• This record comes from PubMed

FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins

. 2023 Jan 09 ; 4 (1) : 100502. [epub] 20221205

Language English Country China Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
BB/M000265/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M012166/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Links

PubMed 36463410
PubMed Central PMC9860182
DOI 10.1016/j.xplc.2022.100502
PII: S2590-3462(22)00349-2
Knihovny.cz E-resources

FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4. FtsH1-FtsH3 form two hetero-oligomeric complexes, FtsH1/3 and FtsH2/3, which play a pivotal role in acclimation to nutrient deficiency and photosystem II quality control, respectively. FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex, and together with Arabidopsis thaliana AtFtsH7/9 orthologs, it has been assigned to another phylogenetic group of unknown function. Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex. Instead, we demonstrate that FtsH4 is involved in the biogenesis of photosystem II by dual regulation of high light-inducible proteins (Hlips). FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed. We provide experimental support for Hlips as proteolytic substrates of FtsH4. Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques. Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system. Based on the identification of proteins that co-purified with the tagged FtsH4, we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.

See more in PubMed

Allen D.J., Ort D.R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 2001;6:36–42. doi: 10.1016/s1360-1385(00)01808-2. PubMed DOI

Ball G., Demmerle J., Kaufmann R., Davis I., Dobbie I.M., Schermelleh L. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci. Rep. 2015;5:15915. doi: 10.1038/srep15915. PubMed DOI PMC

Biswal B., Joshi P.N., Raval M.K., Biswal U.C. Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr. Sci. 2011;101:47–56.

Boehm M., Yu J., Krynická V., Barker M., Tichý M., Komenda J., Nixon P.J., Nield J. Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell. 2012;24:3669–3683. doi: 10.1105/tpc.112.100891. PubMed DOI PMC

Casella S., Huang F., Mason D., Zhao G.Y., Johnson G.N., Mullineaux C.W., Liu L.N. Dissecting the native architecture and dynamics of cyanobacterial photosynthetic machinery. Mol. Plant. 2017;10:1434–1448. doi: 10.1016/j.molp.2017.09.019. PubMed DOI PMC

Dobáková M., Sobotka R., Tichý M., Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp PCC 6803. Plant Physiol. 2009;149:1076–1086. doi: 10.1104/pp.108.130039. PubMed DOI PMC

Ferro M., Brugière S., Salvi D., Seigneurin-Berny D., Court M., Moyet L., Ramus C., Miras S., Mellal M., Le Gall S., et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteomics. 2010;9:1063–1084. doi: 10.1074/mcp.M900325-MCP200. PubMed DOI PMC

Flannery S.E., Hepworth C., Wood W.H.J., Pastorelli F., Hunter C.N., Dickman M.J., Jackson P.J., Johnson M.P. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant J. 2021;105:223–244. doi: 10.1111/tpj.15053. PubMed DOI PMC

Funk C., Vermaas W. A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry. 1999;38:9397–9404. doi: 10.1021/bi990545+. PubMed DOI

Heinz S., Rast A., Shao L., Gutu A., Gügel I.L., Heyno E., Labs M., Rengstl B., Viola S., Nowaczyk M.M., et al. Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins. Plant Cell. 2016;28:2238–2260. doi: 10.1105/tpc.16.00491. PubMed DOI PMC

Hitchcock A., Jackson P.J., Chidgey J.W., Dickman M.J., Hunter C.N., Canniffe D.P. Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll-protein complex. ACS Synth. Biol. 2016;5:948–954. doi: 10.1021/acssynbio.6b00069. PubMed DOI

Hollingshead S., Kopecná J., Jackson P.J., Canniffe D.P., Davison P.A., Dickman M.J., Sobotka R., Hunter C.N. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 2012;287:27823–27833. doi: 10.1074/jbc.M112.352526. PubMed DOI PMC

