Epigenetic control of tetrapyrrole biosynthesis by m4C DNA methylation in a cyanobacterium

. 2024 Dec 01 ; 31 (6) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39657587

Grantová podpora
HE 2544/12-2 German Research Foundation
CZ.02.01.01/00/22_008/0004624 Czech Ministry of Education
Youth and Sports

Epigenetic DNA modifications are pivotal in eukaryotic gene expression, but their regulatory significance in bacteria is less understood. In Synechocystis 6803, the DNA methyltransferase M.Ssp6803II modifies the first cytosine in the GGCC motif, forming N4-methylcytosine (GGm4CC). Deletion of the sll0729 gene encoding M.Ssp6803II (∆sll0729) caused a bluish phenotype due to reduced chlorophyll levels, which was reversed by suppressor mutations. Re-sequencing of 7 suppressor clones revealed a common GGCC to GGTC mutation in the slr1790 promoter's discriminator sequence, encoding protoporphyrinogen IX oxidase, HemJ, crucial for tetrapyrrole biosynthesis. Transcriptomic and qPCR analyses indicated aberrant slr1790 expression in ∆sll0729 mutants. This aberration led to the accumulation of coproporphyrin III and protoporphyrin IX, indicative of impaired HemJ activity. To confirm the importance of DNA methylation in hemJ expression, hemJ promoter variants with varying discriminator sequences were introduced into the wild type, followed by sll0729 deletion. The sll0729 deletion segregated in strains with the GGTC discriminator motif, resulting in wild-type-like pigmentation, whereas freshly prepared ∆sll0729 mutants with the native hemJ promoter exhibited the bluish phenotype. These findings demonstrate that hemJ is tightly regulated in Synechocystis and that N4-methylcytosine is essential for proper hemJ expression. Thus, cytosine N4-methylation is a relevant epigenetic marker in Synechocystis and likely other cyanobacteria.

Zobrazit více v PubMed

Sánchez-Romero  MA, Cota  I, Casadesús  J.  DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol. 2015:25:9–16. https://doi.org/ 10.1016/j.mib.2015.03.004 PubMed DOI

Jeltsch  A.  Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem Eur J Chem Biol. 2002:3:274–293. https://doi.org/ 10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S PubMed DOI

Loenen  WAM, Raleigh  EA.  The other face of restriction: modification-dependent enzymes. Nucleic Acids Res. 2014:42:56–69. https://doi.org/ 10.1093/nar/gkt747 PubMed DOI PMC

Loenen  WAM  et al.  Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 2014:42:3–19. https://doi.org/ 10.1093/nar/gkt990 PubMed DOI PMC

Blow  MJ  et al.  The epigenomic landscape of prokaryotes. PLoS Genet. 2016:12:e1005854, https://doi.org/ 10.1371/journal.pgen.1005854 PubMed DOI PMC

Marinus  MG, Morris  NR.  Isolation of deoxyribonucleic acid methylase mutants of PubMed DOI PMC

Palmer  BR, Marinus  MG.  The PubMed DOI

Collier  J.  Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol. 2009:12:722–729. https://doi.org/ 10.1016/j.mib.2009.08.005 PubMed DOI

Kahramanoglou  C  et al.  Genomics of DNA cytosine methylation in PubMed DOI

Moore  LD, Le  T, Fan  G.  DNA methylation and its basic function. Off Publ Am Coll Neuropsychopharmacol. 2013:38:23–38. https://doi.org/ 10.1038/npp.2012.112 PubMed DOI PMC

Militello  KT, Mandarano  AH, Varechtchouk  O, Simon  RD.  Cytosine DNA methylation influences drug resistance in PubMed DOI

Camacho  EM, Casadesús  J.  Regulation of PubMed DOI

Roberts  D, Hoopes  BC, McClure  WR, Kleckner  N.  IS10 transposition is regulated by DNA adenine methylation. Cell. 1985:43:117–130. https://doi.org/ 10.1016/0092-8674(85)90017-0 PubMed DOI

van der Woude  M, Braaten  B, Low  D.  Epigenetic phase variation of the PubMed DOI

Gaultney  RA  et al.  4-Methylcytosine DNA modification is critical for global epigenetic regulation and virulence in the human pathogen PubMed DOI PMC

Bolay  P  et al.  Tailoring regulatory components for metabolic engineering in cyanobacteria. Physiol Plant. 2024:176:e14316, https://doi.org/ 10.1111/ppl.14316 PubMed DOI

