The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29925590
PubMed Central
PMC6093240
DOI
10.1074/jbc.ra118.003441
PII: S0021-9258(20)31360-0
Knihovny.cz E-resources
- Keywords
- HemJ, Synechocystis sp. PCC 6803, coproporphyrinogen III oxidase, cyanobacteria, enzyme purification, heme, membrane protein, photosynthesis, protoporphyrinogen IX oxidase,
- MeSH
- Heme chemistry metabolism MeSH
- Coproporphyrinogen Oxidase chemistry metabolism MeSH
- Models, Molecular MeSH
- Oxidation-Reduction MeSH
- Protoporphyrinogen Oxidase chemistry metabolism MeSH
- Synechocystis enzymology MeSH
- Tetrapyrroles chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Heme MeSH
- Coproporphyrinogen Oxidase MeSH
- Protoporphyrinogen Oxidase MeSH
- Tetrapyrroles MeSH
Protoporphyrinogen IX oxidase (PPO), the last enzyme that is common to both chlorophyll and heme biosynthesis pathways, catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX. PPO has several isoforms, including the oxygen-dependent HemY and an oxygen-independent enzyme, HemG. However, most cyanobacteria encode HemJ, the least characterized PPO form. We have characterized HemJ from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) as a bona fide PPO; HemJ down-regulation resulted in accumulation of tetrapyrrole precursors and in the depletion of chlorophyll precursors. The expression of FLAG-tagged Synechocystis 6803 HemJ protein (HemJ.f) and affinity isolation of HemJ.f under native conditions revealed that it binds heme b The most stable HemJ.f form was a dimer, and higher oligomeric forms were also observed. Using both oxygen and artificial electron acceptors, we detected no enzymatic activity with the purified HemJ.f, consistent with the hypothesis that the enzymatic mechanism for HemJ is distinct from those of other PPO isoforms. The heme absorption spectra and distant HemJ homology to several membrane oxidases indicated that the heme in HemJ is redox-active and involved in electron transfer. HemJ was conditionally complemented by another PPO, HemG from Escherichia coli. If grown photoautotrophically, the complemented strain accumulated tripropionic tetrapyrrole harderoporphyrin, suggesting a defect in enzymatic conversion of coproporphyrinogen III to protoporphyrinogen IX, catalyzed by coproporphyrinogen III oxidase (CPO). This observation supports the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG.
the Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic and
the School of Biosciences RAPID Group University of Kent Canterbury CT2 7NZ United Kingdom
See more in PubMed
Czarnecki O., and Grimm B. (2012) Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J. Exp. Bot. 63, 1675–1687 10.1093/jxb/err437 PubMed DOI
Dailey H. A., Dailey T. A., Gerdes S., Jahn D., Jahn M., O'Brian M. R., and Warren M. J. (2017) Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81, e00048–16 PubMed PMC
Kato K., Tanaka R., Sano S., Tanaka A., and Hosaka H. (2010) Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U.S.A. 107, 16649–16654 10.1073/pnas.1000771107 PubMed DOI PMC
Nishimura K., Nakayashiki T., and Inokuchi H. (1995) Cloning and identification of the hemG gene encoding protoporphyrinogen oxidase (PPO) of Escherichia coli K-12. DNA Res. 2, 1–8 10.1093/dnares/2.1.1 PubMed DOI
Narita S., Tanaka R., Ito T., Okada K., Taketani S., and Inokuchi H. (1996) Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182, 169–175 10.1016/S0378-1119(96)00545-8 PubMed DOI
Dailey H. A., and Dailey T. A. (1996) Protoporphyrinogen oxidase of Myxococcus xanthus: expression, purification, and characterization of the cloned enzyme. J. Biol. Chem. 271, 8714–8718 10.1074/jbc.271.15.8714 PubMed DOI
