Diffusional Interactions among Marine Phytoplankton and Bacterioplankton: Modelling H2O2 as a Case Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0007990
Czech Academy of Sciences
2020
Mount Allison University Rice Memorial Graduate Fellowship
2020
New Brunswick Innovation Foundation STEM Graduate Award
PubMed
35456871
PubMed Central
PMC9030875
DOI
10.3390/microorganisms10040821
PII: microorganisms10040821
Knihovny.cz E-zdroje
- Klíčová slova
- bacterioplankton, diffusional interactions, hydrogen peroxide, phytoplankton,
- Publikační typ
- časopisecké články MeSH
Marine phytoplankton vary widely in size across taxa, and in cell suspension densities across habitats and growth states. Cell suspension density and total biovolume determine the bulk influence of a phytoplankton community upon its environment. Cell suspension density also determines the intercellular spacings separating phytoplankton cells from each other, or from co-occurring bacterioplankton. Intercellular spacing then determines the mean diffusion paths for exchanges of solutes among co-occurring cells. Marine phytoplankton and bacterioplankton both produce and scavenge reactive oxygen species (ROS), to maintain intracellular ROS homeostasis to support their cellular processes, while limiting damaging reactions. Among ROS, hydrogen peroxide (H2O2) has relatively low reactivity, long intracellular and extracellular lifetimes, and readily crosses cell membranes. Our objective was to quantify how cells can influence other cells via diffusional interactions, using H2O2 as a case study. To visualize and constrain potentials for cell-to-cell exchanges of H2O2, we simulated the decrease of [H2O2] outwards from representative phytoplankton taxa maintaining internal [H2O2] above representative seawater [H2O2]. [H2O2] gradients outwards from static cell surfaces were dominated by volumetric dilution, with only a negligible influence from decay. The simulated [H2O2] fell to background [H2O2] within ~3.1 µm from a Prochlorococcus cell surface, but extended outwards 90 µm from a diatom cell surface. More rapid decays of other, less stable ROS, would lower these threshold distances. Bacterioplankton lowered simulated local [H2O2] below background only out to 1.2 µm from the surface of a static cell, even though bacterioplankton collectively act to influence seawater ROS. These small diffusional spheres around cells mean that direct cell-to-cell exchange of H2O2 is unlikely in oligotrophic habits with widely spaced, small cells; moderate in eutrophic habits with shorter cell-to-cell spacing; but extensive within phytoplankton colonies.
Center Algatech Laboratory of Photosynthesis Novohradska 237 CZ 37981 Trebon Czech Republic
Department of Biology Massachusetts Institute of Technology Boston MA 02142 USA
Department of Biology Mount Allison University Sackville NB E4L1G7 Canada
Zobrazit více v PubMed
Reynolds C.S. The Ecology of Phytoplankton. Cambridge University Press; Cambridge, UK: 2006.
Falkowski P.G., Katz M.E., Knoll A.H., Quigg A., Raven J.A., Schofield O., Taylor F.J.R. The Evolution of Modern Eukaryotic Phytoplankton. Sci. Wash. 2004;305:354–360. doi: 10.1126/science.1095964. PubMed DOI
Purcell E.M. Life at Low Reynolds Number. Am. J. Phys. 1976;45:3–11. doi: 10.1119/1.10903. DOI
Finkel Z.V., Beardall J., Flynn K.J., Quigg A., Rees T.A.V., Raven J.A. Phytoplankton in a Changing World: Cell Size and Elemental Stoichiometry. J. Plankton Res. 2010;32:119–137. doi: 10.1093/plankt/fbp098. DOI
Stolte W., Riegman R. Effect of Phytoplankton Cell Size on Transient-State Nitrate and Ammonium Uptake Kinetics. Microbiology. 1995;141:1221–1229. doi: 10.1099/13500872-141-5-1221. PubMed DOI
