Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium Synechocystis sp strain PCC 6803
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
338895
European Research Council - International
BB/M000265/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M012166/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
31615847
PubMed Central
PMC6925008
DOI
10.1105/tpc.19.00411
PII: tpc.19.00411
Knihovny.cz E-zdroje
- MeSH
- aklimatizace genetika MeSH
- bakteriální proteiny genetika metabolismus MeSH
- dusík nedostatek metabolismus MeSH
- exprese genu MeSH
- fosfáty nedostatek metabolismus MeSH
- fosforylace MeSH
- fotosystém II (proteinový komplex) chemie genetika metabolismus MeSH
- metaloproteasy genetika metabolismus MeSH
- mutace MeSH
- proteiny vázající fosfáty genetika metabolismus MeSH
- proteolýza MeSH
- proteom genetika metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u bakterií genetika MeSH
- regulon genetika MeSH
- represorové proteiny genetika metabolismus MeSH
- ribozomální proteiny genetika metabolismus MeSH
- Synechocystis enzymologie metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- uhlík nedostatek metabolismus MeSH
- živiny nedostatek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- dusík MeSH
- ferric uptake regulating proteins, bacterial MeSH Prohlížeč
- fosfáty MeSH
- fotosystém II (proteinový komplex) MeSH
- metaloproteasy MeSH
- proteiny vázající fosfáty MeSH
- proteom MeSH
- represorové proteiny MeSH
- ribozomální proteiny MeSH
- transkripční faktory MeSH
- uhlík MeSH
The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.
Zobrazit více v PubMed
Adams N.B., Marklew C.J., Brindley A.A., Hunter C.N., Reid J.D. (2014). Characterization of the magnesium chelatase from Thermosynechococcus elongatus. Biochem. J. 457: 163–170. PubMed
Aiba H., Nagaya M., Mizuno T. (1993). Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: Implication in the adaptive response to phosphate limitation. Mol. Microbiol. 8: 81–91. PubMed
Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57: 289–300.
Boehm M., Yu J., Krynicka V., Barker M., Tichy M., Komenda J., Nixon P.J., Nield J. (2012). Subunit organization of a synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell 24: 3669–3683. PubMed PMC
Burnap R.L., Hagemann M., Kaplan A. (2015). Regulation of CO2 concentrating mechanism in Cyanobacteria. Life (Basel) 5: 348–371. PubMed PMC
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26: 1367–1372. PubMed
Crosa J.H. (1997). Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61: 319–336. PubMed PMC
Dian C., Vitale S., Leonard G.A., Bahlawane C., Fauquant C., Leduc D., Muller C., de Reuse H., Michaud-Soret I., Terradot L. (2011). The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol. Microbiol. 79: 1260–1275. PubMed
Escolar L., Pérez-Martín J., de Lorenzo V. (1999). Opening the iron box: Transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181: 6223–6229. PubMed PMC
Espinosa J., Rodríguez-Mateos F., Salinas P., Lanza V.F., Dixon R., de la Cruz F., Contreras A. (2014). PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. Proc. Natl. Acad. Sci. USA 111: E2423–E2430. PubMed PMC
Forchhammer K., Tandeau de Marsac N. (1994). The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J. Bacteriol. 176: 84–91. PubMed PMC
Georg J., et al. (2017). Acclimation of oxygenic photosynthesis to iron starvation is controlled by the sRNA IsaR1. Curr. Biol. 27: 1425–1436. PubMed
Giner-Lamia J., Robles-Rengel R., Hernández-Prieto M.A., Muro-Pastor M.I., Florencio F.J., Futschik M.E. (2017). Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803. Nucleic Acids Res. 45: 11800–11820. PubMed PMC
González A., Angarica V.E., Sancho J., Fillat M.F. (2014). The FurA regulon in Anabaena sp. PCC 7120: In silico prediction and experimental validation of novel target genes. Nucleic Acids Res. 42: 4833–4846. PubMed PMC
González A., Bes M.T., Peleato M.L., Fillat M.F. (2016). Expanding the role of FurA as essential global regulator in Cyanobacteria. PLoS One 11: e0151384. PubMed PMC
González A., Bes M.T., Valladares A., Peleato M.L., Fillat M.F. (2012). FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in Anabaena sp. PCC 7120. Environ. Microbiol. 14: 3175–3187. PubMed
