Cryo-EM structures of Trypanosoma brucei gambiense ISG65 with human complement C3 and C3b and their roles in alternative pathway restriction
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37105991
PubMed Central
PMC10140031
DOI
10.1038/s41467-023-37988-7
PII: 10.1038/s41467-023-37988-7
Knihovny.cz E-zdroje
- MeSH
- aktivace komplementu MeSH
- alternativní dráha komplementu MeSH
- C3-C5-konvertasy komplementu metabolismus MeSH
- elektronová kryomikroskopie MeSH
- komplement C3 * metabolismus MeSH
- komplement C5 metabolismus MeSH
- lidé MeSH
- Trypanosoma brucei gambiense * metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- C3 protein, human MeSH Prohlížeč
- C3-C5-konvertasy komplementu MeSH
- komplement C3 * MeSH
- komplement C5 MeSH
African Trypanosomes have developed elaborate mechanisms to escape the adaptive immune response, but little is known about complement evasion particularly at the early stage of infection. Here we show that ISG65 of the human-infective parasite Trypanosoma brucei gambiense is a receptor for human complement factor C3 and its activation fragments and that it takes over a role in selective inhibition of the alternative pathway C5 convertase and thus abrogation of the terminal pathway. No deposition of C4b, as part of the classical and lectin pathway convertases, was detected on trypanosomes. We present the cryo-electron microscopy (EM) structures of native C3 and C3b in complex with ISG65 which reveal a set of modes of complement interaction. Based on these findings, we propose a model for receptor-ligand interactions as they occur at the plasma membrane of blood-stage trypanosomes and may facilitate innate immune escape of the parasite.
1st Faculty of Medicine Charles University Albertov 4 12800 Prague Czech Republic
Agidens Industrial Machinery Manufacturing Zwijndrecht Antwerp Belgium
Faculty of Science Charles University Albertov 6 12800 Prague 2 Czech Republic
Institute of Biotechnology of the Czech Academy of Sciences 25250 Vestec Czech Republic
Zobrazit více v PubMed
Stijlemans B, et al. Immune evasion strategies of Trypanosoma brucei within the mammalian host: progression to pathogenicity. Front. Immunol. 2016;7:233. doi: 10.3389/fimmu.2016.00233. PubMed DOI PMC
Cross GAM. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975;71:393–417. doi: 10.1017/S003118200004717X. PubMed DOI
Cross GA. Release and purification of Trypanosoma brucei variant surface glycoprotein. J. Cell Biochem. 1984;24:79–90. doi: 10.1002/jcb.240240107. PubMed DOI
Pinger J, et al. African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nat. Microbiol. 2018;3:932–938. doi: 10.1038/s41564-018-0187-6. PubMed DOI PMC
Engstler M, et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell. 2007;131:505–515. doi: 10.1016/j.cell.2007.08.046. PubMed DOI
Mugnier MR, Cross GA, Papavasiliou FN. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science. 2015;347:1470–1473. doi: 10.1126/science.aaa4502. PubMed DOI PMC
Rifkin MR. Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc Natl Acad Sci USA. 1978;75:3450–3454. doi: 10.1073/pnas.75.7.3450. PubMed DOI PMC
Hawking F, Ramsden DB, Whytock S. The trypanocidal action of human serum and of baboon plasma. Trans. R. Soc. Trop. Med. Hyg. 1973;67:501–516. doi: 10.1016/0035-9203(73)90081-3. PubMed DOI
DeJesus E, Kieft R, Albright B, Stephens NA, Hajduk SL. A single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobin-hemoglobin receptor abolishes TLF-1 binding. PLoS Pathog. 2013;9:e1003317. doi: 10.1371/journal.ppat.1003317. PubMed DOI PMC
Uzureau P, et al. Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature. 2013;501:430–434. doi: 10.1038/nature12516. PubMed DOI
Symula RE, et al. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance. PLoS Negl. Trop. Dis. 2012;6:e1728. doi: 10.1371/journal.pntd.0001728. PubMed DOI PMC
Higgins MK, et al. Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl Acad. Sci. USA. 2013;110:1905–1910. doi: 10.1073/pnas.1214943110. PubMed DOI PMC
Vanhamme L, et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature. 2003;422:83–87. doi: 10.1038/nature01461. PubMed DOI
Zoll S, et al. The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat. Microbiol. 2018;3:295–301. doi: 10.1038/s41564-017-0085-3. PubMed DOI
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I - molecular mechanisms of activation and regulation. Front. Immunol. 2015;6:262. doi: 10.3389/fimmu.2015.00262. PubMed DOI PMC
Fromell K, et al. Assessment of the role of C3(H2O) in the alternative pathway. Front. Immunol. 2020;11:530. doi: 10.3389/fimmu.2020.00530. PubMed DOI PMC
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - the “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev. 2016;274:33–58. doi: 10.1111/imr.12500. PubMed DOI PMC
Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J. Exp. Med. 1981;154:856–867. doi: 10.1084/jem.154.3.856. PubMed DOI PMC
Lachmann PJ, Lay E, Seilly DJ. Experimental confirmation of the C3 tickover hypothesis by studies with an Ab (S77) that inhibits tickover in whole serum. FASEB J. 2018;32:123–129. doi: 10.1096/fj.201700734. PubMed DOI
Mannes M, et al. Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity. Blood. 2021;137:443–455. doi: 10.1182/blood.2020005959. PubMed DOI
Devine DV, Falk RJ, Balber AE. Restriction of the alternative pathway of human complement by intact Trypanosoma brucei subsp. gambiense. Infect. Immun. 1986;52:223–229. doi: 10.1128/iai.52.1.223-229.1986. PubMed DOI PMC
Ferrante A, Allison AC. Alternative pathway activation of complement by African trypanosomes lacking a glycoprotein coat. Parasite Immunol. 1983;5:491–498. doi: 10.1111/j.1365-3024.1983.tb00763.x. PubMed DOI
Menny A, et al. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat. Commun. 2018;9:5316. doi: 10.1038/s41467-018-07653-5. PubMed DOI PMC
Sanchez-Corral P, et al. Separation of active and inactive forms of the third component of human complement, C3, by fast protein liquid chromatography (FPLC) J. Immunol. Methods. 1989;122:105–113. doi: 10.1016/0022-1759(89)90340-2. PubMed DOI
Liu X, et al. Changes in complement levels and activity of red blood cells, fresh frozen plasma, and platelet concentrates during storage. Ind. J. Hematol. Blood Transfus. 2021;37:140–146. doi: 10.1007/s12288-020-01338-0. PubMed DOI PMC
Elvington M, et al. Development and optimization of an ELISA to quantitate C3(H 2 O) as a marker of human disease. Front. Immunol. 2019;10:703. doi: 10.3389/fimmu.2019.00703. PubMed DOI PMC
Pangburn MK, Muller-Eberhard HJ. Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3. Ann. N Y Acad. Sci. 1983;421:291–298. doi: 10.1111/j.1749-6632.1983.tb18116.x. PubMed DOI
Chen ZA, et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol. Cell Proteomics. 2016;15:2730–2743. doi: 10.1074/mcp.M115.056473. PubMed DOI PMC
Rodriguez E, Nan R, Li K, Gor J, Perkins SJ. A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism. J. Biol. Chem. 2015;290:2334–2350. doi: 10.1074/jbc.M114.605691. PubMed DOI PMC
Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P. Structure of C3b reveals conformational changes that underlie complement activity. Nature. 2006;444:213–216. doi: 10.1038/nature05172. PubMed DOI
Janssen BJ, et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature. 2005;437:505–511. doi: 10.1038/nature04005. PubMed DOI
Field MC, Carrington M. The trypanosome flagellar pocket. Nat. Rev. Microbiol. 2009;7:775–786. doi: 10.1038/nrmicro2221. PubMed DOI
Tria G, Mertens HD, Kachala M, Svergun DI. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015;2:207–217. doi: 10.1107/S205225251500202X. PubMed DOI PMC
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Bartossek T, et al. Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. Nat. Microbiol. 2017;2:1523–1532. doi: 10.1038/s41564-017-0013-6. PubMed DOI
Berends ET, et al. Molecular insights into the surface-specific arrangement of complement C5 convertase enzymes. BMC Biol. 2015;13:93. doi: 10.1186/s12915-015-0203-8. PubMed DOI PMC
Sullivan L, Wall SJ, Carrington M, Ferguson MA. Proteomic selection of immunodiagnostic antigens for human African trypanosomiasis and generation of a prototype lateral flow immunodiagnostic device. PLoS Negl. Trop. Dis. 2013;7:e2087. doi: 10.1371/journal.pntd.0002087. PubMed DOI PMC
Ziegelbauer K, Overath P. Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infect. Immun. 1993;61:4540–4545. doi: 10.1128/iai.61.11.4540-4545.1993. PubMed DOI PMC
