The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria

. 2024 Jul 30 ; 65 (7) : 1103-1114.

Jazyk angličtina Země Japonsko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38619128

Grantová podpora
24-10227S Grantová Agentura Ceské Republiky
P JAC project. No. CZ.02.01.01/00/22_008/0004624 Czech Ministry of Education, Sports and Youth
854126 H2020 European Research Council
24-10227S Grantová Agentura Ceské Republiky
P JAC project. No. CZ.02.01.01/00/22_008/0004624 Czech Ministry of Education, Sports and Youth
854126 H2020 European Research Council

FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.

Zobrazit více v PubMed

Adam  Z., Halperin  T., Itzhaki  H., Lindahl  M., Ostersetzer  O. (1998) The proteolytic machinery of chloroplasts: homologues of bacterial proteases. In  Photosynthesis: Mechanisms and Effects. Edited by Garab, G. pp. 1871–1876. Springer, Dordrecht.

Adam  Z., Rudella  A. and van Wijk  K.J. (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr. Opin. Cell Biol.  9: 234–240. PubMed

Arends  J., Thomanek  N., Kuhlmann  K., Marcus  K. and Narberhaus  F. (2016) In vivo trapping of FtsH substrates by label-free quantitative proteomics. Proteomics  16: 3161–3172. PubMed

Bečková  M., Gardian  Z., Yu  J.F., Koník  P., Nixon  P.J. and Komenda  J. (2017a) Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of Synechocystis sp PCC 6803 to high light. Mol. Plant  10: 62–72. PubMed

Bečková  M., Yu  J., Krynická  V., Kozlo  A., Shao  S., Koník  P., et al. (2017b) Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos. Trans. R. Soc. Lond. B Biol. Sci.  372: 20160394. PubMed PMC

Boehm  M., Nield  J., Zhang  P., Aro  E.M., Komenda  J. and Nixon  P.J. (2009) Structural and mutational analysis of band 7 proteins in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol.  191: 6425–6435. PubMed PMC

Boehm  M., Yu  J., Krynická  V., Barker  M., Tichý  M., Komenda  J., et al. (2012) Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell  24: 3669–3683. PubMed PMC

Bonisteel  E.M., Turner  B.E., Murphy  C.D., Melanson  J.R., Duff  N.M., Beardsall  B.D., et al. (2018) Strain specific differences in rates of photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS One  13: e0209115. PubMed PMC

Bryant  J.A., Sellars  L.E., Busby  S.J. and Lee  D.J. (2014) Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res.  42: 11383–11392. PubMed PMC

Burnap  R.L., Hagemann  M. and Kaplan  A. (2015) Regulation of CO2 concentrating mechanism in cyanobacteria. Life  5: 348–371. PubMed PMC

Dühring  U., Axmann  I.M., Hess  W.R. and Wilde  A. (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc. Natl. Acad. Sci. U.S.A.  103: 7054–7058. PubMed PMC

Espinosa  J., Forchhammer  K. and Contreras  A. (2007) Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology  153: 711–718. PubMed

Espinosa  J., Rodriguez-Mateos  F., Salinas  P., Lanza  V.F., Dixon  R., de la Cruz  F., et al. (2014) PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A.  111: E2423–E2430. PubMed PMC

Ferro  M., Brugière  S., Salvi  D., Seigneurin-Berny  D., Court  M., Moyet  L., et al. (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteom.  9: 1063–1084. PubMed PMC

Ferro  M., Salvi  D., Brugière  S., Miras  S., Kowalski  S., Louwagie  M., et al. (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteom.  2: 325–345. PubMed

Fillat  M.F. (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch. Biochem. Biophys.  546: 41–52. PubMed

Fokina  O., Herrmann  C. and Forchhammer  K. (2011) Signal-transduction protein PII from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro. Biochem. J.  440: 147–156. PubMed

Forchhammer  K., Huergo  L.F. and Huergo  L.F. (2022) New views on PII signaling: from nitrogen sensing to global metabolic control. Trends Microbiol.  30: 722–735. PubMed

Forchhammer  K. and Selim  K.A. (2020) Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol. Rev.  44: 33–53. PubMed PMC

Fu  W., Cui  Z., Guo  J., Cui  X., Han  G., Zhu  Y., et al. (2023) Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. Plant Physiol.  191: 1002–1016. PubMed PMC

Gómez-Baena  G., Rangel  O.A., López-Lozano  A., García-Fernández  J.M. and Diez  J. (2009) Stress responses in Prochlorococcus MIT9313 vs. SS120 involve differential expression of genes encoding proteases ClpP, FtsH and Lon. Res. Microbiol.  160: 567–575. PubMed

Gonzalez  A., Espinosa Angarica  V., Sancho  J. and Fillat  M.F. (2014) The FurA regulon in Anabaena sp PCC 7120: in silico prediction and experimental validation of novel target genes. Nucleic Acids Res.  42: 4833–4846. PubMed PMC

Gonzalez  A., Teresa Bes  M., Luisa Peleato  M., Fillat  M.F. and Hess  W.R. (2016) Expanding the role of FurA as essential global regulator in cyanobacteria. Plos One  11: e0151384. PubMed PMC

Hagemann  M., Song  S., Brouwer  E.-M. (2021) Inorganic carbon assimilation in cyanobacteria: mechanisms, regulation, and engineering. In  Cyanobacteria Biotechnology. Edited by Hudson, P., Lee, S.Y. and Nielsen, J. pp. 1–31. Wiley-Blackwell, Weinheim.

Huergo  L.F. and Dixon  R. (2015) The emergence of 2-oxoglutarate as a master regulator metabolite. Microbiol. Mol. Biol. Rev.  79: 419–435. PubMed PMC

Ito  K. and Akiyama  Y. (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol.  59: 211–231. PubMed

Jackson  P.J., Hitchcock  A., Brindley  A.A., Dickman  M.J. and Hunter  C.N. (2023) Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. Photosynth. Res.  155: 219–245. PubMed PMC

Janska  H., Kwasniak  M. and Szczepanowska  J. (2013) Protein quality control in organelles – AAA/FtsH story. Biochim. Biophys. Acta  1833: 381–387. PubMed

Jia  A., Zheng  Y., Chen  H. and Wang  Q. (2021) Regulation and functional complexity of the chlorophyll-binding protein IsiA. Front. Microbiol.  12: 774107. PubMed PMC

Kaplan  A., Ronen-Tarazi  M., Tchernov  D., Bonfil  D.J., Zer  H., Schatz  D., et al. (1999) The inorganic carbon-concentrating mechanism of cyanobacteria. In  Phototrophic Prokaryotes Edited by Peschek, G.A., Löffelhardt, W. and Schmetterer, G. pp. 561–571. Springer, Boston.

Kato  Y., Kuroda  H., Ozawa  S.I., Saito  K., Dogra  V., Scholz  M., et al. (2023) Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. eLife  12: RP88822. PubMed PMC

Kato  Y. and Sakamoto  W. (2018) FtsH protease in the thylakoid membrane: physiological functions and the regulation of protease activity. Front. Plant Sci.  9: 855. PubMed PMC

Kato  Y. and Sakamoto  W. (2019) Phosphorylation of the chloroplastic metalloprotease FtsH in Arabidopsis characterized by Phos-Tag SDS-PAGE. Front. Plant Sci.  10: 1080. PubMed PMC

Keren  N., Ohkawa  H., Welsh  E.A., Liberton  M. and Pakrasi  H.B. (2005) Psb29, a conserved 22-kD protein, functions in the biogenesis of photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell  17: 2768–2781. PubMed PMC

Kihara  A., Akiyama  Y. and Ito  K. (1996) A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. Embo J.  15: 6122–6131. PubMed PMC

Klahn  S., Orf  I., Schwarz  D., Matthiessen  J.K., Kopka  J., Hess  W.R., et al. (2015) Integrated transcriptomic and metabolomic characterization of the low-carbon response using an ndhR mutant of Synechocystis sp. PCC 6803. Plant Physiol.  169: 1540–1556. PubMed PMC

Kloft  N. and Forchhammer  K. (2005) Signal transduction protein PII phosphatase PphA is required for light-dependent control of nitrate utilization in Synechocystis sp. strain PCC 6803. J. Bacteriol.  187: 6683–6690. PubMed PMC

Knoppová  J., Sobotka  R., Yu  J., Bečková  M., Pilný  J., Trinugroho  J.P., et al. (2022) Assembly of D1/D2 complexes of photosystem II: binding of pigments and a network of auxiliary proteins. Plant Physiol.  189: 790–804. PubMed PMC

Komenda  J., Barker  M., Kuviková  S., de Vries  R., Mullineaux  C.W., Tichý  M., et al. (2006) The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp PCC 6803. J. Biol. Chem.  281: 1145–1151. PubMed

Komenda  J., Knoppová  J., Krynická  V., Nixon  P.J. and Tichý  M. (2010) Role of FtsH2 in the repair of photosystem II in mutants of the cyanobacterium Synechocystis PCC 6803 with impaired assembly or stability of the CaMn4 cluster. Biochim. Biophys. Acta  1797: 566–575. PubMed

Komenda  J. and Sobotka  R. (2016) Cyanobacterial high-light-inducible proteins – protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta  1857: 288–295. PubMed

Komenda  J., Tichý  M., Prášil  O., Knoppová  J., Kuviková  S., de Vries  R., et al. (2007) The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell  19: 2839–2854. PubMed PMC

Koník  P., Skotnicová  P., Gupta  S., Tichý  M., Sharma  S., Komenda  J., et al. (2024) The cyanobacterial FtsH4 protease controls accumulation of protein factors involved in the biogenesis of photosystem I. Biochim. Biophys. Acta  1865: 149017. PubMed

Kopečná  J., Komenda  J., Bučinská  L. and Sobotka  R. (2012) Long-term acclimation of the cyanobacterium Synechocystis sp PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol.  160: 2239–2250. PubMed PMC

Kopf  M., Klaehn  S., Scholz  I., Matthiessen  J.K.F., Hess  W.R. and Voss  B. (2014) Comparative analysis of the primary transcriptome of Synechocystis sp PCC 6803. DNA Res  21: 527–539. PubMed PMC

Krynická  V., Georg  J., Jackson  P.J., Dickman  M.J., Hunter  C.N., Futschik  M.E., et al. (2019) Depletion of the FtsH1/3 proteolytic complex suppresses the nutrient stress response in the cyanobacterium Synechocystis sp strain PCC 6803. Plant Cell  31: 2912–2928. PubMed PMC

Krynická  V., Shao  S., Nixon  P.J. and Komenda  J. (2015) Accessibility controls selective degradation of photosystem II subunits by FtsH protease. Nat. Plants  1: 15168. PubMed

Krynická  V., Skotnicová  P., Jackson  P.J., Barnett  S., Yu  J., Wysocka  A., et al. (2023) FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. Plant Commun.  4: 100502. PubMed PMC

Krynická  V., Tichý  M., Krafl  J., Yu  J., Kaňa  R., Boehm  M., et al. (2014) Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp PCC 6803. Mol. Microbiol.  94: 609–624. PubMed

Kurisu  G., Zhang  H., Smith  J.L. and Cramer  W.A. (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science  302: 1009–1014. PubMed

Langklotz  S., Baumann  U. and Narberhaus  F. (2012) Structure and function of the bacterial AAA protease FtsH. Biochim. Biophys. Acta  1823: 40–48. PubMed

Linhartová  M., Bučinská  L., Halada  P., Ječmen  T., Šetlík  J., Komenda  J., et al. (2014) Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of photosystem II proteins in the cyanobacterium Synechocystis PCC 6803. Mol. Microbiol.  93: 1207–1223. PubMed

Llácer  J.L., Espinosa  J., Castells  M.A., Contreras  A., Forchhammer  K. and Rubio  V. (2010) Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proc. Natl. Acad. Sci. U.S.A.  107: 15397–15402. PubMed PMC

Los  D.A., Zorina  A., Sinetova  M., Kryazhov  S., Mironov  K. and Zinchenko  V.V. (2010) Stress sensors and signal transducers in cyanobacteria. Sensors  10: 2386–2415. PubMed PMC

Mahbub  M., Hemm  L., Yang  Y., Kaur  R., Carmen  H., Engl  C., et al. (2020) mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Nat. Plants  6: 1179–1191. PubMed

Malnoë  A., Wang  F., Girard-Bascou  J., Wollman  F.-A. and de Vitry  C. (2014) Thylakoid FtsH protease contributes to photosystem II and cytochrome b(6)f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell  26: 373–390. PubMed PMC

Mann  N.H., Novac  N., Mullineaux  C.W., Newman  J., Bailey  S. and Robinson  C. (2000) Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp PCC 6803. FEBS Lett.  479: 72–77. PubMed

Maziak  A., Heidorn-Czarna  M., Weremczuk  A. and Janska  H. (2021) FTSH4 and OMA1 mitochondrial proteases reduce moderate heat stress-induced protein aggregation. Plant Physiol.  187: 769–786. PubMed PMC

McCleary  W.R. (2017) Molecular mechanisms of phosphate homeostasis in Escherichia coli. In  Escherichia Coli – Recent Advances on Physiology, Pathogenesis and Biotechnological Applications. Edited by Amidou, S. pp. 333–357. Intech Open, Rijeka.

Muramatsu  M. and Hihara  Y. (2003) Transcriptional regulation of genes encoding subunits of photosystem I during acclimation to high-light conditions in Synechocystis sp. PCC 6803. Planta  216: 446–453. PubMed

Nash  D., Miyao  M. and Murata  N. (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim. Biophys. Acta  807: 127–133.

Nevo  R., Charuvi  D., Shimoni  E., Schwarz  R., Kaplan  A., Ohad  I., et al. (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J.  26: 1467–1473. PubMed PMC

Nixon  P.J., Michoux  F., Yu  J., Boehm  M. and Komenda  J. (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot.  106: 1–16. PubMed PMC

Ogura  T., Inoue  K., Tatsuta  T., Suzaki  T., Karata  K., Young  K., et al. (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol.  31: 833–844. PubMed

Osanai  T. and Tanaka  K. (2007) Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol.  48: 908–914. PubMed

Qiao  Z., Yokoyama  T., Yan  X.F., Beh  I.T., Shi  J., Basak  S., et al. (2022) Cryo-EM structure of the entire FtsH-HflKC AAA protease complex. Cell Rep.  39: 110890. PubMed

Rachedi  R., Foglino  M. and Latifi  A. (2020) Stress signaling in cyanobacteria: a mechanistic overview. Life  10: 312. PubMed PMC

Rast  A., Schaffer  M., Albert  S., Wan  W., Pfeffer  S., Beck  F., et al. (2019) Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants  5: 436–446. PubMed

Riediger  M., Hernández-Prieto  M.A., Song  K., Hess  W.R. and Futschik  M.E. (2021) Genome-wide identification and characterization of Fur-binding sites in the cyanobacteria Synechocystis sp. PCC 6803 and PCC 6714. DNA Res  28: dsab023. PubMed PMC

Riediger  M., Kadowaki  T., Nagayama  R., Georg  J., Hihara  Y. and Hess  W.R. (2019) Biocomputational analyses and experimental validation identify the regulon controlled by the redox-responsive transcription factor RpaB. iScience  15: 316–331. PubMed PMC

Sacharz  J., Bryan  S.J., Yu  J., Burroughs  N.J., Spence  E.M., Nixon  P.J., et al. (2015) Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol. Microbiol.  96: 448–462. PubMed PMC

Sakamoto  W. (2003) Coordinated regulation of chloroplastic FTSH metalloproteases VAR1 and VAR2 in Arabidopsis. Gen. Genet. Syst.  78: 470.

Santos-Beneit  F. (2015) The Pho regulon: a huge regulatory network in bacteria. Front. Microbiol.  6: 402. PubMed PMC

Schwanhäusser  B., Busse  D., Li  N., Dittmar  G., Schuchhardt  J., Wolf  J., et al. (2011) Global quantification of mammalian gene expression control. Nature  473: 337. PubMed

Shao  S., Cardona  T. and Nixon  P.J. (2018) Early emergence of the FtsH proteases involved in photosystem II repair. Photosynthetica  56: 163–177.

Shen  G., Balasubramanian  R., Wang  T., Wu  Y., Hoffart  L.M., Krebs  C., et al. (2007) SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. J. Biol. Chem.  282: 31909–31919. PubMed

Silva  P., Thompson  E., Bailey  S., Kruse  O., Mullineaux  C.W., Robinson  C., et al. (2003) FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell  15: 2152–2164. PubMed PMC

Spät  P., Maček  B. and Forchhammer  K. (2015) Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation. Front. Microbiol.  6: 248. PubMed PMC

Stirnberg  M., Fulda  S., Huckauf  J., Hagemann  M., Kraemer  R. and Marin  K. (2007) A membrane-bound FtsH protease is involved in osmoregulation in Synechocystis sp PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis. Mol. Microbiol.  63: 86–102. PubMed

Stroebel  D., Choquet  Y., Popot  J.L. and Picot  D. (2003) An atypical haem in the cytochrome b(6)f complex. Nature  426: 413–418. PubMed

Su  Z., Olman  V. and Xu  Y. (2007) Computational prediction of Pho regulons in cyanobacteria. BMC Genomics  8: 156. PubMed PMC

Tomoyasu  T., Gamer  J., Bukau  B., Kanemori  M., Mori  H., Rutman  A.J., et al. (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J.  14: 2551–2560. PubMed PMC

Uniacke  J. and Zerges  W. (2007) Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell  19: 3640–3654. PubMed PMC

Vavilin  D., Yao  D. and Vermaas  W. (2007) Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp. PCC 6803: kinetic analysis of pigment labeling with 15N and 13C. J. Biol. Chem.  282: 37660–37668. PubMed

Weixlbaumer  A., Grünberger  F., Werner  F. and Grohmann  D. (2021) Coupling of transcription and translation in Archaea: cues from the bacterial world. Front. Microbiol.  12: 661827. PubMed PMC

Wilde  A. and Hihara  Y. (2016) Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis. Biochim. Biophys. Acta  1857: 296–308. PubMed

Wiśniewski  J.R. and Rakus  D. (2014) Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the Escherichia coli proteome. J. Proteom.  109: 322–331. PubMed

Yamamoto  Y., Aminaka  R., Yoshioka  M., Khatoon  M., Komayama  K., Takenaka  D., et al. (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth. Res.  98: 589–608. PubMed

Yeo  W.S., Anokwute  C., Marcadis  P., Levitan  M., Ahmed  M., Bae  Y., et al. (2020) A membrane-bound transcription factor is proteolytically regulated by the AAA+ protease FtsH in Staphylococcus aureus. J. Bacteriol.  202: e00019–20. PubMed PMC

Zhang  P., Sicora  C.I., Vorontsova  N., Allahverdiyeva  Y., Battchikova  N., Nixon  P.J., et al. (2007) FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803. Mol. Microbiol.  65: 728–740. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...