Gemmell B.J., Oh G., Buskey E.J., Villareal T.A. Dynamic Sinking Behaviour in Marine Phytoplankton: Rapid Changes in Buoyancy May Aid in Nutrient Uptake. Proc. R. Soc. B Biol. Sci. 2016;283:20161126. doi: 10.1098/rspb.2016.1126. PubMed DOI PMC
Bertrand E.M., McCrow J.P., Moustafa A., Zheng H., McQuaid J.B., Delmont T.O., Post A.F., Sipler R.E., Spackeen J.L., Xu K., et al. Phytoplanktonbacterial Interactions Mediate Micronutrient Colimitation at the Coastal Antarctic Sea Ice Edge. Proc. Natl. Acad. Sci. USA. 2015;112:9938–9943. doi: 10.1073/pnas.1501615112. PubMed DOI PMC
Jakobsen H., Tang K. Effects of Protozoan Grazing on Colony Formation in Phaeocystis Globosa (Prymnesiophyceae) and the Potential Costs and Benefits. Aquat. Microb. Ecol. 2002;27:261–273. doi: 10.3354/ame027261. DOI
Robarts R., Zohary T., Waiser M., Yacobi Y. Bacterial Abundance, Biomass, and Production in Relation to Phytoplankton Biomass in the Levantine Basin of the Southeastern Mediterranean Sea. Mar. Ecol. Prog. Ser. 1996;137:273–281. doi: 10.3354/meps137273. DOI
Grob C., Ulloa O., Li W., Alarcón G., Fukasawa M., Watanabe S. Picoplankton Abundance and Biomass Across the Eastern South Pacific Ocean Along Latitude 32.5. Mar. Ecol. Prog. Ser. 2007;332:53–62. doi: 10.3354/meps332053. DOI
Olguín H.F., Boltovskoy D., Lange C.B., Brandini F., Flynn K.J. Distribution of Spring Phytoplankton (Mainly Diatoms) in the Upper 50 m of the Southwestern Atlantic Ocean (30) J. Plankton Res. 2006;28:1107–1128. doi: 10.1093/plankt/fbl045. DOI
Agustí S., Llabrés M. Solar Radiation-induced Mortality of Marine Pico-phytoplankton in the Oligotrophic Ocean. Photochem. Photobiol. 2007;83:793–801. doi: 10.1111/j.1751-1097.2007.00144.x. PubMed DOI
Klinkenberg G., Schumann R. Abundance Changes of Autotrophic and Heterotrophic Picoplankton in the Zingster Strom, a Shallow, Tideless Estuary South of the Darß-Zingst Peninsula (Southern Baltic Sea) Arch. Hydrobiol. 1995;134:359–377. doi: 10.1127/archiv-hydrobiol/134/1995/359. DOI
Albrecht M., Pröschold T., Schumann R. Identification of Cyanobacteria in a Eutrophic Coastal Lagoon on the Southern Baltic Coast. Front. Microbiol. 2017;8:923. doi: 10.3389/fmicb.2017.00923. PubMed DOI PMC
Pintoa E., Van Nieuwerburgha L., De Barros M.P., Pedersén M., Colepicolo P., Snoeijs P. Density-Dependent Patterns of Thiamine and Pigment Production in the Diatom Nitzschia Microcephala. Phytochemistry. 2003;63:155–163. doi: 10.1016/S0031-9422(03)00048-7. PubMed DOI
Fogel M.L., Cifuentes L.A., Velinsky D.J., Sharp J.H. Relationship of Carbon Availability in Estuarine Phytoplankton to Isotopic Composition. Mar. Ecol. Prog. Ser. 1992;82:291–301. doi: 10.3354/meps082291. DOI
Hansen P.J., Lundholm N., Rost B. Growth Limitation in Marine Red-Tide Dinoflagellates: Efects of pH Versus Inorganic Carbon Availability. Mar. Ecol. Prog. Ser. 2007;334:10. doi: 10.3354/meps334063. DOI
Avery G.B., Cooper W.J., Kieber R.J., Willey J.D. Hydrogen Peroxide at the Bermuda Atlantic Time Series Station: Temporal Variability of Seawater Hydrogen Peroxide. Mar. Chem. 2005;97:236–244. doi: 10.1016/j.marchem.2005.03.006. DOI
Kearns K.D., Hunter M.D. Algal Extracellular Products Suppress Anabaena Flos-Aquae Heterocyst Spacing. Microb. Ecol. 2002;43:174–180. doi: 10.1007/s00248-001-1039-z. PubMed DOI
Biller S.J., Berube P.M., Lindell D., Chisholm S.W. Prochlorococcus: The Structure and Function of Collective Diversity. Nat. Rev. Microbiol. 2015;13:13–27. doi: 10.1038/nrmicro3378. PubMed DOI
