Prochlorococcus marinus responses to light and oxygen

. 2024 ; 19 (7) : e0307549. [epub] 20240722

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39038009

Prochlorococcus marinus, the smallest picocyanobacterium, comprises multiple clades occupying distinct niches, currently across tropical and sub-tropical oligotrophic ocean regions, including Oxygen Minimum Zones. Ocean warming may open growth-permissive temperatures in new, poleward photic regimes, along with expanded Oxygen Minimum Zones. We used ocean metaproteomic data on current Prochlorococcus marinus niches, to guide testing of Prochlorococcus marinus growth across a matrix of peak irradiances, photoperiods, spectral bands and dissolved oxygen. MED4 from Clade HLI requires greater than 4 h photoperiod, grows at 25 μmol O2 L-1 and above, and exploits high cumulative diel photon doses. MED4, however, relies upon an alternative oxidase to balance electron transport, which may exclude it from growth under our lowest, 2.5 μmol O2 L-1, condition. SS120 from clade LLII/III is restricted to low light under full 250 μmol O2 L-1, shows expanded light exploitation under 25 μmol O2 L-1, but is excluded from growth under 2.5 μmol O2 L-1. Intermediate oxygen suppresses the cost of PSII photoinactivation, and possibly the enzymatic production of H2O2 in SS120, which has limitations on genomic capacity for PSII and DNA repair. MIT9313 from Clade LLIV is restricted to low blue irradiance under 250 μmol O2 L-1, but exploits much higher irradiance under red light, or under lower O2 concentrations, conditions which slow photoinactivation of PSII and production of reactive oxygen species. In warming oceans, range expansions and competition among clades will be governed not only by light levels. Short photoperiods governed by latitude, temperate winters, and depth attenuation of light, will exclude clade HLI (including MED4) from some habitats. In contrast, clade LLII/III (including SS120), and particularly clade LLIV (including MIT9313), may exploit higher light niches nearer the surface, under expanding OMZ conditions, where low O2 relieves the stresses of oxidation stress and PSII photoinhibition.

Zobrazit více v PubMed

Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, et al.. Prochlorococcus Marinus nov. Gen. Nov. Sp.: An oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Archives of Microbiology. 1992;157: 297–300. doi: 10.1007/BF00245165 DOI

Partensky F, Hess WR, Vaulot D. Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance. Microbiology and Molecular Biology Reviews. 1999;63: 106–127. PubMed PMC

Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al.. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424: 1042–1047. doi: 10.1038/nature01947 PubMed DOI

Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature. 1998;393: 464–467. doi: 10.1038/30965 PubMed DOI

Moore LR, Goericke R, Chisholm SW. Comparative physiology of Synechococcus and Prochlorococcus: Influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Marine Ecology Progress Series. 1995;116: 259–275. Available: https://www.jstor.org/stable/44635011.

Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al.. Culturing the marine cyanobacterium Prochlorococcus: Prochlorococcus culturing. Limnology and Oceanography: Methods. 2007;5: 353–362. doi: 10.4319/lom.2007.5.353 DOI

Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: The structure and function of collective diversity. Nature Reviews Microbiology. 2015;13: 13–27. doi: 10.1038/nrmicro3378 PubMed DOI

Veldhuis M, Kraay G. Vertical distribution and pigment composition of a picoplanktonic prochlorophyte in the subtropical North Atlantic:a combined study of HPLC-analysis of pigments and flow cytometry. Marine Ecology Progress Series. 1990;68: 121–127. doi: 10.3354/meps068121 DOI

Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature. 1988;334: 340–343. doi: 10.1038/334340a0 DOI

Partensky F, Garczarek L. Prochlorococcus: Advantages and Limits of Minimalism. Annual Review of Marine Science. 2010;2: 305–331. doi: 10.1146/annurev-marine-120308-081034 PubMed DOI

