The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria
Language English Country Japan Media print
Document type Journal Article, Review
Grant support
24-10227S
Grantová Agentura Ceské Republiky
P JAC project. No. CZ.02.01.01/00/22_008/0004624
Czech Ministry of Education, Sports and Youth
854126
H2020 European Research Council
24-10227S
Grantová Agentura Ceské Republiky
P JAC project. No. CZ.02.01.01/00/22_008/0004624
Czech Ministry of Education, Sports and Youth
854126
H2020 European Research Council
PubMed
38619128
PubMed Central
PMC11287208
DOI
10.1093/pcp/pcae042
PII: 7645829
Knihovny.cz E-resources
- Keywords
- Cyanobacteria, FtsH, Nutrient stress, Photodamage, Photosystem,
- MeSH
- Bacterial Proteins * metabolism genetics MeSH
- Stress, Physiological * MeSH
- ATP-Dependent Proteases metabolism genetics MeSH
- Cyanobacteria * metabolism physiology MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Bacterial Proteins * MeSH
- ATP-Dependent Proteases MeSH
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
See more in PubMed
Adam Z., Halperin T., Itzhaki H., Lindahl M., Ostersetzer O. (1998) The proteolytic machinery of chloroplasts: homologues of bacterial proteases.
Adam Z., Rudella A. and van Wijk K.J. (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. PubMed
Arends J., Thomanek N., Kuhlmann K., Marcus K. and Narberhaus F. (2016) In vivo trapping of FtsH substrates by label-free quantitative proteomics. PubMed
Bečková M., Gardian Z., Yu J.F., Koník P., Nixon P.J. and Komenda J. (2017a) Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of PubMed
Bečková M., Yu J., Krynická V., Kozlo A., Shao S., Koník P., et al. (2017b) Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. PubMed PMC
Boehm M., Nield J., Zhang P., Aro E.M., Komenda J. and Nixon P.J. (2009) Structural and mutational analysis of band 7 proteins in the cyanobacterium PubMed PMC
Boehm M., Yu J., Krynická V., Barker M., Tichý M., Komenda J., et al. (2012) Subunit organization of a PubMed PMC
Bonisteel E.M., Turner B.E., Murphy C.D., Melanson J.R., Duff N.M., Beardsall B.D., et al. (2018) Strain specific differences in rates of photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PubMed PMC
Bryant J.A., Sellars L.E., Busby S.J. and Lee D.J. (2014) Chromosome position effects on gene expression in PubMed PMC
Burnap R.L., Hagemann M. and Kaplan A. (2015) Regulation of CO PubMed PMC
Dühring U., Axmann I.M., Hess W.R. and Wilde A. (2006) An internal antisense RNA regulates expression of the photosynthesis gene PubMed PMC
Espinosa J., Forchhammer K. and Contreras A. (2007) Role of the PubMed
Espinosa J., Rodriguez-Mateos F., Salinas P., Lanza V.F., Dixon R., de la Cruz F., et al. (2014) PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. PubMed PMC
Ferro M., Brugière S., Salvi D., Seigneurin-Berny D., Court M., Moyet L., et al. (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. PubMed PMC
Ferro M., Salvi D., Brugière S., Miras S., Kowalski S., Louwagie M., et al. (2003) Proteomics of the chloroplast envelope membranes from PubMed
Fillat M.F. (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. PubMed
Fokina O., Herrmann C. and Forchhammer K. (2011) Signal-transduction protein PII from PubMed
Forchhammer K., Huergo L.F. and Huergo L.F. (2022) New views on PII signaling: from nitrogen sensing to global metabolic control. PubMed
Forchhammer K. and Selim K.A. (2020) Carbon/nitrogen homeostasis control in cyanobacteria. PubMed PMC
Fu W., Cui Z., Guo J., Cui X., Han G., Zhu Y., et al. (2023) Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in PubMed PMC
Gómez-Baena G., Rangel O.A., López-Lozano A., García-Fernández J.M. and Diez J. (2009) Stress responses in PubMed
Gonzalez A., Espinosa Angarica V., Sancho J. and Fillat M.F. (2014) The FurA regulon in PubMed PMC
Gonzalez A., Teresa Bes M., Luisa Peleato M., Fillat M.F. and Hess W.R. (2016) Expanding the role of FurA as essential global regulator in cyanobacteria. PubMed PMC
Hagemann M., Song S., Brouwer E.-M. (2021) Inorganic carbon assimilation in cyanobacteria: mechanisms, regulation, and engineering.