Hagemann  M, Hess  WR.  Systems and synthetic biology for the biotechnological application of cyanobacteria. Curr Opin Biotechnol. 2018:49:94–99. https://doi.org/ 10.1016/j.copbio.2017.07.008 PubMed DOI

Klähn  S, Opel  F, Hess  WR.  Customized molecular tools to strengthen metabolic engineering of cyanobacteria. Green Carbon. 2024:2:149–163. https://doi.org/ 10.1016/j.greenca.2024.05.002 DOI

Scholz  I  et al.  Divergent methylation of CRISPR repeats and PubMed PMC

Hagemann  M  et al.  Identification of the DNA methyltransferases establishing the methylome of the cyanobacterium PubMed DOI PMC

Gärtner  K  et al.  Cytosine N4-methylation via M.Ssp6803II is involved in the regulation of transcription, fine-tuning of DNA replication and DNA repair in the cyanobacterium PubMed PMC

Kato  K  et al.  Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium PubMed DOI PMC

Skotnicová  P  et al.  The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J Biol Chem. 2018:293:12394–12404. https://doi.org/ 10.1074/jbc.RA118.003441 PubMed DOI PMC

Trautmann  D  et al.  Microevolution in cyanobacteria: re-sequencing a motile substrain of PubMed PMC

Kaneko  T  et al.  Sequence analysis of the genome of the unicellular cyanobacterium PubMed DOI

Scharnagl  M, Richter  S, Hagemann  M.  The cyanobacterium PubMed DOI PMC

Beyer  HM  et al.  AQUA cloning: a versatile and simple enzyme-free cloning approach. PLoS One. 2015:10:e0137652, https://doi.org/ 10.1371/journal.pone.0137652 PubMed DOI PMC

Kunert  A, Hagemann  M, Erdmann  N.  Construction of promoter probe vectors for PubMed DOI

Pinto  FL, Thapper  A, Sontheim  W, Lindblad  P.  Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol. 2009:10:1–8. PubMed PMC

Kraus  A  et al.  Protein NirP1 regulates nitrite reductase and nitrite excretion in cyanobacteria. Nat Commun. 2024:15:1911, https://doi.org/ 10.1038/s41467-024-46253-4 PubMed DOI PMC

Pilnỳ  J, Kopečná  J, Noda  J, Sobotka  R.  Detection and quantification of heme and chlorophyll precursors using a high performance liquid chromatography (HPLC) system equipped with two fluorescence detectors. Bio-Protoc. 2015:5:e1390–e1390.

Schneider  CA, Rasband  WS, Eliceiri  KW.  NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012:9:671–675. https://doi.org/ 10.1038/nmeth.2089 PubMed DOI PMC

Zerulla  K, Ludt  K, Soppa  J.  The ploidy level of PubMed

Kopf  M  et al.  Comparative analysis of the primary transcriptome of PubMed PMC

Czarnecki  O, Grimm  B.  Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J Exp Bot. 2012:63:1675–1687. https://doi.org/ 10.1093/jxb/err437 PubMed DOI

Chen  J, Darst  SA, Thirumalai  D.  Promoter melting triggered by bacterial RNA polymerase occurs in three steps. Proc Natl Acad Sci USA. 2010:107:12523–12528. https://doi.org/ 10.1073/pnas.1003533107 PubMed DOI PMC

Chen  GE  et al.  Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria. Proc Natl Acad Sci USA. 2021:118:e2024633118, https://doi.org/ 10.1073/pnas.2024633118 PubMed DOI PMC

Skotnicová  P  et al.  A thylakoid biogenesis BtpA protein is required for the initial step of tetrapyrrole biosynthesis in cyanobacteria. New Phytol. 2024:241:1236–1249. https://doi.org/ 10.1111/nph.19397 PubMed DOI

Cao  G  et al.  cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase and regulates energy transfer in cyanobacteria. Mol Cell Proteomics MCP. 2023:22:100521, https://doi.org/ 10.1016/j.mcpro.2023.100521 PubMed DOI PMC

Issawi  M, Sol  V, Riou  C.  Plant photodynamic stress: what’s new? Front Plant Sci. 2018:9:681, https://doi.org/ 10.3389/fpls.2018.00681 PubMed DOI PMC