Goericke R, Olson RJ, Shalapyonok A. A novel niche for Prochlorococcus Sp. In low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep Sea Research Part I: Oceanographic Research Papers. 2000;47: 1183–1205. doi: 10.1016/S0967-0637(99)00108-9 DOI

Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environmental Microbiology Reports. 2010;2: 728–738. doi: 10.1111/j.1758-2229.2010.00167.x PubMed DOI

Ulloa O, Henríquez-Castillo C, Ramírez-Flandes S, Plominsky AM, Murillo AA, Morgan-Lang C, et al.. The cyanobacterium Prochlorococcus has divergent light-harvesting antennae and may have evolved in a low-oxygen ocean. Proceedings of the National Academy of Sciences. 2021;118. doi: 10.1073/pnas.2025638118 PubMed DOI PMC

Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al.. Cryptic oxygen cycling in anoxic marine zones. Proceedings of the National Academy of Sciences of the United States of America. 2017;114: 8319–8324. doi: 10.1073/pnas.1619844114 PubMed DOI PMC

Holtrop T, Huisman J, Stomp M, Biersteker L, Aerts J, Grébert T, et al.. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nature Ecology & Evolution. 2021;5: 1–12. doi: 10.1038/s41559-020-01330-x PubMed DOI

Johnson Z, Landry ML, Bidigare RR, Brown SL, Campbell L, Gunderson J, et al.. Energetics and growth kinetics of a deep Prochlorococcus spp. Population in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography. 1999;46: 1719–1743. doi: 10.1016/S0967-0645(99)00041-7 DOI

Partensky F, Mella-Flores D, Six C, Garczarek L, Czjzek M, Marie D, et al.. Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex. Photosynthesis Research. 2018. doi: 10.1007/s11120-018-0539-3 PubMed DOI

Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients. Science. 2006;311: 1737–1740. doi: 10.1126/science.1118052 PubMed DOI

Zinser ER, Johnson ZI, Coe A, Karaca E, Veneziano D, Chisholm SW. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnology and Oceanography. 2007;52: 2205–2220. doi: 10.4319/lo.2007.52.5.2205 DOI

Kent AG, Baer SE, Mouginot C, Huang JS, Larkin AA, Lomas MW, et al.. Parallel phylogeography of Prochlorococcus and Synechococcus. The ISME Journal. 2019;13: 430–441. doi: 10.1038/s41396-018-0287-6 PubMed DOI PMC

West NJ, Scanlan DJ. Niche-Partitioning of Prochlorococcus Populations in a Stratified Water Column in the Eastern North Atlantic Ocean. Applied and Environmental Microbiology. 1999;65: 2585–2591. doi: 10.1128/AEM.65.6.2585–2591.1999 PubMed DOI PMC

Delmont TO, Eren AM. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ. 2018;6: e4320. doi: 10.7717/peerj.4320 PubMed DOI PMC

Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al.. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences. 2013;110: 9824–9829. doi: 10.1073/pnas.1307701110 PubMed DOI PMC

Barton AD, Irwin AJ, Finkel ZV, Stock CA. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the National Academy of Sciences. 2016;113: 2964–2969. doi: 10.1073/pnas.1519080113 PubMed DOI PMC

Follett CL, Dutkiewicz S, Ribalet F, Zakem E, Caron D, Armbrust EV, et al.. Trophic interactions with heterotrophic bacteria limit the range of Prochlorococcus. Proceedings of the National Academy of Sciences. 2022;119: e2110993118. doi: 10.1073/pnas.2110993118 PubMed DOI PMC

Li G, Talmy D, Campbell DA. Diatom growth responses to photoperiod and light are predictable from diel reductant generation. Journal of Phycology. 2017;53: 95–107. doi: 10.1111/jpy.12483 PubMed DOI PMC

Prézelin BB. Diel periodicity in phytoplankton productivity. In: Berman T, Gons HJ, Mur LR, editors. The Daily Growth Cycle of Phytoplankton: Proceedings of the Fifth International Workshop of the Group for Aquatic Primary Productivity (GAP), held at Breukelen, The Netherlands 20–28 April 1990. Dordrecht: Springer Netherlands; 1992. pp. 1–35. doi: 10.1007/978-94-011-2805-6_1 DOI

Vaulot D, Marie D, Olson RJ, Chisholm SW. Growth of Prochlorococcus, a Photosynthetic Prokaryote, in the Equatorial Pacific Ocean. Science. 1995;268: 1480–1482. doi: 10.1126/science.268.5216.1480 PubMed DOI

Garcia-Soto C, Cheng L, Caesar L, Schmidtko S, Jewett EB, Cheripka A, et al.. An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science. 2021;8. doi: 10.3389/fmars.2021.642372 DOI

Lee CE, Downey K, Colby RS, Freire CA, Nichols S, Burgess MN, et al.. Recognizing Salinity Threats in the Climate Crisis. Integrative and Comparative Biology. 2022;62: 441–460. doi: 10.1093/icb/icac069 PubMed DOI

Matear RJ, Hirst AC. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Global Biogeochemical Cycles. 2003;17. doi: 10.1029/2002GB001997 DOI

Helm KP, Bindoff NL, Church JA. Observed decreases in oxygen content of the global ocean. Geophysical Research Letters. 2011;38. doi: 10.1029/2011GL049513 DOI

Busecke JJM, Resplandy L, Ditkovsky SJ, John JG. Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World. AGU Advances. 2022;3: e2021AV000470. doi: 10.1029/2021AV000470 DOI

Saito MA, Saunders JK, Chagnon M, Gaylord DA, Shepherd A, Held NA, et al.. Development of an Ocean Protein Portal for Interactive Discovery and Education. Journal of proteome research. 2021;20: 326–336. doi: 10.1021/acs.jproteome.0c00382 PubMed DOI PMC

Moore LR, Chisholm SW. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnology and Oceanography. 1999;44: 628–638. doi: 10.4319/lo.1999.44.3.0628 DOI

Billheimer SJ, Talley LD, Martz TR. Oxygen Seasonality, Utilization Rate, and Impacts of Vertical Mixing in the Eighteen Degree Water Region of the Sargasso Sea as Observed by Profiling Biogeochemical Floats. Global Biogeochemical Cycles. 2021;35: e2020GB006824. doi: 10.1029/2020GB006824 DOI

Morel A., Available usable, and stored radiant energy in relation to marine photosynthesis. Deep Sea Research. 1978;25: 673–688. doi: 10.1016/0146-6291(78)90623-9 DOI

Goericke R, Repeta DJ. The pigments of Prochlorococcus Marinus: The presence of divinylchlorophyll a and b in a marine procaryote. Limnology and Oceanography. 1992;37: 425–433. doi: 10.4319/lo.1992.37.2.0425 DOI

Morel A, Ahn Y-H, Partensky F, Vaulot D, Claustre H. Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation. Journal of Marine Research. 1993;51: 617–649. doi: 10.1357/0022240933223963 DOI

Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, et al.. The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynthesis Research. 2001;70: 53–71. doi: 10.1023/A:1013835924610 PubMed DOI

Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, et al.. BRENDA, the ELIXIR core data resource in 2021: New developments and updates. Nucleic Acids Research. 2021;49: D498–D508. doi: 10.1093/nar/gkaa1025 PubMed DOI PMC

Rolling Deck To Repository. Cruise KM1128 on RV Kilo Moana. 2015. doi: 10.7284/903696 DOI

Saito MA. Peptides and their spectral counts from KM1128 the METZYME expedition on R/V Kilo Moana in the tropical North Pacific in 2011. Biological and Chemical Oceanography Data Management Office (BCO-DMO); 2018.

Saito MA, McIlvin MR, Moran DM, Goepfert TJ, DiTullio GR, Post AF, et al.. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science (New York, NY). 2014;345: 1173–1177. doi: 10.1126/science.1256450 PubMed DOI

Saito MA, Dorsk A, Post AF, McIlvin MR, Rappé MS, DiTullio GR, et al.. Needles in the blue sea: Sub-species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome. PROTEOMICS. 2015;15: 3521–3531. doi: 10.1002/pmic.201400630 PubMed DOI

Wickham H. Tidyverse: Easily install and load the tidyverse. 2023. Available: https://CRAN.R-project.org/package=tidyverse.

Team RStudio. RStudio: Integrated development environment for r. Boston, MA: RStudio, Inc.; 2015. Available: http://www.posit.co/.

Bonisteel EM, Turner BE, Murphy CD, Melanson J-R, Duff NM, Beardsall BD, et al.. Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLOS ONE. 2018;13: e0209115. doi: 10.1371/journal.pone.0209115 PubMed DOI PMC

Saunders JK, McIlvin MR, Dupont CL, Kaul D, Moran DM, Horner T, et al.. Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proceedings of the National Academy of Sciences. 2022;119: e2200014119. doi: 10.1073/pnas.2200014119 PubMed DOI PMC

Saunders JK, Gaylord DA, Held NA, Symmonds N, Dupont CL, Shepherd A, et al.. METATRYP v 2.0: Metaproteomic Least Common Ancestor Analysis for Taxonomic Inference Using Specialized Sequence Assemblies—Standalone Software and Web Servers for Marine Microorganisms and Coronaviruses. Journal of Proteome Research. 2020;19: 4718–4729. doi: 10.1021/acs.jproteome.0c00385 PubMed DOI PMC

Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of Robust Growth of Prochlorococcus Colonies and Dilute Liquid Cultures by “Helper” Heterotrophic Bacteria. Applied and Environmental Microbiology. 2008;74: 4530–4534. doi: 10.1128/AEM.02479-07 PubMed DOI PMC

Morris JJ, Johnson ZI, Szul MJ, Keller M, Zinser ER. Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean’s Surface. PLOS ONE. 2011;6: e16805. doi: 10.1371/journal.pone.0016805 PubMed DOI PMC

Berges JA, Franklin DJ, Harrison PJ. Evolution of an Artificial Seawater Medium: Improvements in Enriched Seawater, Artificial Water Over the Last Two Decades. Journal of Phycology. 2001;37: 1138–1145. doi: 10.1046/j.1529-8817.2001.01052.x DOI

Harrison WG, Platt T. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biology. 1986;5: 153–164. doi: 10.1007/BF00441695 DOI

Zeileis A, Grothendieck G, Ryan JA. Zoo: S3 infrastructure for regular and irregular time series (z’s ordered observations). 2021. Available: https://zoo.R-Forge.R-project.org/.

Bellavia S, Gratton S, Riccietti E. A Levenberg–Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients. Numerische Mathematik. 2018;140: 791–825. doi: 10.1007/s00211-018-0977-z DOI

Elzhov TV, Mullen KM, Spiess A-N, Bolker B. Minpack.lm: R interface to the levenberg-marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. 2016. Available: https://CRAN.R-project.org/package=minpack.lm.

Wood SN. Generalized Additive Models: An Introduction with R, Second Edition. 2nd ed. Boca Raton: Chapman and Hall/CRC; 2017. doi: 10.1201/9781315370279 DOI

Wood S. Mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. 2022. Available: https://CRAN.R-project.org/package=mgcv.