Chidgey J.W., Linhartová M., Komenda J., Jackson P.J., Dickman M.J., Canniffe D.P., Koník P., Pilný J., Hunter C.N., Sobotka R. A Cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell. 2014;26:1267–1279. doi: 10.1105/tpc.114.124495. PubMed DOI PMC

Ito K., Akiyama Y. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol. 2005;59:211–231. doi: 10.1146/annurev.micro.59.030804.121316. PubMed DOI

Järvi S., Suorsa M., Tadini L., Ivanauskaite A., Rantala S., Allahverdiyeva Y., Leister D., Aro E.M. Thylakoid-bound FtsH proteins facilitate proper biosynthesis of photosystem I. Plant Physiol. 2016;171:1333–1343. doi: 10.1104/pp.16.00200. PubMed DOI PMC

Kato Y., Sakamoto W. FtsH protease in the thylakoid membrane: physiological functions and the regulation of protease activity. Front. Plant Sci. 2018;9:855. doi: 10.3389/fpls.2018.00855. PubMed DOI PMC

Kato Y., Miura E., Matsushima R., Sakamoto W. White leaf sectors in yellow variegated2 are formed by viable cells with undifferentiated plastids. Plant Physiol. 2007;144:952–960. doi: 10.1104/pp.107.099002. PubMed DOI PMC

Knoppová J., Sobotka R., Tichy M., Yu J., Koník P., Halada P., Nixon P.J., Komenda J. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II sssembly in Synechocystis. Plant Cell. 2014;26:1200–1212. doi: 10.1105/tpc.114.123919. PubMed DOI PMC

Knoppová J., Sobotka R., Yu J., Bečková M., Pilný J., Trinugroho J.P., Csefalvay L., Bína D., Nixon P.J., Komenda J. Assembly of D1/D2 complexes of photosystem II: binding of pigments and a network of auxiliary proteins. Plant Physiol. 2022;189:790–804. doi: 10.1093/plphys/kiac045. PubMed DOI PMC

Komenda J., Sobotka R. Cyanobacterial high-light-inducible proteins - protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta. 2016;1857:288–295. doi: 10.1016/j.bbabio.2015.08.011. PubMed DOI

Komenda J., Tichý M., Eichacker L.A. The PsbH protein is associated with the inner antenna CP47 and facilitates D1 processing and incorporation into PSII in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol. 2005;46:1477–1483. doi: 10.1093/pcp/pci159. PubMed DOI

Komenda J., Sobotka R., Nixon P.J. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 2012;15:245–251. doi: 10.1016/j.pbi.2012.01.017. PubMed DOI

Komenda J., Krynická V., Zakar T. Isolation of thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 and analysis of their photosynthetic pigment-protein complexes by Clear Native-PAGE. Bio-Protocol. 2019;9:e3126. doi: 10.21769/BioProtoc.3126. PubMed DOI PMC

Komenda J., Reisinger V., Müller B.C., Dobáková M., Granvogl B., Eichacker L.A. Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J. Biol. Chem. 2004;279:48620–48629. doi: 10.1074/jbc.M405725200. PubMed DOI

Komenda J., Barker M., Kuviková S., de Vries R., Mullineaux C.W., Tichý M., Nixon P.J. The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp PCC 6803. J. Biol. Chem. 2006;281:1145–1151. doi: 10.1074/jbc.M503852200. PubMed DOI

Konert M.M., Wysocka A., Koník P., Sobotka R. High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions. Photosynth. Res. 2022;152:317–332. doi: 10.1007/s11120-022-00904-z. PubMed DOI

Kopecná J., Komenda J., Bucinská L., Sobotka R. Long-term acclimation of the cyanobacterium Synechocystis sp PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 2012;160:2239–2250. doi: 10.1104/pp.112.207274. PubMed DOI PMC

Kopf M., Klähn S., Scholz I., Matthiessen J.K.F., Hess W.R., Voß B. Comparative analysis of the primary transcriptome of Synechocystis sp PCC 6803. DNA Res. 2014;21:527–539. doi: 10.1093/dnares/dsu018. PubMed DOI PMC