Zhang  W  et al.  Bilin-dependent regulation of chlorophyll biosynthesis by GUN4. Proc Natl Acad Sci USA. 2021:118:e2104443118, https://doi.org/ 10.1073/pnas.2104443118 PubMed DOI PMC

Kopf  M  et al.  Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria. Sci Rep. 2015:5:9560, https://doi.org/ 10.1038/srep09560 PubMed DOI PMC

Kopf  M  et al.  Comparative genome analysis of the closely related PubMed DOI PMC

Pettersen  EF  et al.  UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021:30:70–82. https://doi.org/ 10.1002/pro.3943 PubMed DOI PMC

Cervi  AR  et al.  The crystal structure of N4-methylcytosine.guanosine base-pairs in the synthetic hexanucleotide d(CGCGm4CG). Nucleic Acids Res. 1993:21:5623–5629. https://doi.org/ 10.1093/nar/21.24.5623 PubMed DOI PMC

Wang  J, Yao  L.  Dissecting C-H∙∙∙π and N-H∙∙∙π interactions in two proteins using a combined experimental and computational approach. Sci Rep. 2019:9:20149, https://doi.org/ 10.1038/s41598-019-56607-4 PubMed DOI PMC

Feklistov  A  et al.  A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme. Mol Cell. 2006:23:97–107. https://doi.org/ 10.1016/j.molcel.2006.06.010 PubMed DOI

Bae  B  et al.  Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife  2015:4:e08504, https://doi.org/ 10.7554/eLife.08504 PubMed DOI PMC

Hook-Barnard  IG, Hinton  DM.  Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene Regul Syst Biol. 2007:1:275–293. PubMed PMC

Minchin  S, Busby  S.  Location of close contacts between PubMed DOI PMC

Hook-Barnard  IG, Hinton  DM.  The promoter spacer influences transcription initiation via σ PubMed PMC

Zenkin  N  et al.  Region 1.2 of the RNA polymerase σ subunit controls recognition of the −10 promoter element. EMBO J. 2007:26:955–964. https://doi.org/ 10.1038/sj.emboj.7601555 PubMed DOI PMC

Engel  JD, Von Hippel  PH.  Effects of methylation on the stability of nucleic acid conformations. Studies at the polymer level. J Biol Chem. 1978:253:927–934. PubMed

Butkus  V  et al.  Synthesis and physical characterization of DNA fragments containing N4-methylcytosine and 5-methylcytosine. Nucleic Acids Res. 1987:15:8467–8478. https://doi.org/ 10.1093/nar/15.20.8467 PubMed DOI PMC

Buitrago  D  et al.  Impact of DNA methylation on 3D genome structure. Nat Commun. 2021:12:3243, https://doi.org/ 10.1038/s41467-021-23142-8 PubMed DOI PMC

Rausch  C  et al.  Cytosine base modifications regulate DNA duplex stability and metabolism. Nucleic Acids Res. 2021:49:12870–12894. https://doi.org/ 10.1093/nar/gkab509 PubMed DOI PMC

Bae  S-H  et al.  Structure and dynamics of hemimethylated GATC sites: implications for DNA-SeqA recognition. J Biol Chem. 2003:278:45987–45993. https://doi.org/ 10.1074/jbc.M306038200 PubMed DOI

Ferreira  GC, Andrew  TL, Karr  SW, Dailey  HA.  Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J Biol Chem. 1988:263:3835–3839. PubMed

Masoumi  A  et al.  Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in PubMed DOI

Medlock  AE  et al.  Identification of the mitochondrial heme metabolism complex. PLoS One. 2015:10:e0135896, https://doi.org/ 10.1371/journal.pone.0135896 PubMed DOI PMC

Kohata  R  et al.  Heterologous complementation systems verify the mosaic distribution of three distinct protoporphyrinogen IX oxidase in the cyanobacterial phylum. J Plant Res. 2023:136:107–115. https://doi.org/ 10.1007/s10265-022-01423-7 PubMed DOI

Sobotka  R  et al.  The C-terminal extension of ferrochelatase is critical for enzyme activity and for functioning of the tetrapyrrole pathway in PubMed DOI PMC

Lermontova  I, Grimm  B.  Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 2000:122:75–84. https://doi.org/ 10.1104/pp.122.1.75 PubMed DOI PMC

Rodriguez  F, Yushenova  IA, DiCorpo  D, Arkhipova  IR.  Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA. Nat Commun. 2022:13:1072, https://doi.org/ 10.1038/s41467-022-28471-w PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...