Murphy CD, Roodvoets MS, Austen EJ, Dolan A, Barnett A, Campbell DA. Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS One; San Francisco. 2017;12: e0168991. http://dx.doi.org.libproxy.mta.ca/ doi: 10.1371/journal.pone.0168991 PubMed DOI PMC

Jávorfi T, Erostyák J, Gál J, Buzády A, Menczel L, Garab G, et al.. Quantitative spectrophotometry using integrating cavities. Journal of Photochemistry and Photobiology B: Biology. 2006;82: 127–131. doi: 10.1016/j.jphotobiol.2005.10.002 PubMed DOI

Omar N, Beardsall B, Fleury K, Ataikiru E, Campbell D. Annotation of genes encoding enzymes across marine phytoplankton genomes. Dryad; 2023. pp. 1130923746 bytes. doi: 10.5061/DRYAD.KH1893284 DOI

Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, et al.. The BioCyc collection of microbial genomes and metabolic pathways. Briefings in Bioinformatics. 2019;20: 1085–1093. doi: 10.1093/bib/bbx085 PubMed DOI PMC

Allahverdiyeva Y, Isojärvi J, Zhang P, Aro E-M. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life. 2015;5: 716–743. doi: 10.3390/life5010716 PubMed DOI PMC

Zorz JK, Allanach JR, Murphy CD, Roodvoets MS, Campbell DA, Cockshutt AM. The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria. Life. 2015;5: 403–417. doi: 10.3390/life5010403 PubMed DOI PMC

Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al.. Open science resources for the discovery and analysis of Tara Oceans data. Scientific Data. 2015;2: 150023. doi: 10.1038/sdata.2015.23 PubMed DOI PMC

Aro E-M, Virgin I, Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 1993;1143: 113–134. doi: 10.1016/0005-2728(93)90134-2 PubMed DOI

Soitamo A, Havurinne V, Tyystjärvi E. Photoinhibition in marine picocyanobacteria. Physiologia Plantarum. 2017;161: 97–108. doi: 10.1111/ppl.12571 PubMed DOI

Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochimica Et Biophysica Acta. 2005;1706: 68–80. doi: 10.1016/j.bbabio.2004.09.001 PubMed DOI

Mann NH, Novac N, Mullineaux CW, Newman J, Bailey S, Robinson C. Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. FEBS letters. 2000;479: 72–77. doi: 10.1016/s0014-5793(00)01871-8 PubMed DOI

Komenda J, Tichý M, Prášil O, Knoppová J, Kuviková S, de Vries R, et al.. The Exposed N-Terminal Tail of the D1 Subunit Is Required for Rapid D1 Degradation during Photosystem II Repair in Synechocystis sp PCC 6803. The Plant Cell. 2007;19: 2839–2854. doi: 10.1105/tpc.107.053868 PubMed DOI PMC

Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. Annals of Botany. 2010;106: 1–16. doi: 10.1093/aob/mcq059 PubMed DOI PMC

Kanervo E, Mäenpää P, Aro E-M. D1 Protein Degradation and psbA Transcript Levels in Synechocystis PCC 6803 during Photoinhibition in Vivo. Journal of Plant Physiology. 1993;142: 669–675. doi: 10.1016/S0176-1617(11)80900-4 DOI

Chiba S, Akiyama Y, Ito K. Membrane Protein Degradation by FtsH Can Be Initiated from Either End. Journal of Bacteriology. 2002;184: 4775–4782. doi: 10.1128/JB.184.17.4775-4782.2002 PubMed DOI PMC

Boehm M, Yu J, Krynicka V, Barker M, Tichy M, Komenda J, et al.. Subunit Organization of a Synechocystis Hetero-Oligomeric Thylakoid FtsH Complex Involved in Photosystem II Repair. The Plant Cell. 2012;24: 3669–3683. doi: 10.1105/tpc.112.100891 PubMed DOI PMC

Sacharz J, Bryan SJ, Yu J, Burroughs NJ, Spence EM, Nixon PJ, et al.. Sub-cellular location of F ts H proteases in the cyanobacterium S Ynechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Molecular Microbiology. 2015;96: 448–462. doi: 10.1111/mmi.12940 PubMed DOI PMC

Adam Z, Zaltsman A, Sinvany-Villalobo G, Sakamoto W. FtsH proteases in chloroplasts and cyanobacteria. Physiologia Plantarum. 2005;123: 386–390. doi: 10.1111/j.1399-3054.2004.00436.x DOI

