Synthesis of New Cisplatin Derivatives from Bile Acids

. 2020 Feb 04 ; 25 (3) : . [epub] 20200204

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32033039

Grantová podpora
2014/15/B/ST5/02129 Narodowe Centrum Nauki
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

A series of bile acid derived 1,2- and 1,3-diamines as well as their platinum(II) complexes were designed and synthesized in hope to get a highly cytotoxic compound by the combination of two bioactive moieties. All complexes obtained were subjected to cytotoxicity assays in vitro and some hybrid molecules showed an expected activity.

Zobrazit více v PubMed

Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019;88:102925. doi: 10.1016/j.bioorg.2019.102925. PubMed DOI

Oun R., Moussa Y.E., Wheate N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018;47:6645–6653. doi: 10.1039/C8DT00838H. PubMed DOI

Karasawa T., Steyger P.S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 2015;237:219–227. doi: 10.1016/j.toxlet.2015.06.012. PubMed DOI PMC

Kenny R.G., Marmion C.J. Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? Chem. Rev. 2019;119:1058–1137. doi: 10.1021/acs.chemrev.8b00271. PubMed DOI

Coa J.C., Castrill W., Cardona W., Carda M., Ospina V., Muñoz J.A. Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur. J. Med. Chem. 2015;101:746–753. doi: 10.1016/j.ejmech.2015.07.018. PubMed DOI

Seroka B., Łotowski Z., Wojtkielewicz A., Bazydło P., Dudź E., Hryniewicka A., Morzycki J.W. Synthesis of steroidal 1,2- and 1,3-diamines as ligands for transition metal ion complexation. Steroids. 2019;147:19–27. doi: 10.1016/j.steroids.2019.02.001. PubMed DOI

Hryniewicka A., Łotowski Z., Seroka B., Witkowski S., Morzycki J.W. Synthesis of a cisplatin derivative from lithocholic acid. Tetrahedron. 2018;74:5392–5398. doi: 10.1016/j.tet.2018.01.007. DOI

Monte M.J., Marin J.J., Antelo A., Vazquez-Tato J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. 2009;15:804–816. doi: 10.3748/wjg.15.804. PubMed DOI PMC

Kundu S., Bansal S., Muthukumarasamy K.M., Sachidanandan C., Motiani R., Bajaj A. Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems. Med. Chem. Commun. 2017;8:2248–2257. doi: 10.1039/C7MD00475C. PubMed DOI PMC

Singh M., Singh A., Kundu S., Bansal S., Bajaj A. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles. Biochim. Biophys. Acta Biomembr. 2013;1828:1926–1937. doi: 10.1016/j.bbamem.2013.04.003. PubMed DOI

Makishima M., Okamoto A.Y., Repa J.J., Tu H., Learned R.M., Luk A., Hull M.V., Lustig K.D., Mangelsdorf D.J., Shan B. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–1365. doi: 10.1126/science.284.5418.1362. PubMed DOI

Wang H., Chen J., Hollister K., Sowers L.C., Forman B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 1999;3:543–553. doi: 10.1016/S1097-2765(00)80348-2. PubMed DOI

Maruyama T., Miyamoto Y., Nakamura T., Tamai Y., Okada H., Sugiyama E., Nakamura T., Itadani H., Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR) Biochem. Biophys. Res. Commun. 2002;298:714–719. doi: 10.1016/S0006-291X(02)02550-0. PubMed DOI

Schneider H., Fiander H., Harrison K.A., Watson M., Burton G.W., Arya P. Inhibitory potency of lithocholic acid analogs and other bile acids on glucuronosyltransferase activity in a colon cancer cell line. Bioorg. Med. Chem. Lett. 1996;6:637–642. doi: 10.1016/0960-894X(96)00092-3. DOI

Vogel S.M., Bauer M.R., Joerger A.C., Wilcken R., Brandt T., Veprintsev D.B., Rutherford T.J., Fersht A.R., Boeckler F.M. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl. Acad. Sci. USA. 2012;109:16906–16910. doi: 10.1073/pnas.1215060109. PubMed DOI PMC

Kozoni V., Tsioulias G., Shiff S., Rigas B. The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: Differential effect on apoptosis in the presence of a colon carcinogen. Carcinogenesis. 2000;21:999–1005. doi: 10.1093/carcin/21.5.999. PubMed DOI

Goldberg A.A., Beach A., Davies G.F., Harkness T.A., Leblanc A., Titorenko V.I. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget. 2011;2:761–782. doi: 10.18632/oncotarget.338. PubMed DOI PMC

Goldberg A.A., Titorenko V.I., Beach A., Sanderson J.T. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ. 2013;1:e122. doi: 10.7717/peerj.122. PubMed DOI PMC

Singh M., Bansal S., Kundu S., Bhargava P., Singh A., Motiani R.K., Shyam R., Sreekanth V., Sengupta S., Bajaj A. Synthesis, structure-activity relationship, and mechanistic investigation of lithocholic acid amphiphiles for colon cancer therapy. Med. Chem. Commun. 2015;6:192–201. doi: 10.1039/C4MD00223G. PubMed DOI PMC

Li T., Chiang J.Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 2014;66:948–983. doi: 10.1124/pr.113.008201. PubMed DOI PMC

Akhtar M.J., Ahamed M., Alhadlaq H.A., Alrokayan S.A., Kumar S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clin. Chim. Acta. 2014;436:78–92. doi: 10.1016/j.cca.2014.05.004. PubMed DOI