Kozuleva M.A., Ivanov B.N., Vetoshkina D.V., Borisova-Mubarakshina M.M. Minimizing an Electron Flow to Molecular Oxygen in Photosynthetic Electron Transfer Chain: An Evolutionary View. Front. Plant Sci. 2020;11:211. doi: 10.3389/fpls.2020.00211. PubMed DOI PMC
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants Under Stressful Conditions. J. Bot. 2012;2012:e217037. doi: 10.1155/2012/217037. DOI
Li R., Jia Z., Trush M.A. Defining ROS in Biology and Medicine. React. Oxyg. Species (Apex) 2016;1:9–21. doi: 10.20455/ros.2016.803. PubMed DOI PMC
Radi R. Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Redox Pathways in Molecular Medicine. Proc. Natl. Acad. Sci. USA. 2018;115:5839–5848. doi: 10.1073/pnas.1804932115. PubMed DOI PMC
Fridovich I. Oxygen Toxicity: A Radical Explanation. J. Exp. Biol. 1998;201:1203–1209. doi: 10.1242/jeb.201.8.1203. PubMed DOI
Zinser E.R. The Microbial Contribution to Reactive Oxygen Species Dynamics in Marine Ecosystems. Environ. Microbiol. Rep. 2018;10:412–427. doi: 10.1111/1758-2229.12626. PubMed DOI
Zhang T., Hansel C.M., Voelker B.M., Lamborg C.H. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds. Environ. Sci. Technol. 2016;50:2983–2993. doi: 10.1021/acs.est.5b03906. PubMed DOI
Diaz J.M., Hansel C.M., Voelker B.M., Mendes C.M., Andeer P.F., Zhang T. Widespread Production of Extracellular Superoxide by Heterotrophic Bacteria. Science. 2013;340:1223–1226. doi: 10.1126/science.1237331. PubMed DOI
Diaz J.M., Plummer S. Production of Extracellular Reactive Oxygen Species by Phytoplankton: Past and Future Directions. J. Plankton Res. 2018;40:655–666. doi: 10.1093/plankt/fby039. PubMed DOI PMC
Diaz J.M., Plummer S., Tomas C., Alves-de-Souza C. Production of Extracellular Superoxide and Hydrogen Peroxide by Five Marine Species of Harmful Bloom-Forming Algae. J. Plankton Res. 2018;40:667–677. doi: 10.1093/plankt/fby043. PubMed DOI PMC
Rose A.L., Webb E.A., Waite T.D., Moffett J.W. Measurement and Implications of Nonphotochemically Generated Superoxide in the Equatorial Pacific Ocean. Environ. Sci. Technol. 2008;42:2387–2393. doi: 10.1021/es7024609. PubMed DOI
Schneider R.J., Roe K.L., Hansel C.M., Voelker B.M. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms. Front. Chem. 2016;4:5. doi: 10.3389/fchem.2016.00005. PubMed DOI PMC
Sutherland K.M., Coe A., Gast R.J., Plummer S., Suffridge C.P., Diaz J.M., Bowman J.S., Wankel S.D., Hansel C.M. Extracellular Superoxide Production by Key Microbes in the Global Ocean. Limnol. Oceanogr. 2019;64:2679–2693. doi: 10.1002/lno.11247. DOI
Kustka A.B., Shaked Y., Milligan A.J., King D.W., Morel F.M.M. Extracellular Production of Superoxide by Marine Diatoms: Contrasting Effects on Iron Redox Chemistry and Bioavailability. Limnol. Oceanogr. 2005;50:1172–1180. doi: 10.4319/lo.2005.50.4.1172. DOI
Hansel C.M., Buchwald C., Diaz J.M., Ossolinski J.E., Dyhrman S.T., Mooy B.A.S.V., Polyviou D. Dynamics of Extracellular Superoxide Production by Trichodesmium Colonies from the Sargasso Sea. Limnol. Oceanogr. 2016;61:1188–1200. doi: 10.1002/lno.10266. DOI
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Breusegem F.V. ROS Signaling: The New Wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI
Rhee S.G. H2O2, a Necessary Evil for Cell Signaling. Science. 2006;312:1882–1883. doi: 10.1126/science.1130481. PubMed DOI
del Río L.A., López-Huertas E. ROS Generation in Peroxisomes and Its Role in Cell Signaling. Plant Cell Physiol. 2016;57:1364–1376. doi: 10.1093/pcp/pcw076. PubMed DOI
del Río L.A., Puppo A., editors. Reactive Oxygen Species in Plant Signaling, Signaling and Communication in Plants. Springer; Dordrecht, The Netherlands: New York, NY, USA: 2009.