Krynická V, Skotnicová P, Jackson PJ, Barnett S, Yu J, Wysocka A, et al.. FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. Plant Communications. 2022;4: 100502. doi: 10.1016/j.xplc.2022.100502 PubMed DOI PMC

Koník P, Skotnicová P, Gupta S, Tichý M, Sharma S, Komenda J, et al.. The cyanobacterial FtsH4 protease controls accumulation of protein factors involved in the biogenesis of photosystem I. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2024;1865: 149017. doi: 10.1016/j.bbabio.2023.149017 PubMed DOI

Berg G, Shrager J, Van Dijken G, Mills M, Arrigo K, Grossman A. Responses of psbA, hli and ptox genes to changes in irradiance in marine Synechococcus and Prochlorococcus. Aquatic Microbial Ecology. 2011;65: 1–14. doi: 10.3354/ame01528 DOI

Cunane LM, Barton JD, Chen Z, Lê KHD, Amar D, Lederer F, et al.. Crystal Structure Analysis of Recombinant Rat Kidney Long Chain Hydroxy Acid Oxidase,. Biochemistry. 2005;44: 1521–1531. doi: 10.1021/bi048616e PubMed DOI

Sang Y, Barbosa JM, Wu H, Locy RD, Singh NK. Identification of a pyridoxine (pyridoxamine) 5′-phosphate oxidase from Arabidopsis thaliana. FEBS Letters. 2007;581: 344–348. doi: 10.1016/j.febslet.2006.12.028 PubMed DOI

Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF. Vitamin B6 (Pyridoxine) and Its Derivatives Are Efficient Singlet Oxygen Quenchers and Potential Fungal Antioxidants. Photochemistry and Photobiology. 2000;71: 129–134. doi: 10.1562/0031-8655(2000)071<0129:sipvbp>2.0.co;2 PubMed DOI

Structure Sancar A. and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews. 2003;103: 2203–2238. doi: 10.1021/cr0204348 PubMed DOI

Malmstrom RR, Coe A, Kettler GC, Martiny AC, Frias-Lopez J, Zinser ER, et al.. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. The ISME Journal. 2010;4: 1252–1264. doi: 10.1038/ismej.2010.60 PubMed DOI

Omar NM, Prášil O, McCain JSP, Campbell DA. Diffusional Interactions among Marine Phytoplankton and Bacterioplankton: Modelling H2O2 as a Case Study. Microorganisms. 2022;10: 821. doi: 10.3390/microorganisms10040821 PubMed DOI PMC

Bagby SC, Chisholm SW. Response of Prochlorococcus to varying CO2:O2 ratios. The ISME Journal. 2015;9: 2232–2245. doi: 10.1038/ismej.2015.36 PubMed DOI PMC

Gómez-Baena G, López-Lozano A, Gil-Martínez J, Lucena JM, Diez J, Candau P, et al.. Glucose Uptake and Its Effect on Gene Expression in Prochlorococcus. PLOS ONE. 2008;3: e3416. doi: 10.1371/journal.pone.0003416 PubMed DOI PMC

Muñoz-Marín M del C, Gómez-Baena G, Díez J, Beynon RJ, González-Ballester D, Zubkov MV, et al.. Glucose Uptake in Prochlorococcus: Diversity of Kinetics and Effects on the Metabolism. Frontiers in Microbiology. 2017;8. doi: 10.3389/fmicb.2017.00327 PubMed DOI PMC

Muñoz-Marín M del C, Luque I, Zubkov MV, Hill PG, Diez J, García-Fernández JM. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America. 2013;110: 8597–8602. doi: 10.1073/pnas.1221775110 PubMed DOI PMC

Zubkov MV, Tarran GA, Fuchs BM. Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiology Ecology. 2004;50: 153–161. doi: 10.1016/j.femsec.2004.06.009 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...