sci. 2007 Nov;Chapter 2:Unit 2.9 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Prochlorococcus marinus responses to light and oxygen

. 2024 ; 19 (7) : e0307549. [epub] 20240722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...