Kobayashi K., Masuda T., Tajima N., Wada H., and Sato N. (2014) Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX. Genome Biol. Evol. 6, 2141–2155 10.1093/gbe/evu170 PubMed DOI PMC
Möbius K., Arias-Cartin R., Breckau D., Hännig A. L., Riedmann K., Biedendieck R., Schröder S., Becher D., Magalon A., Moser J., Jahn M., and Jahn D. (2010) Heme biosynthesis is coupled to electron transport chains for energy generation. Proc. Natl. Acad. Sci. U.S.A. 107, 10436–10441 10.1073/pnas.1000956107 PubMed DOI PMC
Boynton T. O., Daugherty L. E., Dailey T. A., and Dailey H. A. (2009) Identification of Escherichia coli HemG as a novel, menadione-dependent flavodoxin with protoporphyrinogen oxidase activity. Biochemistry 48, 6705–6711 10.1021/bi900850y PubMed DOI PMC
Boynton T. O., Gerdes S., Craven S. H., Neidle E. L., Phillips J. D., and Dailey H. A. (2011) Discovery of a gene involved in a third bacterial protoporphyrinogen oxidase activity through comparative genomic analysis and functional complementation. Appl. Environ. Microbiol. 77, 4795–4801 10.1128/AEM.00171-11 PubMed DOI PMC
Ferreira G. C., Andrew T. L., Karr S. W., and Dailey H. A. (1988) Organization of the terminal two enzymes of the heme biosynthetic pathway: orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J. Biol. Chem. 263, 3835–3839 PubMed
Medlock A. E., Shiferaw M. T., Marcero J. R., Vashisht A. A., Wohlschlegel J. A., Phillips J. D., and Dailey H. A. (2015) Identification of the mitochondrial heme metabolism complex. PLoS One 10, e0135896 10.1371/journal.pone.0135896 PubMed DOI PMC
Masoumi A., Heinemann I. U., Rohde M., Koch M., Jahn M., and Jahn D. (2008) Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. Microbiology 154, 3707–3714 10.1099/mic.0.2008/018705-0 PubMed DOI
Brzezowski P., Richter A. S., and Grimm B. (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim. Biophys. Acta 1847, 968–985 10.1016/j.bbabio.2015.05.007 PubMed DOI
Goto T., Aoki R., Minamizaki K., and Fujita Y. (2010) Functional differentiation of two analogous coproporphyrinogen III oxidases for heme and chlorophyll biosynthesis pathways in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 51, 650–663 10.1093/pcp/pcq023 PubMed DOI
Sofia H. J., Chen G., Hetzler B. G., Reyes-Spindola J. F., and Miller N. E. (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 10.1093/nar/29.5.1097 PubMed DOI PMC
Phillips J. D., Whitby F. G., Warby C. A., Labbe P., Yang C., Pflugrath J. W., Ferrara J. D., Robinson H., Kushner J. P., and Hill C. P. (2004) Crystal structure of the oxygen-depandant coproporphyrinogen oxidase (Hem13p) of Saccharomyces cerevisiae. J. Biol. Chem. 279, 38960–38968 10.1074/jbc.M406050200 PubMed DOI
Bučinská L., Kiss E., Koník P., Knoppová J., Komenda J., and Sobotka R. (2018) The ribosome-bound protein Pam68 promotes insertion of chlorophyll into the CP47 subunit of Photosystem II. Plant Physiol. 176, 2931–2942 PubMed PMC
Hobbs C., Dailey H. A., and Shepherd M. (2016) The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis. Biochem. J. 473, 3997–4009 10.1042/BCJ20160696 PubMed DOI PMC
Lermontova I., and Grimm B. (2006) Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. Plant J. 48, 499–510 10.1111/j.1365-313X.2006.02894.x PubMed DOI
Kopečná J., Pilný J., Krynická V., Tomčala A., Kis M., Gombos Z., Komenda J., and Sobotka R. (2015) Lack of phosphatidylglycerol inhibits chlorophyll biosynthesis at multiple sites and limits chlorophyllide reutilization in the cyanobacterium Synechocystis 6803. Plant Physiol. 169, 1307–1317 10.1104/pp.15.01150 PubMed DOI PMC
Lim C. K. (2010) High-performance Liquid Chromatography and Mass Spectrometry of Porphyrins, Chlorophylls and Bilins, World Scientific Publishing, Singapore
Kennedy G. Y. (1970) Harderoporphyrin: a new porphyrin from the Harderian glands of the rat. Comp. Biochem. Physiol. 36, 21–36 10.1016/0010-406X(70)90647-X PubMed DOI
Miller M. J., Hermodson M., and Gennis R. B. (1988) The active form of the cytochrome d terminal oxidase complex of Escherichia coli is a heterodimer containing one copy of each of the two subunits. J. Biol. Chem. 263, 5235–5240 PubMed
Lu P., Ma D., Yan C., Gong X., Du M., and Shi Y. (2014) Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase. Proc. Natl. Acad. Sci. U.S.A. 111, 1813–1818 10.1073/pnas.1323931111 PubMed DOI PMC
Gomelsky M., and Kaplan S. (1996) The Rhodobacter sphaeroides 2.4.1 rho gene: expression and genetic analysis of structure and function. J. Bacteriol. 178, 1946–1954 10.1128/jb.178.7.1946-1954.1996 PubMed DOI PMC
Ma J., Peng J., Wang S., and Xu J. (2012) A conditional neural fields model for protein threading. Bioinformatics 28, i59–i66 10.1093/bioinformatics/bts213 PubMed DOI PMC
Li T., Bonkovsky H. L., and Guo J.-T. (2011) Structural analysis of heme proteins: implications for design and prediction. BMC Struct. Biol. 11, 13 10.1186/1472-6807-11-13 PubMed DOI PMC
Jacobs N. J., and Jacobs J. M. (1981) Protoporphyrinogen oxidation in Rhodopseudomonas spheroides, a step in heme and bacteriochlorophyll synthesis. Arch. Biochem. Biophys. 211, 305–311 10.1016/0003-9861(81)90458-6 PubMed DOI
Sasarman A., Chartrand P., Lavoie M., Tardif D., Proschek R., and Lapointe C. (1979) Mapping of a new hem gene in Escherichia coli K12. J. Gen. Microbiol. 113, 297–303 10.1099/00221287-113-2-297 PubMed DOI
Rand K., Noll C., Schiebel H. M., Kemken D., Dülcks T., Kalesse M., Heinz D. W., and Layer G. (2010) The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX. Biol. Chem. 391, 55–63 PubMed
Schmitt C., Gouya L., Malonova E., Lamoril J., Camadro J. M., Flamme M., Rose C., Lyoumi S., Da Silva V., Boileau C., Grandchamp B., Beaumont C., Deybach J. C., and Puy H. (2005) Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria. Hum. Mol. Genet. 14, 3089–3098 10.1093/hmg/ddi342 PubMed DOI
Nordmann Y., Grandchamp B., de Verneuil H., Phung L., Cartigny B., and Fontaine G. (1983) Harderoporphyria: a variant hereditary coproporphyria. J. Clin. Invest. 72, 1139–1149 10.1172/JCI111039 PubMed DOI PMC
Elder G. H., Evans J. O., Jackson J. R., and Jackson A. H. (1978) Factors determining the sequence of oxidative decarboxylation of the 2- and 4-propionate substituents of coproporphyrinogen III by coproporphyrinogen oxidase in rat liver. Biochem. J. 169, 215–223 10.1042/bj1690215 PubMed DOI PMC
Stadnichuk I., Rakhimberdieva M. G., Bolychevtseva Y. V., Yurina N. P., Karapetyan N. V., and Selyakh I. O. (1998) Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of coproporphyrinogen III formation. Plant Sci. 136, 11–23 10.1016/S0168-9452(98)00088-0 DOI
Sarian F. D., Rahman D. Y., Schepers O., and van der Maarel M. (2016) Effects of oxygen limitation on the biosynthesis of photo pigments in the red microalgae Galdieria sulphuraria strain 074G. PLoS One 11, e0148358 10.1371/journal.pone.0148358 PubMed DOI PMC
Kahlon S., Beeri K., Ohkawa H., Hihara Y., Murik O., Suzuki I., Ogawa T., and Kaplan A. (2006) A putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose. Microbiology 152, 647–655 10.1099/mic.0.28510-0 PubMed DOI
Summerfield T. C., Nagarajan S., and Sherman L. A. (2011) Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses. Microbiology 157, 301–312 10.1099/mic.0.041053-0 PubMed DOI
Kim S., Jeon T. J., Oberai A., Yang D., Schmidt J. J., and Bowie J. U. (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 102, 14278–14283 10.1073/pnas.0501234102 PubMed DOI PMC
Mann N. H., Novac N., Mullineaux C. W., Newman J., Bailey S., and Robinson C. (2000) Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 479, 72–77 10.1016/S0014-5793(00)01871-8 PubMed DOI
Krynická V., Tichý M., Krafl J., Yu J., Kaňa R., Boehm M., Nixon P. J., and Komenda J. (2014) Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 94, 609–624 10.1111/mmi.12782 PubMed DOI
Komenda J., Knoppová J., Krynická V., Nixon P. J., and Tichý M. (2010) Role of FtsH2 in the repair of Photosystem II in mutants of the cyanobacterium Synechocystis PCC 6803 with impaired assembly or stability of the CaMn4 cluster. Biochim. Biophys. Acta 1797, 566–575 10.1016/j.bbabio.2010.02.006 PubMed DOI
Chidgey J. W., Linhartová M., Komenda J., Jackson P. J., Dickman M. J., Canniffe D. P., Koník P., Pilný J., Hunter C. N., and Sobotka R. (2014) A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26, 1267–1279 10.1105/tpc.114.124495 PubMed DOI PMC
Shen G., Boussiba S., and Vermaas W. F. (1993) Synechocystis sp. PCC-6803 strains lacking Photosystem-I and phycobilisome function. Plant Cell 5, 1853–1863 10.2307/3869700,10.1105/tpc.5.12.1853 PubMed DOI PMC
Lee J., Lee H. J., Shin M. K., and Ryu W. S. (2004) Versatile PCR-mediated insertion or deletion mutagenesis. BioTechniques 36, 398–400 10.2144/04363BM04 PubMed DOI
Knoppová J., Sobotka R., Tichý M., Yu J., Konik P., Halada P., Nixon P. J., and Komenda J. (2014) Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. Plant Cell 26, 1200–1212 10.1105/tpc.114.123919 PubMed DOI PMC
Sasarman A., Letowski J., Czaika G., Ramirez V., Nead M. A., Jacobs J. M., and Morais R. (1993) Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. Can. J. Microbiol. 39, 1155–1161 10.1139/m93-174 PubMed DOI
Pilný J., Kopečná J., Noda J., and Sobotka R. (2015) Detection and quantification of heme and chlorophyll precursors using a High Performance Liquid Chromatography (HPLC) system equipped with two fluorescence detectors. Bio-protocol 5, e1390
Dobáková M., Sobotka R., Tichý M., and Komenda J. (2009) Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149, 1076–1086 PubMed PMC
Wittig I., Karas M., and Schägger H. (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol. Cell Proteomics 6, 1215–1225 10.1074/mcp.M700076-MCP200 PubMed DOI
Shepherd M., and Dailey H. A. (2005) A continuous fluorimetric assay for protoporphyrinogen oxidase by monitoring porphyrin accumulation. Anal. Biochem. 344, 115–121 10.1016/j.ab.2005.06.012 PubMed DOI PMC
Kim D. E., Chivian D., and Baker D. (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, W526–W531 10.1093/nar/gkh468 PubMed DOI PMC
Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., and Xu J. (2012) Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 10.1038/nprot.2012.085 PubMed DOI PMC
Wang S., Sun S., Li Z., Zhang R., and Xu J. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 10.1371/journal.pcbi.1005324 PubMed DOI PMC
Zhang C., Freddolino P. L., and Zhang Y. (2017) COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res. 45, W291–W299 10.1093/nar/gkx366 PubMed DOI PMC
Lomize M. A., Pogozheva I. D., Joo H., Mosberg H. I., and Lomize A. L. (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 10.1093/nar/gkr703 PubMed DOI PMC
DeLano W. L. (2012) The PyMOL Molecular Graphics System, version 2.0, Schroedinger, LLC, New York
Epigenetic control of tetrapyrrole biosynthesis by m4C DNA methylation in a cyanobacterium