Criado J.J., Herrera M.C., Palomero M.F., Medarde M., Rodriguez E., Marin J.J.G. Synthesis and characterization of a new bile acid and platinum(II) complex with cytostatic activity. J. Lipid Res. 1997;38:1022–1032. PubMed

Tyszczuk-Rotko K., Wojciak-Kosior M., Sowa I. Voltammetric determination of betulinic acid at lead film electrode after chromatographic separation in plant material. Anal. Biochem. 2013;436:121–126. doi: 10.1016/j.ab.2013.02.002. PubMed DOI

Paschke R., Kalbitz J., Paetz C. Novel spacer linked bile acid–cisplatin compounds as a model for specific drug delivery, synthesis and characterization. Inorg. Chim. Acta. 2000;304:241–249. doi: 10.1016/S0020-1693(00)00095-5. DOI

Paschke R., Kalbitz J., Paetz C., Luckner M., Mueller T., Schmoll H.-J., Mueller H., Sorkau E., Sinn E. Cholic acid–carboplatin compounds (CarboChAPt) as models for specific drug delivery: Synthesis of novel carboplatin analogous derivatives and comparison of the cytotoxic properties with corresponding cisplatin compounds. J. Inorg. Biochem. 2003;94:335–342. doi: 10.1016/S0162-0134(03)00024-2. PubMed DOI

Criado J.J., Domínguez M.F., Medarde M., Fernández E.R., Macías R.I., Marín J. Structural characterization, kinetic studies, and in vitro biological activity of new cis-diamminebis-cholylglycinate(O,O′) Pt(II) and cis-diamminebis-ursodeoxycholate(O,O′) Pt(II) complexes. Bioconjug. Chem. 2000;11:167–174. doi: 10.1021/bc9901088. PubMed DOI

Macias R.I.R., Monte M.J., El-Mir M.Y., Villanueva G.R., Marin J.J.G. Transport and biotransformation of the new cytostatic complex cis-diammineplatinum(II)-chlorocholylglycinate (Bamet-R2) by the rat liver. J. Lipid Res. 1998;39:1792–1798. PubMed

Briz O., Serrano M.A., Rebollo N., Hagenbuch B., Meier P.J., Koepsell H., Marin J.J.G. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol. Pharmacol. 2002;61:853–860. doi: 10.1124/mol.61.4.853. PubMed DOI

Dominguez M.F., Macias R.I.R., Izco-Basurko I., de la Fuente A., Pascual M.J., Criado J.M., Monte M.J., Yajeya J., Marin J.J.G. Low in vivo toxicity of a novel cisplatin-ursodeoxycholic derivative (Bamet-UD2) with enhanced cytostatic activity versus liver tumors. J. Pharmacol. Exp. Ther. 2001;297:1106–1112. PubMed

Monte M.J., Ballestero M.R., Briz O., Perez M.J., Marin J.J.G. Proapoptotic effect on normal and tumor intestinal cells of cytostatic drugs with enterohepatic organotropism. J. Pharmacol. Exp. Ther. 2005;315:24–35. doi: 10.1124/jpet.105.086165. PubMed DOI

Bartoli E., Palmieri B., Medici A. Platinum Complexes Containing Chemically Modified Bile Acids, Having Antitumor Activity. 7,348,320. U.S. Patent. 2005 Mar 25;

Emmerich D., Vanchanagiri K., Baratto L.C., Schmidt H., Paschke R. Synthesis and studies of anticancer properties of lupane-type triterpenoid derivatives containing a cisplatin fragment. Eur. J. Med. Chem. 2014;75:460–466. doi: 10.1016/j.ejmech.2014.01.031. PubMed DOI

Erzunov D.A., Latyshev G.V., Averin A.D., Beletskaya I.P., Lukashev N.V. CuAAC Synthesis and anion binding properties of bile acid derived tripodal ligands. Eur. J. Org. Chem. 2015;6:6289–6297. doi: 10.1002/ejoc.201500835. DOI

Kvasnica M., Rárová L., Oklešťková J., Budĕšinský M., Kohout L. Synthesis and cytotoxic activities of estrone and estradiol cis-dichloroplatinum(II) complexes. Bioorg. Med. Chem. 2012;20:6969–6978. doi: 10.1016/j.bmc.2012.10.013. PubMed DOI

de Almeida M.V., Cesar E.T., de Castro Antunes Felício E., Fontes A.P.S., Robert-Gero M. Synthesis of platinum complexes from N-benzyl ethylenediamine derivatives. J. Braz. Chem. Soc. 2000;11:154–158. doi: 10.1590/S0103-50532000000200009. DOI

Priqueler J.R.L., Butler I.S., Rochon F.D. An overview of 195Pt nuclear magnetic resonance spectroscopy. Appl. Spectrosc. Rev. 2006;41:185–226. doi: 10.1080/05704920600620311. DOI

Rárová L., Steigerová J., Kvasnica M., Bartůněk P., Křížová K., Chodounská H., Kolář Z., Sedlák D., Oklestkova J., Strnad M. Structure activity relationship studies on cytotoxicity and the effects on steroid receptor of AB-functionalized cholestanes. J. Steroid Biochem. Mol. Biol. 2016;159:154–169. doi: 10.1016/j.jsbmb.2016.03.017. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...