Foyer C.H., Noctor G. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface Between Stress Perception and Physiological Responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. PubMed DOI PMC
Schmitt F.-J., Renger G., Friedrich T., Kreslavski V.D., Zharmukhamedov S.K., Los D.A., Kuznetsov V.V., Allakhverdiev S.I. Reactive Oxygen Species: Re-evaluation of Generation, Monitoring and Role in Stress-Signaling in Phototrophic Organisms. Biochim. Biophys. Acta (BBA) Bioenerg. 2014;1837:835–848. doi: 10.1016/j.bbabio.2014.02.005. PubMed DOI
Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. Reactive Oxygen Species Homeostasis and Signalling During Drought and Salinity Stresses. Plant Cell Environ. 2010;33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x. PubMed DOI
Shi K., Gao Z., Shi T.-Q., Song P., Ren L.-J., Huang H., Ji X.-J. Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives. Front. Microbiol. 2017;8:793. doi: 10.3389/fmicb.2017.00793. PubMed DOI PMC
Mittler R. ROS Are Good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. PubMed DOI
Schneider R. Ph.D. Thesis. Colorado School of Mines; Golden, CO, USA: 2015. Kinetics of Biological Hydrogen Peroxide Production.
Millero F.J., Sharma V.K., Karn B. The Rate of Reduction of Copper(II) with Hydrogen Peroxide in Seawater. Mar. Chem. 1991;36:71–83. doi: 10.1016/S0304-4203(09)90055-X. DOI
Moffett J.W., Zika R.G. Reaction Kinetics of Hydrogen Peroxide with Copper and Iron in Seawater. Environ. Sci. Technol. 1987;21:804–810. doi: 10.1021/es00162a012. PubMed DOI
Kelly T.J., Daum P.H., Schwartz S.E. Measurements of Peroxides in Cloudwater and Rain. J. Geophys. Res. Atmos. 1985;90:7861–7871. doi: 10.1029/JD090iD05p07861. DOI
Morris J.J., Johnson Z.I., Wilhelm S.W., Zinser E.R. Diel Regulation of Hydrogen Peroxide Defenses by Open Ocean Microbial Communities. J. Plankton Res. 2016;38:1103–1114. doi: 10.1093/plankt/fbw016. DOI
Yuan J., Shiller A.M. The Distribution of Hydrogen Peroxide in the Southern and Central Atlantic Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001;48:2947–2970. doi: 10.1016/S0967-0645(01)00026-1. DOI
Tjell A.Ø., Almdal K. Diffusion Rate of Hydrogen Peroxide Through Water-Swelled Polyurethane Membranes. Sens. Bio-Sens. Res. 2018;21:35–39. doi: 10.1016/j.sbsr.2018.10.001. DOI
Lesser M.P. Oxidative Stress in Marine Environments: Biochemistry and Physiological Ecology. Annu. Rev. Physiol. 2006;68:253–278. doi: 10.1146/annurev.physiol.68.040104.110001. PubMed DOI
Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 3rd ed. Oxford Science Publications; Oxford, UK: Clarendon Press, Oxford University Press; Oxford, UK: 1999.
González-Flecha B., Demple B. Homeostatic Regulation of Intracellular Hydrogen Peroxide Concentration in Aerobically Growing Escherichia Coli. J. Bacteriol. 1997;179:382–388. doi: 10.1128/jb.179.2.382-388.1997. PubMed DOI PMC
Lyublinskaya O., Antunes F. Measuring Intracellular Concentration of Hydrogen Peroxide with the Use of Genetically Encoded H2O2 Biosensor HyPer. Redox Biol. 2019;24:101200. doi: 10.1016/j.redox.2019.101200. PubMed DOI PMC
Stone J.R., Yang S. Hydrogen Peroxide: A Signaling Messenger. Antioxid. Redox Signal. 2006;8:243–270. doi: 10.1089/ars.2006.8.243. PubMed DOI
Sies H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Seaver L.C., Imlay J.A. Hydrogen Peroxide Fluxes and Compartmentalization Inside Growing Escherichia Coli. J. Bacteriol. 2001;183:7182–7189. doi: 10.1128/JB.183.24.7182-7189.2001. PubMed DOI PMC
Huang B.K., Sikes H.D. Quantifying Intracellular Hydrogen Peroxide Perturbations in Terms of Concentration. Redox Biol. 2014;2:955–962. doi: 10.1016/j.redox.2014.08.001. PubMed DOI PMC
Li X., Imlay J.A. Improved Measurements of Scant Hydrogen Peroxide Enable Experiments That Define Its Threshold of Toxicity for Escherichia Coli. Free Radic. Biol. Med. 2018;120:217–227. doi: 10.1016/j.freeradbiomed.2018.03.025. PubMed DOI PMC
Forman H.J., Bernardo A., Davies K.J.A. What Is the Concentration of Hydrogen Peroxide in Blood and Plasma? Arch. Biochem. Biophys. 2016;603:48–53. doi: 10.1016/j.abb.2016.05.005. PubMed DOI
Winterbourn C.C., Hampton M.B. Thiol Chemistry and Specificity in Redox Signaling. Free Radic. Biol. Med. 2008;45:549–561. doi: 10.1016/j.freeradbiomed.2008.05.004. PubMed DOI
Apel K., Hirt H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
Fedurayev P.V., Mironov K.S., Gabrielyan D.A., Bedbenov V.S., Zorina A.A., Shumskaya M., Los D.A. Hydrogen Peroxide Participates in Perception and Transduction of Cold Stress Signal in Synechocystis. Plant Cell Physiol. 2018;59:1255–1264. doi: 10.1093/pcp/pcy067. PubMed DOI
Khademian M., Imlay J.A. Escherichia Coli Cytochrome c Peroxidase Is a Respiratory Oxidase That Enables the Use of Hydrogen Peroxide as a Terminal Electron Acceptor. Proc. Natl. Acad. Sci. USA. 2017;114:E6922–E6931. doi: 10.1073/pnas.1701587114. PubMed DOI PMC
Bienert G.P., Chaumont F. Aquaporin-Facilitated Transmembrane Diffusion of Hydrogen Peroxide. Biochim. Biophys. Acta. 2014;1840:1596–1604. doi: 10.1016/j.bbagen.2013.09.017. PubMed DOI
Almasalmeh A., Krenc D., Wu B., Beitz E. Structural Determinants of the Hydrogen Peroxide Permeability of Aquaporins. FEBS J. 2014;281:647–656. doi: 10.1111/febs.12653. PubMed DOI
Wang H., Schoebel S., Schmitz F., Dong H., Hedfalk K. Characterization of Aquaporin-Driven Hydrogen Peroxide Transport. Biochim. Biophys. Acta (BBA) Biomembr. 2020;1862:183065. doi: 10.1016/j.bbamem.2019.183065. PubMed DOI
Miller E.W., Dickinson B.C., Chang C.J. Aquaporin-3 Mediates Hydrogen Peroxide Uptake to Regulate Downstream Intracellular Signaling. Proc. Natl. Acad. Sci. USA. 2010;107:15681–15686. doi: 10.1073/pnas.1005776107. PubMed DOI PMC
Bond R.J., Hansel C.M., Voelker B.M. Heterotrophic Bacteria Exhibit a Wide Range of Rates of Extracellular Production and Decay of Hydrogen Peroxide. Front. Mar. Sci. 2020;7:72. doi: 10.3389/fmars.2020.00072. DOI
Coe A., Ghizzoni J., LeGault K., Biller S., Roggensack S.E., Chisholm S.W. Survival of Prochlorococcus in Extended Darkness. Limnol. Oceanogr. 2016;61:1375–1388. doi: 10.1002/lno.10302. DOI
Zinser E.R. Cross-Protection from Hydrogen Peroxide by Helper Microbes: The Impacts on the Cyanobacterium Prochlorococcus and Other Beneficiaries in Marine Communities. Environ. Microbiol. Rep. 2018;10:199–411. doi: 10.1111/1758-2229.12625. PubMed DOI
Zhu Z., Meng R., Smith W.O., Jr., Doan-Nhu H., Nguyen-Ngoc L., Jiang X. Bacterial Composition Associated With Giant Colonies of the Harmful Algal Species Phaeocystis Globosa. Front. Microbiol. 2021;12:737484. doi: 10.3389/fmicb.2021.737484. PubMed DOI PMC
Oda T., Moritomi J., Kawano I., Hamaguchi S., Ishimatsu A., Muramatsu T. Catalase- and Superoxide Dismutase-induced Morphological Changes and Growth Inhibition in the Red Tide Phytoplankton Chattonella Marina. Biosci. Biotechnol. Biochem. 1995;59:2044–2048. doi: 10.1271/bbb.59.2044. DOI
Morris J.J., Rose A.L., Lu Z. Reactive Oxygen Species in the World Ocean and Their Impacts on Marine Ecosystems. Redox Biol. 2022;52:102285. doi: 10.1016/j.redox.2022.102285. PubMed DOI PMC
Oda T., Nakamura A., Shikayama M., Kawano I., Ishimatsu A., Muramatsu T. Generation of Reactive Oxygen Species by Raphidophycean Phytoplankton. Biosci. Biotechnol. Biochem. 1997;61:1658–1662. doi: 10.1271/bbb.61.1658. PubMed DOI
Average Separation of Objects within a Volume? 2009. [(accessed on 21 October 2021)]. Available online: http://www.forum.cosmoquest.org/showthread.php?93443-Average-separation-of-objects-within-a-volume.