Huergo L.F. and Dixon R. (2015) The emergence of 2-oxoglutarate as a master regulator metabolite. PubMed PMC
Ito K. and Akiyama Y. (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. PubMed
Jackson P.J., Hitchcock A., Brindley A.A., Dickman M.J. and Hunter C.N. (2023) Absolute quantification of cellular levels of photosynthesis-related proteins in PubMed PMC
Janska H., Kwasniak M. and Szczepanowska J. (2013) Protein quality control in organelles – AAA/FtsH story. PubMed
Jia A., Zheng Y., Chen H. and Wang Q. (2021) Regulation and functional complexity of the chlorophyll-binding protein IsiA. PubMed PMC
Kaplan A., Ronen-Tarazi M., Tchernov D., Bonfil D.J., Zer H., Schatz D., et al. (1999) The inorganic carbon-concentrating mechanism of cyanobacteria.
Kato Y., Kuroda H., Ozawa S.I., Saito K., Dogra V., Scholz M., et al. (2023) Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. PubMed PMC
Kato Y. and Sakamoto W. (2018) FtsH protease in the thylakoid membrane: physiological functions and the regulation of protease activity. PubMed PMC
Kato Y. and Sakamoto W. (2019) Phosphorylation of the chloroplastic metalloprotease FtsH in PubMed PMC
Keren N., Ohkawa H., Welsh E.A., Liberton M. and Pakrasi H.B. (2005) Psb29, a conserved 22-kD protein, functions in the biogenesis of photosystem II complexes in PubMed PMC
Kihara A., Akiyama Y. and Ito K. (1996) A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. PubMed PMC
Klahn S., Orf I., Schwarz D., Matthiessen J.K., Kopka J., Hess W.R., et al. (2015) Integrated transcriptomic and metabolomic characterization of the low-carbon response using an ndhR mutant of PubMed PMC
Kloft N. and Forchhammer K. (2005) Signal transduction protein PII phosphatase PphA is required for light-dependent control of nitrate utilization in PubMed PMC
Knoppová J., Sobotka R., Yu J., Bečková M., Pilný J., Trinugroho J.P., et al. (2022) Assembly of D1/D2 complexes of photosystem II: binding of pigments and a network of auxiliary proteins. PubMed PMC
Komenda J., Barker M., Kuviková S., de Vries R., Mullineaux C.W., Tichý M., et al. (2006) The FtsH protease PubMed
Komenda J., Knoppová J., Krynická V., Nixon P.J. and Tichý M. (2010) Role of FtsH2 in the repair of photosystem II in mutants of the cyanobacterium PubMed
Komenda J. and Sobotka R. (2016) Cyanobacterial high-light-inducible proteins – protectors of chlorophyll-protein synthesis and assembly. PubMed
Komenda J., Tichý M., Prášil O., Knoppová J., Kuviková S., de Vries R., et al. (2007) The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in PubMed PMC
Koník P., Skotnicová P., Gupta S., Tichý M., Sharma S., Komenda J., et al. (2024) The cyanobacterial FtsH4 protease controls accumulation of protein factors involved in the biogenesis of photosystem I. PubMed
Kopečná J., Komenda J., Bučinská L. and Sobotka R. (2012) Long-term acclimation of the cyanobacterium PubMed PMC
Kopf M., Klaehn S., Scholz I., Matthiessen J.K.F., Hess W.R. and Voss B. (2014) Comparative analysis of the primary transcriptome of PubMed PMC
Krynická V., Georg J., Jackson P.J., Dickman M.J., Hunter C.N., Futschik M.E., et al. (2019) Depletion of the FtsH1/3 proteolytic complex suppresses the nutrient stress response in the cyanobacterium PubMed PMC
Krynická V., Shao S., Nixon P.J. and Komenda J. (2015) Accessibility controls selective degradation of photosystem II subunits by FtsH protease. PubMed
Krynická V., Skotnicová P., Jackson P.J., Barnett S., Yu J., Wysocka A., et al. (2023) FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. PubMed PMC
Krynická V., Tichý M., Krafl J., Yu J., Kaňa R., Boehm M., et al. (2014) Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium PubMed
Kurisu G., Zhang H., Smith J.L. and Cramer W.A. (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. PubMed
Langklotz S., Baumann U. and Narberhaus F. (2012) Structure and function of the bacterial AAA protease FtsH. PubMed
Linhartová M., Bučinská L., Halada P., Ječmen T., Šetlík J., Komenda J., et al. (2014) Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of photosystem II proteins in the cyanobacterium PubMed
Llácer J.L., Espinosa J., Castells M.A., Contreras A., Forchhammer K. and Rubio V. (2010) Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. PubMed PMC
Los D.A., Zorina A., Sinetova M., Kryazhov S., Mironov K. and Zinchenko V.V. (2010) Stress sensors and signal transducers in cyanobacteria. PubMed PMC
Mahbub M., Hemm L., Yang Y., Kaur R., Carmen H., Engl C., et al. (2020) mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. PubMed
Malnoë A., Wang F., Girard-Bascou J., Wollman F.-A. and de Vitry C. (2014) Thylakoid FtsH protease contributes to photosystem II and cytochrome b(6)f remodeling in PubMed PMC
Mann N.H., Novac N., Mullineaux C.W., Newman J., Bailey S. and Robinson C. (2000) Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium PubMed
Maziak A., Heidorn-Czarna M., Weremczuk A. and Janska H. (2021) FTSH4 and OMA1 mitochondrial proteases reduce moderate heat stress-induced protein aggregation. PubMed PMC
McCleary W.R. (2017) Molecular mechanisms of phosphate homeostasis in
Muramatsu M. and Hihara Y. (2003) Transcriptional regulation of genes encoding subunits of photosystem I during acclimation to high-light conditions in PubMed
Nash D., Miyao M. and Murata N. (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese.