Hernández J.A., Bes M.T., Fillat M.F., Neira J.L., Peleato M.L. (2002). Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: Factors affecting its oligomerization state. Biochem. J. 366: 315–322. PubMed PMC
Hernandez-Prieto M.A., Futschik M.E. (2012). CyanoEXpress: A web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803. Bioinformation 8: 634–638. PubMed PMC
Hernandez-Prieto M.A., Schoen V., Georg J., Barreira L., Varela J., Hess W.R., Futschik M.E. (2012). Iron deprivation in synechocystis: Inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3 2: 1475–1495. PubMed PMC
Hirani T.A., Suzuki I., Murata N., Hayashi H., Eaton-Rye J.J. (2001). Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Mol. Biol. 45: 133–144. PubMed
Hitchcock A., Jackson P.J., Chidgey J.W., Dickman M.J., Hunter C.N., Canniffe D.P. (2016). Biosynthesis of chlorophyll a in a purple bacterial phototroph and assembly into a plant chlorophyll-protein complex. ACS Synth. Biol. 5: 948–954. PubMed
Huergo L.F., Chandra G., Merrick M. (2013). P(II) signal transduction proteins: Nitrogen regulation and beyond. FEMS Microbiol. Rev. 37: 251–283. PubMed
Imamura S., Asayama M. (2009). Sigma factors for cyanobacterial transcription. Gene Regul. Syst. Bio. 3: 65–87. PubMed PMC
Janouskovec J., Sobotka R., Lai D.-H., Flegontov P., Koník P., Komenda J., Ali S., Prásil O., Pain A., Oborník M., Lukes J., Keeling P.J. (2013). Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol. Biol. Evol. 30: 2447–2462. PubMed
Jiang Y.L., et al. (2018). Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc. Natl. Acad. Sci. USA 115: 403–408. PubMed PMC
Katoh H., Hagino N., Grossman A.R., Ogawa T. (2001). Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183: 2779–2784. PubMed PMC
Klähn S., Orf I., Schwarz D., Matthiessen J.K., Kopka J., Hess W.R., Hagemann M. (2015). Integrated transcriptomic and metabolomic characterization of the low-carbon response using an ndhR mutant of Synechocystis sp. PCC 6803. Plant Physiol. 169: 1540–1556. PubMed PMC
Kloft N., Rasch G., Forchhammer K. (2005). Protein phosphatase PphA from Synechocystis sp. PCC 6803: The physiological framework of PII-P dephosphorylation. Microbiology 151: 1275–1283. PubMed
Komenda J., Barker M., Kuviková S., de Vries R., Mullineaux C.W., Tichy M., Nixon P.J. (2006). The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J. Biol. Chem. 281: 1145–1151. PubMed
Komenda J., Knoppová J., Kopečná J., Sobotka R., Halada P., Yu J., Nickelsen J., Boehm M., Nixon P.J. (2012). The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 158: 476–486. PubMed PMC
Kopf M., Hess W.R. (2015). Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol. Rev. 39: 301–315. PubMed PMC
Kopf M., Klähn S., Scholz I., Matthiessen J.K.F., Hess W.R., Voß B. (2014). Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res. 21: 527–539. PubMed PMC
Krynická V., Tichý M., Krafl J., Yu J., Kaňa R., Boehm M., Nixon P.J., Komenda J. (2014). Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 94: 609–624. PubMed
Li W., Rao D.K., Kaur P. (2013). Dual role of the metalloprotease FtsH in biogenesis of the DrrAB drug transporter. J. Biol. Chem. 288: 11854–11864. PubMed PMC
Linhartová M., Bučinská L., Halada P., Ječmen T., Setlík J., Komenda J., Sobotka R. (2014). Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of Photosystem II proteins in the cyanobacterium Synechocystis PCC 6803. Mol. Microbiol. 93: 1207–1223. PubMed
Mann N.H., Novac N., Mullineaux C.W., Newman J., Bailey S., Robinson C. (2000). Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 479: 72–77. PubMed
Morohoshi T., Maruo T., Shirai Y., Kato J., Ikeda T., Takiguchi N., Ohtake H., Kuroda A. (2002). Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 68: 4107–4110. PubMed PMC
Nixon P.J., Michoux F., Yu J., Boehm M., Komenda J. (2010). Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106: 1–16. PubMed PMC
Orf I., Schwarz D., Kaplan A., Kopka J., Hess W.R., Hagemann M., Klähn S. (2016). CyAbrB2 contributes to the transcriptional regulation of low CO2 acclimation in Synechocystis sp. PCC 6803. Plant Cell Physiol. 57: 2232–2243. PubMed
Pellicer S., Bes M.T., González A., Neira J.L., Peleato M.L., Fillat M.F. (2010). High-recovery one-step purification of the DNA-binding protein Fur by mild guanidinium chloride treatment. Process Biochem. 45: 292–296.
Perez-Riverol Y., et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47 (D1): D442–D450. PubMed PMC
Pinto F.L., Thapper A., Sontheim W., Lindblad P. (2009). Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol. Biol. 10: 79. PubMed PMC
Rasala B.A., Barrera D.J., Ng J., Plucinak T.M., Rosenberg J.N., Weeks D.P., Oyler G.A., Peterson T.C., Haerizadeh F., Mayfield S.P. (2013). Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J. 74: 545–556. PubMed
Schlebusch M., Forchhammer K. (2010). Requirement of the nitrogen starvation-induced protein Sll0783 for polyhydroxybutyrate accumulation in Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 76: 6101–6107. PubMed PMC
Shen G., Balasubramanian R., Wang T., Wu Y., Hoffart L.M., Krebs C., Bryant D.A., Golbeck J.H. (2007). SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. J. Biol. Chem. 282: 31909–31919. PubMed
Shimizu K. (2013). Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4: 1–35. PubMed PMC
Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. (2011). Global quantification of mammalian gene expression control. Nature 473: 337–342. PubMed
Schwarz R., Forchhammer K. (2005). Acclimation of unicellular cyanobacteria to macronutrient deficiency: Emergence of a complex network of cellular responses. Microbiology 151: 2503–2514. PubMed
Smyth G.K. (2005). Limma: linear models for microarray data In Bioinformatics and Computational Biology Solution Using R and Bioconductor, Gentleman R., Carey V., Dudoit S., Irizarry R., and Huber W., eds (New York: Springer; ), pp. 397–420.
Spät P., Maček B., Forchhammer K. (2015). Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation. Front. Microbiol. 6: 248. PubMed PMC
Su Z., Olman V., Xu Y. (2007). Computational prediction of Pho regulons in cyanobacteria. BMC Genomics 8: 156. PubMed PMC
Suzuki S., Ferjani A., Suzuki I., Murata N. (2004). The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in synechocystis. J. Biol. Chem. 279: 13234–13240. PubMed
Tetu S.G., Brahamsha B., Johnson D.A., Tai V., Phillippy K., Palenik B., Paulsen I.T. (2009). Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J. 3: 835–849. PubMed
Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. (2016). Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 7: 648. PubMed PMC
Tyanova S., Temu T., Sinitcyn P. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13: 731–740. PubMed
Urech C., Koby S., Oppenheim A.B., Münchbach M., Hennecke H., Narberhaus F. (2000). Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Eur. J. Biochem. 267: 4831–4839. PubMed
Vuppada R.K., Hansen C.R., Strickland K.A.P., Kelly K.M., McCleary W.R. (2018). Phosphate signaling through alternate conformations of the PstSCAB phosphate transporter. BMC Microbiol. 18: 8. PubMed PMC
Wanner B.L. (1993). Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51: 47–54. PubMed
Yang Y., Guo R., Gaffney K., Kim M., Muhammednazaar S., Tian W., Wang B., Liang J., Hong H. (2018). Folding-degradation relationship of a membrane protein mediated by the universally conserved ATP-dependent protease FtsH. J. Am. Chem. Soc. 140: 4656–4665. PubMed PMC
Yu F., Fu A., Aluru M., Park S., Xu Y., Liu H., Liu X., Foudree A., Nambogga M., Rodermel S. (2007). Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ. 30: 350–365. PubMed
Zhang P., Sicora C.I., Vorontsova N., Allahverdiyeva Y., Battchikova N., Nixon P.J., Aro E.-M. (2007). FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803. Mol. Microbiol. 65: 728–740. PubMed
The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria