Synthesis of New Cisplatin Derivatives from Bile Acids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2014/15/B/ST5/02129
Narodowe Centrum Nauki
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
32033039
PubMed Central
PMC7036801
DOI
10.3390/molecules25030655
PII: molecules25030655
Knihovny.cz E-zdroje
- Klíčová slova
- bile acids, cholic acid, deoxycholic acid, hyodeoxycholic acid, lithocholic acid, platinum(II) complexes, steroidal diamines,
- MeSH
- cisplatina analogy a deriváty MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- HeLa buňky MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- molekulární struktura MeSH
- proliferace buněk účinky léků MeSH
- racionální návrh léčiv MeSH
- sloučeniny platiny chemická syntéza chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- žlučové kyseliny a soli chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cisplatina MeSH
- sloučeniny platiny MeSH
- žlučové kyseliny a soli MeSH
A series of bile acid derived 1,2- and 1,3-diamines as well as their platinum(II) complexes were designed and synthesized in hope to get a highly cytotoxic compound by the combination of two bioactive moieties. All complexes obtained were subjected to cytotoxicity assays in vitro and some hybrid molecules showed an expected activity.
Faculty of Chemistry University of Białystok K Ciołkowskiego 1K 15 245 Białystok Poland
Faculty of Chemistry University of Warsaw Pasteura 1 02 093 Warsaw Poland
Zobrazit více v PubMed
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019;88:102925. doi: 10.1016/j.bioorg.2019.102925. PubMed DOI
Oun R., Moussa Y.E., Wheate N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018;47:6645–6653. doi: 10.1039/C8DT00838H. PubMed DOI
Karasawa T., Steyger P.S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 2015;237:219–227. doi: 10.1016/j.toxlet.2015.06.012. PubMed DOI PMC
Kenny R.G., Marmion C.J. Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? Chem. Rev. 2019;119:1058–1137. doi: 10.1021/acs.chemrev.8b00271. PubMed DOI
Coa J.C., Castrill W., Cardona W., Carda M., Ospina V., Muñoz J.A. Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur. J. Med. Chem. 2015;101:746–753. doi: 10.1016/j.ejmech.2015.07.018. PubMed DOI
Seroka B., Łotowski Z., Wojtkielewicz A., Bazydło P., Dudź E., Hryniewicka A., Morzycki J.W. Synthesis of steroidal 1,2- and 1,3-diamines as ligands for transition metal ion complexation. Steroids. 2019;147:19–27. doi: 10.1016/j.steroids.2019.02.001. PubMed DOI
Hryniewicka A., Łotowski Z., Seroka B., Witkowski S., Morzycki J.W. Synthesis of a cisplatin derivative from lithocholic acid. Tetrahedron. 2018;74:5392–5398. doi: 10.1016/j.tet.2018.01.007. DOI
Monte M.J., Marin J.J., Antelo A., Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. 2009;15:804–816. doi: 10.3748/wjg.15.804. PubMed DOI PMC
Kundu S., Bansal S., Muthukumarasamy K.M., Sachidanandan C., Motiani R., Bajaj A. Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems. Med. Chem. Commun. 2017;8:2248–2257. doi: 10.1039/C7MD00475C. PubMed DOI PMC
Singh M., Singh A., Kundu S., Bansal S., Bajaj A. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles. Biochim. Biophys. Acta Biomembr. 2013;1828:1926–1937. doi: 10.1016/j.bbamem.2013.04.003. PubMed DOI
Makishima M., Okamoto A.Y., Repa J.J., Tu H., Learned R.M., Luk A., Hull M.V., Lustig K.D., Mangelsdorf D.J., Shan B. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–1365. doi: 10.1126/science.284.5418.1362. PubMed DOI
Wang H., Chen J., Hollister K., Sowers L.C., Forman B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 1999;3:543–553. doi: 10.1016/S1097-2765(00)80348-2. PubMed DOI
Maruyama T., Miyamoto Y., Nakamura T., Tamai Y., Okada H., Sugiyama E., Nakamura T., Itadani H., Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR) Biochem. Biophys. Res. Commun. 2002;298:714–719. doi: 10.1016/S0006-291X(02)02550-0. PubMed DOI
Schneider H., Fiander H., Harrison K.A., Watson M., Burton G.W., Arya P. Inhibitory potency of lithocholic acid analogs and other bile acids on glucuronosyltransferase activity in a colon cancer cell line. Bioorg. Med. Chem. Lett. 1996;6:637–642. doi: 10.1016/0960-894X(96)00092-3. DOI
Vogel S.M., Bauer M.R., Joerger A.C., Wilcken R., Brandt T., Veprintsev D.B., Rutherford T.J., Fersht A.R., Boeckler F.M. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl. Acad. Sci. USA. 2012;109:16906–16910. doi: 10.1073/pnas.1215060109. PubMed DOI PMC
Kozoni V., Tsioulias G., Shiff S., Rigas B. The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: Differential effect on apoptosis in the presence of a colon carcinogen. Carcinogenesis. 2000;21:999–1005. doi: 10.1093/carcin/21.5.999. PubMed DOI
Goldberg A.A., Beach A., Davies G.F., Harkness T.A., Leblanc A., Titorenko V.I. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget. 2011;2:761–782. doi: 10.18632/oncotarget.338. PubMed DOI PMC
Goldberg A.A., Titorenko V.I., Beach A., Sanderson J.T. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ. 2013;1:e122. doi: 10.7717/peerj.122. PubMed DOI PMC
Singh M., Bansal S., Kundu S., Bhargava P., Singh A., Motiani R.K., Shyam R., Sreekanth V., Sengupta S., Bajaj A. Synthesis, structure-activity relationship, and mechanistic investigation of lithocholic acid amphiphiles for colon cancer therapy. Med. Chem. Commun. 2015;6:192–201. doi: 10.1039/C4MD00223G. PubMed DOI PMC
Li T., Chiang J.Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 2014;66:948–983. doi: 10.1124/pr.113.008201. PubMed DOI PMC
Akhtar M.J., Ahamed M., Alhadlaq H.A., Alrokayan S.A., Kumar S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clin. Chim. Acta. 2014;436:78–92. doi: 10.1016/j.cca.2014.05.004. PubMed DOI
Criado J.J., Herrera M.C., Palomero M.F., Medarde M., Rodriguez E., Marin J.J.G. Synthesis and characterization of a new bile acid and platinum(II) complex with cytostatic activity. J. Lipid Res. 1997;38:1022–1032. PubMed
Tyszczuk-Rotko K., Wojciak-Kosior M., Sowa I. Voltammetric determination of betulinic acid at lead film electrode after chromatographic separation in plant material. Anal. Biochem. 2013;436:121–126. doi: 10.1016/j.ab.2013.02.002. PubMed DOI
Paschke R., Kalbitz J., Paetz C. Novel spacer linked bile acid–cisplatin compounds as a model for specific drug delivery, synthesis and characterization. Inorg. Chim. Acta. 2000;304:241–249. doi: 10.1016/S0020-1693(00)00095-5. DOI
Paschke R., Kalbitz J., Paetz C., Luckner M., Mueller T., Schmoll H.-J., Mueller H., Sorkau E., Sinn E. Cholic acid–carboplatin compounds (CarboChAPt) as models for specific drug delivery: Synthesis of novel carboplatin analogous derivatives and comparison of the cytotoxic properties with corresponding cisplatin compounds. J. Inorg. Biochem. 2003;94:335–342. doi: 10.1016/S0162-0134(03)00024-2. PubMed DOI
Criado J.J., Domínguez M.F., Medarde M., Fernández E.R., Macías R.I., Marín J. Structural characterization, kinetic studies, and in vitro biological activity of new cis-diamminebis-cholylglycinate(O,O′) Pt(II) and cis-diamminebis-ursodeoxycholate(O,O′) Pt(II) complexes. Bioconjug. Chem. 2000;11:167–174. doi: 10.1021/bc9901088. PubMed DOI
Macias R.I.R., Monte M.J., El-Mir M.Y., Villanueva G.R., Marin J.J.G. Transport and biotransformation of the new cytostatic complex cis-diammineplatinum(II)-chlorocholylglycinate (Bamet-R2) by the rat liver. J. Lipid Res. 1998;39:1792–1798. PubMed
Briz O., Serrano M.A., Rebollo N., Hagenbuch B., Meier P.J., Koepsell H., Marin J.J.G. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol. Pharmacol. 2002;61:853–860. doi: 10.1124/mol.61.4.853. PubMed DOI
Dominguez M.F., Macias R.I.R., Izco-Basurko I., de la Fuente A., Pascual M.J., Criado J.M., Monte M.J., Yajeya J., Marin J.J.G. Low in vivo toxicity of a novel cisplatin-ursodeoxycholic derivative (Bamet-UD2) with enhanced cytostatic activity versus liver tumors. J. Pharmacol. Exp. Ther. 2001;297:1106–1112. PubMed
Monte M.J., Ballestero M.R., Briz O., Perez M.J., Marin J.J.G. Proapoptotic effect on normal and tumor intestinal cells of cytostatic drugs with enterohepatic organotropism. J. Pharmacol. Exp. Ther. 2005;315:24–35. doi: 10.1124/jpet.105.086165. PubMed DOI
Bartoli E., Palmieri B., Medici A. Platinum Complexes Containing Chemically Modified Bile Acids, Having Antitumor Activity. 7,348,320. U.S. Patent. 2005 Mar 25;
Emmerich D., Vanchanagiri K., Baratto L.C., Schmidt H., Paschke R. Synthesis and studies of anticancer properties of lupane-type triterpenoid derivatives containing a cisplatin fragment. Eur. J. Med. Chem. 2014;75:460–466. doi: 10.1016/j.ejmech.2014.01.031. PubMed DOI
Erzunov D.A., Latyshev G.V., Averin A.D., Beletskaya I.P., Lukashev N.V. CuAAC Synthesis and anion binding properties of bile acid derived tripodal ligands. Eur. J. Org. Chem. 2015;6:6289–6297. doi: 10.1002/ejoc.201500835. DOI
Kvasnica M., Rárová L., Oklešťková J., Budĕšinský M., Kohout L. Synthesis and cytotoxic activities of estrone and estradiol cis-dichloroplatinum(II) complexes. Bioorg. Med. Chem. 2012;20:6969–6978. doi: 10.1016/j.bmc.2012.10.013. PubMed DOI
de Almeida M.V., Cesar E.T., de Castro Antunes Felício E., Fontes A.P.S., Robert-Gero M. Synthesis of platinum complexes from N-benzyl ethylenediamine derivatives. J. Braz. Chem. Soc. 2000;11:154–158. doi: 10.1590/S0103-50532000000200009. DOI
Priqueler J.R.L., Butler I.S., Rochon F.D. An overview of 195Pt nuclear magnetic resonance spectroscopy. Appl. Spectrosc. Rev. 2006;41:185–226. doi: 10.1080/05704920600620311. DOI
Rárová L., Steigerová J., Kvasnica M., Bartůněk P., Křížová K., Chodounská H., Kolář Z., Sedlák D., Oklestkova J., Strnad M. Structure activity relationship studies on cytotoxicity and the effects on steroid receptor of AB-functionalized cholestanes. J. Steroid Biochem. Mol. Biol. 2016;159:154–169. doi: 10.1016/j.jsbmb.2016.03.017. PubMed DOI