Nevo R., Charuvi D., Shimoni E., Schwarz R., Kaplan A., Ohad I., et al. (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. PubMed PMC
Nixon P.J., Michoux F., Yu J., Boehm M. and Komenda J. (2010) Recent advances in understanding the assembly and repair of photosystem II. PubMed PMC
Ogura T., Inoue K., Tatsuta T., Suzaki T., Karata K., Young K., et al. (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in PubMed
Osanai T. and Tanaka K. (2007) Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. PubMed
Qiao Z., Yokoyama T., Yan X.F., Beh I.T., Shi J., Basak S., et al. (2022) Cryo-EM structure of the entire FtsH-HflKC AAA protease complex. PubMed
Rachedi R., Foglino M. and Latifi A. (2020) Stress signaling in cyanobacteria: a mechanistic overview. PubMed PMC
Rast A., Schaffer M., Albert S., Wan W., Pfeffer S., Beck F., et al. (2019) Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. PubMed
Riediger M., Hernández-Prieto M.A., Song K., Hess W.R. and Futschik M.E. (2021) Genome-wide identification and characterization of Fur-binding sites in the cyanobacteria PubMed PMC
Riediger M., Kadowaki T., Nagayama R., Georg J., Hihara Y. and Hess W.R. (2019) Biocomputational analyses and experimental validation identify the regulon controlled by the redox-responsive transcription factor RpaB. PubMed PMC
Sacharz J., Bryan S.J., Yu J., Burroughs N.J., Spence E.M., Nixon P.J., et al. (2015) Sub-cellular location of FtsH proteases in the cyanobacterium PubMed PMC
Sakamoto W. (2003) Coordinated regulation of chloroplastic FTSH metalloproteases VAR1 and VAR2 in
Santos-Beneit F. (2015) The Pho regulon: a huge regulatory network in bacteria. PubMed PMC
Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., et al. (2011) Global quantification of mammalian gene expression control. PubMed
Shao S., Cardona T. and Nixon P.J. (2018) Early emergence of the FtsH proteases involved in photosystem II repair.
Shen G., Balasubramanian R., Wang T., Wu Y., Hoffart L.M., Krebs C., et al. (2007) SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. PubMed
Silva P., Thompson E., Bailey S., Kruse O., Mullineaux C.W., Robinson C., et al. (2003) FtsH is involved in the early stages of repair of photosystem II in PubMed PMC
Spät P., Maček B. and Forchhammer K. (2015) Phosphoproteome of the cyanobacterium PubMed PMC
Stirnberg M., Fulda S., Huckauf J., Hagemann M., Kraemer R. and Marin K. (2007) A membrane-bound FtsH protease is involved in osmoregulation in PubMed
Stroebel D., Choquet Y., Popot J.L. and Picot D. (2003) An atypical haem in the cytochrome b(6)f complex. PubMed
Su Z., Olman V. and Xu Y. (2007) Computational prediction of Pho regulons in cyanobacteria. PubMed PMC
Tomoyasu T., Gamer J., Bukau B., Kanemori M., Mori H., Rutman A.J., et al. (1995) PubMed PMC
Uniacke J. and Zerges W. (2007) Photosystem II assembly and repair are differentially localized in PubMed PMC
Vavilin D., Yao D. and Vermaas W. (2007) Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in PubMed
Weixlbaumer A., Grünberger F., Werner F. and Grohmann D. (2021) Coupling of transcription and translation in Archaea: cues from the bacterial world. PubMed PMC
Wilde A. and Hihara Y. (2016) Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis. PubMed
Wiśniewski J.R. and Rakus D. (2014) Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the PubMed
Yamamoto Y., Aminaka R., Yoshioka M., Khatoon M., Komayama K., Takenaka D., et al. (2008) Quality control of photosystem II: impact of light and heat stresses. PubMed
Yeo W.S., Anokwute C., Marcadis P., Levitan M., Ahmed M., Bae Y., et al. (2020) A membrane-bound transcription factor is proteolytically regulated by the AAA+ protease FtsH in PubMed PMC
Zhang P., Sicora C.I., Vorontsova N., Allahverdiyeva Y., Battchikova N., Nixon P.J., et al. (2007) FtsH protease is required for induction of inorganic carbon acquisition complexes in PubMed