Koskela M.M., Skotnicová P., Kiss É., Sobotka R. Purification of protein-complexes from the cyanobacterium Synechocystis sp. PCC 6803 using FLAG-affinity chromatography. Bio. Protoc. 2020;10:e3616. doi: 10.21769/BioProtoc.3616. PubMed DOI PMC

Krynická V., Shao S., Nixon P.J., Komenda J. Accessibility controls selective degradation of photosystem II subunits by FtsH protease. Nat. Plants. 2015;1:15168. doi: 10.1038/nplants.2015.168. PubMed DOI

Krynická V., Tichý M., Krafl J., Yu J., Kaňa R., Boehm M., Nixon P.J., Komenda J. Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp PCC 6803. Mol. Microbiol. 2014;94:609–624. doi: 10.1111/mmi.12782. PubMed DOI

Krynická V., Georg J., Jackson P.J., Dickman M.J., Hunter C.N., Futschik M.E., Hess W.R., Komenda J. Depletion of the FtsH1/3 proteolytic complex suppresses the nutrient stress response in the cyanobacterium Synechocystis sp strain PCC 6803. Plant Cell. 2019;31:2912–2928. doi: 10.1105/tpc.19.00411. PubMed DOI PMC

López-Redondo M.L., Moronta F., Salinas P., Espinosa J., Cantos R., Dixon R., Marina A., Contreras A. Environmental control of phosphorylation pathways in a branched two-component system. Mol. Microbiol. 2010;78:475–489. doi: 10.1111/j.1365-2958.2010.07348.x. PubMed DOI

Los D.A., Zorina A., Sinetova M., Kryazhov S., Mironov K., Zinchenko V.V. Stress sensors and signal transducers in cyanobacteria. Sensors. 2010;10:2386–2415. doi: 10.3390/s100302386. PubMed DOI PMC

Mann N.H., Novac N., Mullineaux C.W., Newman J., Bailey S., Robinson C. Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp PCC 6803. FEBS Lett. 2000;479:72–77. doi: 10.1016/s0014-5793(00)01871-8. PubMed DOI

Metz J.G., Nixon P.J., Rögner M., Brudvig G.W., Diner B.A. Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry. 1989;28:6960–6969. doi: 10.1021/bi00443a028. PubMed DOI

Mothersole D.J., Jackson P.J., Vasilev C., Tucker J.D., Brindley A.A., Dickman M.J., Hunter C.N. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides. Mol. Microbiol. 2016;99:307–327. doi: 10.1111/mmi.13235. PubMed DOI PMC

Nishimura K., Kato Y., Sakamoto W. Chloroplast proteases: updates on proteolysis within and across suborganellar compartments. Plant Physiol. 2016;171:2280–2293. doi: 10.1104/pp.16.00330. PubMed DOI PMC

Pandey A., Andersen J.S., Mann M. Use of mass spectrometry to study signaling pathways. Sci. STKE. 2000;2000:pl1. doi: 10.1126/stke.2000.37.pl1. PubMed DOI

Porra R.J., Thompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta Bioenerg. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI

Rachedi R., Foglino M., Latifi A. Stress signaling in cyanobacteria: a mechanistic overview. Life. 2020;10:312. PubMed PMC

Rast A., Schaffer M., Albert S., Wan W., Pfeffer S., Beck F., Plitzko J.M., Nickelsen J., Engel B.D. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants. 2019;5:436–446. doi: 10.1038/s41477-019-0399-7. PubMed DOI

Riediger M., Hihara Y., Hess W.R. From cyanobacteria and algae to land plants: the RpaB/Ycf27 regulatory network in transition. Perspectives in Phycology. 2018;5:13–25. doi: 10.1127/pip/2018/0078. DOI

Riediger M., Kadowaki T., Nagayama R., Georg J., Hihara Y., Hess W.R. Biocomputational analyses and experimental validation identify the regulon controlled by the redox-responsive transcription factor RpaB. iScience. 2019;15:316–331. doi: 10.1016/j.isci.2019.04.033. PubMed DOI PMC