Lambert W Function. 2022. [(accessed on 19 January 2022)]. Available online: https://en.wikipedia.org/wiki/Lambert_W_function.
RC Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019.
RStudio Team . RStudio: Integrated Development Environment for R. RStudio, Inc.; Boston, MA, USA: 2015.
Wickham H., Averick M., Bryan J., Chang W., McGowan L.D., François R., Grolemund G., Hayes A., Henry L., Hester J., et al. Welcome to the tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Borchers H.W. Pracma: Practical Numerical Math Functions. 2021. [(accessed on 22 October 2021)]. Available online: https://cran.r-project.org/web/packages/pracma/index.html.
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Wilke C.O. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘Ggplot2’. 2019. [(accessed on 12 December 2021)]. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html.
Kassambara A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. 2018. [(accessed on 17 July 2019)]. Available online: https://cran.r-project.org/web/packages/ggpubr/index.html.
Hester J. Glue: Interpreted String Literals. 2018. [(accessed on 17 July 2019)]. Available online: https://cran.r-project.org/web/packages/glue/index.html.
Zhu H. kableExtra: Construct Complex Table with ‘Kable’ and Pipe Syntax. 2019. [(accessed on 30 July 2019)]. Available online: https://cran.r-project.org/web/packages/kableExtra/index.html.
Goerg G.M. LambertW: Probabilistic Models to Analyze and Gaussianize Heavy-Tailed, Skewed Data. 2020. [(accessed on 16 December 2020)]. Available online: https://cran.r-project.org/web/packages/LambertW/index.html.
Pedersen T.L. RStudio Ggforce: Accelerating ‘Ggplot2’. 2021. [(accessed on 5 March 2021)]. Available online: https://cran.r-project.org/web/packages/ggforce/index.html.
D’Agostino McGowan L., Bryan J. Googledrive: An Interface to Google Drive. 2020. [(accessed on 21 October 2021)]. Available online: https://cran.r-project.org/web/packages/googledrive/index.html.
Bryan J. Googlesheets4: Access Google Sheets Using the Sheets API V4. 2021. [(accessed on 21 October 2021)]. Available online: https://cran.r-project.org/web/packages/googlesheets4/index.html.
Zotero|Your Personal Research Assistant. [(accessed on 7 December 2021)]. Available online: https://www.zotero.org/
Aust F. Citr: ’RStudio’ Add-in to Insert Markdown Citations. 2018. [(accessed on 17 July 2019)]. Available online: https://github.com/crsh/citr.
Xie Y. Knitr: A Comprehensive Tool for Reproducible Research in R. In: Stodden V., Leisch F., Peng R.D., editors. Implementing Reproducible Computational Research. Chapman and Hall/CRC; Boca Raton, FL, USA: 2014. [(accessed on 30 July 2019)]. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315373461-1/knitr-comprehensive-tool-reproducible-research-yihui-xie. DOI
Xie Y. Dynamic Documents with R and Knitr. Chapman and Hall/CRC; Boca Raton, FL, USA: 2015. [(accessed on 30 July 2019)]. Available online: https://duhi23.github.io/Analisis-de-datos/Yihue.pdf.
Xie Y. Knitr: A General-Purpose Package for Dynamic Report Generation in R; 2018. [(accessed on 30 July 2019)]. Available online: https://cran.r-project.org/web/packages/knitr/index.html.
Xie Y. Bookdown: Authoring Books and Technical Documents with R Markdown; 2019. [(accessed on 22 November 2021)]. Available online: https://cran.r-project.org/web/packages/bookdown/index.html.