Trevor CE, et al. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nat. Microbiol. 2019;4:2074–2081. doi: 10.1038/s41564-019-0589-0. PubMed DOI PMC
Macleod OJS, et al. A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies. Nat. Commun. 2020;11:1326. doi: 10.1038/s41467-020-15125-y. PubMed DOI PMC
Stodkilde K, Torvund-Jensen M, Moestrup SK, Andersen CB. Structural basis for trypanosomal haem acquisition and susceptibility to the host innate immune system. Nat. Commun. 2014;5:5487. doi: 10.1038/ncomms6487. PubMed DOI
Freymann D, et al. 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J. Mol. Biol. 1990;216:141–160. doi: 10.1016/S0022-2836(05)80066-X. PubMed DOI
Clarke MW, Barbet AF, Pearson TW. Structural features of antigenic determinants on variant surface glycoproteins from Trypanosoma brucei. Mol. Immunol. 1987;24:707–713. doi: 10.1016/0161-5890(87)90052-6. PubMed DOI
Miller EN, Allan LM, Turner MJ. Topological analysis of antigenic determinants on a variant surface glycoprotein of Trypanosoma brucei. Mol. Biochem. Parasitol. 1984;13:67–81. doi: 10.1016/0166-6851(84)90102-6. PubMed DOI
Macleod OJS, et al. Invariant surface glycoprotein 65 of Trypanosoma brucei is a complement C3 receptor. Nat. Commun. 2022;13:5085. doi: 10.1038/s41467-022-32728-9. PubMed DOI PMC
Koumandou VL, Boehm C, Horder KA, Field MC. Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes. Eukaryot Cell. 2013;12:330–342. doi: 10.1128/EC.00273-12. PubMed DOI PMC
Zwarthoff SA, et al. Functional characterization of alternative and classical pathway C3/C5 convertase activity and inhibition using purified models. Front. Immunol. 2018;9:1691. doi: 10.3389/fimmu.2018.01691. PubMed DOI PMC
Aricescu AR, Lu W, Jones EY. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 2006;62:1243–1250. doi: 10.1107/S0907444906029799. PubMed DOI
O’Rear LD, Ross GD. Isolation and purification of C3 from human plasma. Curr. Protoc. Immunol. 2001;Chapter 13:Unit 13 13. PubMed
Guthridge JM, et al. Structural studies in solution of the recombinant N-terminal pair of short consensus/complement repeat domains of complement receptor type 2 (CR2/CD21) and interactions with its ligand C3dg. Biochemistry. 2001;40:5931–5941. doi: 10.1021/bi0101749. PubMed DOI
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC
Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. 2010;Chapter 10:Unit10 17. PubMed PMC
Strohalm M, Kavan D, Novak P, Volny M, Havlicek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 2010;82:4648–4651. doi: 10.1021/ac100818g. PubMed DOI
Fairhead M, Howarth M. Site-specific biotinylation of purified proteins using BirA. Methods Mol. Biol. 2015;1266:171–184. doi: 10.1007/978-1-4939-2272-7_12. PubMed DOI PMC
Yang M, et al. Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 2015;87:6681–6687. doi: 10.1021/acs.analchem.5b00831. PubMed DOI
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. doi: 10.1016/j.jsb.2005.07.007. PubMed DOI
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife10.7554/eLife.42166 (2018). PubMed PMC
Wagner T, et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. doi: 10.1038/s42003-019-0437-z. PubMed DOI PMC
Liebschner D, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC
Murshudov GN, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Davis IW, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35:W375–W383. doi: 10.1093/nar/gkm216. PubMed DOI PMC
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Daniel Kavan PM. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58. doi: 10.1016/j.ijms.2010.07.030. DOI
Manalastas-Cantos K, et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 2021;54:343–355. doi: 10.1107/S1600576720013412. PubMed DOI PMC
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003;36:1277–1282. doi: 10.1107/S0021889803012779. DOI
Hirumi H, Hirumi K. Axenic culture of African trypanosome bloodstream forms. Parasitol Today. 1994;10:80–84. doi: 10.1016/0169-4758(94)90402-2. PubMed DOI
Kinoshita T, et al. C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J. Immunol. 1988;141:3895–3901. doi: 10.4049/jimmunol.141.11.3895. PubMed DOI