Sacharz J., Bryan S.J., Yu J., Burroughs N.J., Spence E.M., Nixon P.J., Mullineaux C.W. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol. Microbiol. 2015;96:448–462. doi: 10.1111/mmi.12940. PubMed DOI PMC

Sakayori T., Shiraiwa Y., Suzuki I. A Synechocystis homolog of SipA protein, Ssl3451, enhances the activity of the histidine kinase Hik33. Plant Cell Physiol. 2009;50:1439–1448. doi: 10.1093/pcp/pcp089. PubMed DOI

Shao S., Cardona T., Nixon P.J. Early emergence of the FtsH proteases involved in photosystem II repair. Photosynthetica. 2018;56:163–177. doi: 10.1007/s11099-018-0769-9. DOI

Shukla M.K., Llansola-Portoles M.J., Tichý M., Pascal A.A., Robert B., Sobotka R. Binding of pigments to the cyanobacterial high-light-inducible protein HliC. Photosynth. Res. 2018;137:29–39. doi: 10.1007/s11120-017-0475-7. PubMed DOI

Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. doi: 10.1038/nature10098. PubMed DOI

Skotnicová P., Sobotka R., Shepherd M., Hájek J., Hrouzek P., Tichý M. The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J. Biol. Chem. 2018;293:12394–12404. doi: 10.1074/jbc.RA118.003441. PubMed DOI PMC

Srinivasan R., Rajeswari H., Ajitkumar P. Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro. Microbiol. Res. 2008;163:21–30. doi: 10.1016/j.micres.2006.03.001. PubMed DOI

Srivastava A., Summers M.L., Sobotka R. Cyanobacterial sigma factors: current and future applications for biotechnological advances. Biotechnol. Adv. 2020;40:107517. doi: 10.1016/j.biotechadv.2020.107517. PubMed DOI

Stengel A., Gügel I.L., Hilger D., Rengstl B., Jung H., Nickelsen J. Initial steps of photosystem II de novo asembly and preloading with manganese take place in biogenesis centers in. Plant Cell. 2012;24:660–675. doi: 10.1105/tpc.111.093914. PubMed DOI PMC

Strašková A., Steinbach G., Konert G., Kotabová E., Komenda J., Tichý M., Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. Biochim. Biophys. Acta Bioenerg. 2019;1860:148053. doi: 10.1016/j.bbabio.2019.07.008. PubMed DOI

Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 2016;7:648. doi: 10.3389/fpls.2016.00648. PubMed DOI PMC

Tomoyasu T., Gamer J., Bukau B., Kanemori M., Mori H., Rutman A.J., Oppenheim A.B., Yura T., Yamanaka K., Niki H., et al. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J. 1995;14:2551–2560. PubMed PMC

van Waasbergen L.G., Dolganov N., Grossman A.R. nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in Synechococcus elongatus PCC 7942. J. Bacteriol. 2002;184:2481–2490. doi: 10.1128/jb.184.9.2481-2490.2002. PubMed DOI PMC

Yao D., Kieselbach T., Komenda J., Promnares K., Prieto M.A.H., Tichy M., Vermaas W., Funk C. Localization of the small CAB-like proteins in photosystem II. J. Biol. Chem. 2007;282:267–276. doi: 10.1074/jbc.M605463200. PubMed DOI

Yasuda A., Inami D., Hanaoka M. RpaB, an essential response regulator for high-light stress, is extensively involved in transcriptional regulation under light-intensity upshift conditions in Synechococcus elongatus PCC 7942. J. Gen. Appl. Microbiol. 2020;66:73–79. doi: 10.2323/jgam.2020.01.010. PubMed DOI

Yi L., Liu B., Nixon P.J., Yu J., Chen F. Recent advances in understanding the structural and functional evolution of FtsH proteases. Front. Plant Sci. 2022;13:837528. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...