Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
28808107
PubMed Central
PMC5566888
DOI
10.1098/rstb.2016.0394
PII: rstb.2016.0394
Knihovny.cz E-zdroje
- Klíčová slova
- D1 subunit, Synechocystis, hypersensitive response, photoinhibition, thylakoid formation 1 gene, thylakoid membrane,
- MeSH
- Arabidopsis genetika fyziologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chloroplasty metabolismus MeSH
- fotosyntéza * MeSH
- fotosystém II - proteinový komplex genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- sinice genetika fyziologie MeSH
- Synechocystis genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fotosystém II - proteinový komplex MeSH
- proteiny huseníčku MeSH
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Zobrazit více v PubMed
Adir N, Zer H, Shochat S, Ohad I. 2003. Photoinhibition—a historical perspective. Photosynth. Res. 76, 343–370. (10.1023/A:1024969518145) PubMed DOI
Takahashi S, Badger MR. 2011. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci. 16, 53–60. (10.1016/j.tplants.2010.10.001) PubMed DOI
Barber J, et al. 2016. Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere. Q. Rev. Biophys. 49, e14 (10.1017/S0033583516000093) PubMed DOI
Tyystjärvi E, Aro EM. 1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl Acad. Sci. USA 93, 2213–2218. (10.1073/pnas.93.5.2213) PubMed DOI PMC
Park Y, Anderson JM, Chow WS. 1996. Photoinactivation of functional photosystem II and Dl-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by growth irradiance. Planta 61, 300–309. (10.1007/BF00206257) DOI
Komenda J, Sobotka R, Nixon PJ. 2012. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 15, 245–251. (10.1016/j.pbi.2012.01.017) PubMed DOI
Nishiyama Y, Allakhverdiev SI, Murata N. 2011. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol. Plant. 142, 35–46. (10.1111/j.1399-3054.2011.01457.x) PubMed DOI
Hoffman-Falk H, Mattoo AK, Marder JB, Edelman M, Ellis RJ. 1982. General occurrence and structural similarity of the rapidly synthesized, 32,000-dalton protein of the chloroplast membrane. J. Biol. Chem. 257, 4583–4587. PubMed
Ohad I, Kyle DJ, Arntzen CJ. 1984. Membrane protein damage and repair: removal and replacement of inactivated 32 kilodalton polypeptides in chloroplast membranes. J. Cell Biol. 99, 481–485. (10.1083/jcb.99.2.481) PubMed DOI PMC
Nelson N, Junge W. 2015. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 659–683. (10.1146/annurev-biochem-092914-041942) PubMed DOI
Nickelsen J, Rengstl B. 2013. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609–635. (10.1146/annurev-arplant-050312-120124) PubMed DOI
Lu Y. 2016. Identification and roles of Photosystem II assembly, stability, and repair factors in Arabidopsis. Front. Plant Sci. 7, 168 (10.3389/fpls.2016.00168) PubMed DOI PMC
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. 2010. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16. (10.1093/aob/mcq059) PubMed DOI PMC
Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH, Nixon PJ. 2003. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell 15, 2152–2164. (10.1105/tpc.012609) PubMed DOI PMC
Komenda J, Barker M, Kuviková S., De Vries R, Mullineaux CW, Tichý M, Nixon PJ. 2006. The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J. Biol. Chem. 281, 1145–1151. (10.1074/jbc.M503852200) PubMed DOI
Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH. 2002. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J. Biol. Chem. 277, 2006–2011. (10.1074/jbc.M105878200) PubMed DOI
Kato Y, Sun X, Zhang L, Sakamoto W. 2012. Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. Plant Physiol. 159, 1428–1429. (10.1104/pp.112.199042) PubMed DOI PMC
Malnoe A, Wang F, Girard-Bascou J, Wollman F.-A, de Vitry C. 2014. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell 26, 373–390. (10.1105/tpc.113.120113) PubMed DOI PMC
Boehm M, Yu J, Krynicka V, Barker M, Tichy M, Komenda J, Nixon PJ, Nield J. 2012. Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell 24, 3669–3683. (10.1105/tpc.112.100891) PubMed DOI PMC
Yu F, Park S, Rodermel SR. 2004. The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J. 37, 864–876. (10.1111/j.1365-313X.2003.02014.x) PubMed DOI
Sakamoto W, Zaltsman A, Adam Z, Takahashi Y. 2003. Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15, 2843–2855. (10.1105/tpc.017319) PubMed DOI PMC
Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL. 2004. Deletion of the chloroplast-localized thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves 1. Plant Physiol. 136, 3594–3604. (10.1104/pp.104.049841) PubMed DOI PMC
Zhang L, et al. 2009. Activation of the heterotrimeric G protein α-subunit GPA1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. Plant J. 58, 1041–1053. (10.1111/j.1365-313X.2009.03843.x) PubMed DOI
Wu W, et al. 2013. Proteomic evidence for genetic epistasis: ClpR4 mutations switch leaf variegation to virescence in Arabidopsis. Plant J 76, 943–956. (10.1111/tpj.12344) PubMed DOI
Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB. 2002. Proteomic analysis of a highly active Photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41, 8004–8012. (10.1021/bi026012%2B) PubMed DOI
Keren N, Ohkawa H, Welsh EA, Liberton M, Pakrasi HB. 2005. Psb29, a conserved 22-kD protein, functions in the biogenesis of Photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell 17, 2768–2781. (10.1105/tpc.105.035048) PubMed DOI PMC
Zhan J, Zhu X, Zhou W, Chen H, He C, Wang Q. 2016. Thf1 interacts with PS I and stabilizes the PS I complex in Synechococcus sp. PCC7942. Mol. Microbiol. 102, 738–751. (10.1111/mmi.13488) PubMed DOI
Michoux F, Takasaka K, Boehm M, Nixon PJ, Murray JW. 2010. Structure of CyanoP at 2.8 Å: implications for the evolution and function of the PsbP subunit of Photosystem II. Biochemistry 49, 7411–7413. (10.1021/bi1011145) PubMed DOI
Michoux F, Takasaka K, Boehm M, Komenda J, Nixon PJ, Murray JW. 2012. Crystal structure of the Psb27 assembly factor at 1.6 Å: implications for binding to Photosystem II. Photosynth. Res. 110, 169–175. (10.1007/s11120-011-9712-7) PubMed DOI
Tichý M, Bečková M, Kopečná J, Noda J, Sobotka R, Komenda J. 2016. Strain of Synechocystis PCC 6803 with aberrant assembly of Photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 7, 1–10. (10.3389/fpls.2016.00648) PubMed DOI PMC
Krynická V, Tichý M, Krafl J, Yu J, Kaňa R, Boehm M, Nixon PJ, Komenda J. 2014. Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 94, 609–624. (10.1111/mmi.12782) PubMed DOI
Hollingshead S, Kopecna J, Jackson PJ, Canniffe DP, Davison PA, Dickman MJ, Sobotka R, Hunter CN. 2012. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 287, 27 823–27 833. (10.1074/jbc.M112.352526) PubMed DOI PMC
Chidgey JW, et al. 2014. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26, 1267–1279. (10.1105/tpc.114.124495) PubMed DOI PMC
Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313. (10.1016/S0176-1617(11)81192-2) DOI
Boehm M, Nield J, Zhang P, Aro E-M, Komenda J, Nixon PJ. 2009. Structural and mutational analysis of band 7 proteins in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 191, 6425–6435. (10.1128/JB.00644-09) PubMed DOI PMC
Janouškovec J, et al. 2013. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol. Biol. Evol. 30, 2447–2462. (10.1093/molbev/mst144) PubMed DOI
Winter G. 2010. Xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190. (10.1107/S0021889809045701) DOI
Kabsch W. 2010. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132. (10.1107/S0907444909047337) PubMed DOI PMC
Vonrhein C, Blanc E, Roversi P, Bricogne G. 2007. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230. (10.1385/1-59745-266-1:215) PubMed DOI
Cowtan K. 2006. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011. (10.1107/S0907444906022116) PubMed DOI
Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255. (10.1107/S0907444996012255) PubMed DOI
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674. (10.1107/S0021889807021206) PubMed DOI PMC
Afonine PV, et al. 2012. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367. (10.1107/S0907444912001308) PubMed DOI PMC
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21. (10.1107/S0907444909042073) PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. (10.1093/molbev/mst010) PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. (10.1093/bioinformatics/btp348) PubMed DOI PMC
Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638. (10.1093/molbev/msw046) PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. (10.1093/sysbio/syq010) PubMed DOI
Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245. (10.1093/nar/gkw290) PubMed DOI PMC
Campanella JJ, Bitincka L, Smalley J. 2003. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4, 29 (10.1186/1471-2105-4-29) PubMed DOI PMC
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, 1–7. (10.1093/nar/gkw408) PubMed DOI PMC
Emanuelsson O, Nielsen H, von Heijne G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984. (10.1110/ps.8.5.978) PubMed DOI PMC
Krissinel E, Henrick K. 2004. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268. (10.1107/S0907444904026460) PubMed DOI
Mann NH, Novac N, Mullineaux CW, Newman J, Bailey S, Robinson C. 2000. Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 479, 72–77. (10.1016/S0014-5793(00)01871-8) PubMed DOI
Hamel L-P, Sekine K-T, Wallon T, Sugiwaka Y, Kobayashi K, Moffett P. 2016. The chloroplastic protein THF1 interacts with the coiled-coil domain of the disease resistance protein N′ and regulates light-dependent cell death. Plant Physiol. 171, 658–674. (10.1104/pp.16.00234) PubMed DOI PMC
Pribil M, Labs M, Leister D. 2014. Structure and dynamics of thylakoids in land plants. J. Exp. Bot. 65, 1955–1972. (10.1093/jxb/eru090) PubMed DOI
Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, Hayashi H, Nishiyama Y. 2007. Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol. Microbiol. 65, 936–947. (10.1111/j.1365-2958.2007.05836.x) PubMed DOI
Ejima K, Kawaharada T, Inoue S, Kojima K, Nishiyama Y. 2012. A change in the sensitivity of elongation factor G to oxidation protects photosystem II from photoinhibition in Synechocystis sp. PCC 6803. FEBS Lett. 586, 778–783. (10.1016/j.febslet.2012.01.042) PubMed DOI
Sae-Tang P, Hihara Y, Yumoto I, Orikasa Y, Okuyama H, Nishiyama Y. 2016. Overexpressed superoxide dismutase and catalase act synergistically to protect the repair of PSII during photoinhibition in Synechococcus elongatus PCC 7942. Plant Cell Physiol. 57, 1899–1907. (10.1093/pcp/pcw110) PubMed DOI
Komenda J, Nickelsen J, Tichý M, Prášil O, Eichacker LA, Nixon PJ. 2008. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J. Biol. Chem. 283, 22 390–22 399. (10.1074/jbc.M801917200) PubMed DOI
Knoppová J, Sobotka R, Tichy M, Yu J, Konik P, Halada P, Nixon PJ, Komenda J. 2014. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26, 1–14. (10.1105/tpc.114.123919) PubMed DOI PMC
Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W. 2009. The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol. 151, 1790–1801. (10.1104/pp.109.146589) PubMed DOI PMC
Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E. 2008. The hypersensitive response; the centenary is upon us but how much do we know? J. Exp. Bot. 59, 501–520. (10.1093/jxb/erm239) PubMed DOI
Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y. 2000. Reduced levels of chloroplast FtsH protein in tobacco mosaic virus–infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12, 917–932. (10.1105/tpc.12.6.917) PubMed DOI PMC
Wangdi T, Uppalapati SR, Nagaraj S, Ryu C-M, Bender CL, Mysore KS. 2010. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis. Plant Physiol. 152, 281–292. (10.1104/pp.109.148106) PubMed DOI PMC
Barker MRGR. 2006. The role of the DegP/HtrA and FtsH proteases in protection of Synechocystis sp. PCC 6803 from abiotic stress PhD thesis, University of London.
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman F-A, de Vitry C. 2016. The high light response and redox control of thylakoid FtsH protease in Chlamydomonas reinhardtii. Mol. Plant 43, 18–27. (10.1016/j.molp.2016.09.012) PubMed DOI
The biogenesis and maintenance of PSII: Recent advances and current challenges
The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria