Euglena gracilis Subcellular Fractionation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Euglena, Gradients, Isopycnic centrifugation, Organelle isolation, Subcellular distribution, Subcellular fractionation,
- MeSH
- centrifugace - gradient hustoty metody MeSH
- Euglena gracilis * cytologie metabolismus MeSH
- frakcionace buněk * metody MeSH
- kyseliny trijodbenzoové chemie MeSH
- organely MeSH
- sacharosa chemie MeSH
- subcelulární frakce * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- iodixanol MeSH Prohlížeč
- kyseliny trijodbenzoové MeSH
- sacharosa MeSH
Subcellular fractionation of Euglena gracilis has been conducted for over 50 years in various forms by numerous research groups. The development of this technique is closely tied to the specific organelle or fraction required for specific purposes. In this chapter, we describe our approach to this process and discuss the insights we gain from it. Sucrose and iodixanol gradients are employed to separate the main organelles of interest; however, these methods alone do not lead to the complete purification of the organelles.
Zobrazit více v PubMed
Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? Biosystems 14:461–481. https://doi.org/10.1016/0303-2647(81)90050-2 PubMed DOI
Steiger RF, Opperdoes FR, Bontemps J (1980) Subcellular fractionation of Trypanosoma brucei bloodstream forms with special reference to hydrolases. Eur J Biochem 105:163–175 PubMed DOI
Morales J, Hashimoto M, Williams TA et al (2016) Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc R Soc Lond B Biol Sci 283:20160520. https://doi.org/10.1098/rspb.2016.0520 DOI
Urbina JA, Moreno B, Vierkotter S et al (1999) Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J Biol Chem 274:33609–33615 PubMed DOI
Docampo R, Huang G (2016) Acidocalcisomes of eukaryotes. Curr Opin Cell Biol 41:66–72. https://doi.org/10.1016/j.ceb.2016.04.007 PubMed DOI PMC
Michels PAM, Moyersoen J, Krazy H et al (2009) Peroxisomes, glyoxysomes and glycosomes (review). Mol Membr Biol 22:133–145. https://doi.org/10.1080/09687860400024186 DOI
Rivero LA, Concepcion JL, Quintero-Troconis E et al (2016) Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp Parasitol 165:7–15. https://doi.org/10.1016/j.exppara.2016.03.003 PubMed DOI
Rondón-Mercado R, Acosta H, Cáceres AJ et al (2017) Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli. Mol Biochem Parasitol 216:21–29. https://doi.org/10.1016/j.molbiopara.2017.06.007 PubMed DOI
Zíková A, Verner Z, Nenarokova A et al (2017) A paradigm shift: the mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog 13:e1006679–e1006679. https://doi.org/10.1371/journal.ppat.1006679 PubMed DOI PMC
Michels PAM, Villafraz O, Pineda E et al (2021) Carbohydrate metabolism in trypanosomatids: new insights revealing novel complexity, diversity and species-unique features. Exp Parasitol:108102. https://doi.org/10.1016/j.exppara.2021.108102
Michels PAM, Gualdrón-López M (2022) Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol:e12897. https://doi.org/10.1111/jeu.12897
Saunders EC, Souza DPD, Naderer T et al (2010) Central carbon metabolism of Leishmania parasites. Parasitology 137:1303–1313. https://doi.org/10.1017/s0031182010000077 PubMed DOI
Docampo R, Moreno SN (1999) Acidocalcisome: a novel Ca PubMed DOI
Vercesi AE, Moreno SN, Docampo R (1994) Ca PubMed DOI PMC
Ebenezer TE, Low RS, O’Neill EC et al (2022) Euglena international network (EIN): driving euglenoid biotechnology for the benefit of a challenged world. Biol Open 11:bio059561. https://doi.org/10.1242/bio.059561 PubMed DOI PMC
Walton LB (1915) Cell division and the formation of paramylon in Euglena oxyuris Schmarda. Ohio Nat 15(4):449–451
Gan H, Enomoto Y, Kabe T et al (2017) Synthesis, properties and molecular conformation of paramylon ester derivatives. Polym Degrad Stab 145:142–149. https://doi.org/10.1016/j.polymdegradstab.2017.05.011 DOI
Vogel K, Barber AA (1968) Degradation of paramylon by Euglena gracilis. J Protozool 15:657–662 PubMed DOI
Garlaschi FM, Garlaschi AM, Lombardi A, Forti G (1974) Effect of ethanol on the metabolism of Euglena gracilis. Plant Science Letters 2:29–39. https://doi.org/10.1016/0304-4211(74)90035-2 DOI
Briand J, Calvayrac R (1980) Paramylon synthesis in heterotrophic and photoheterotrophic Euglena (Euglenophyceae). J Phycol 16:234–239. https://doi.org/10.1111/j.1529-8817.1980.tb03024.x DOI
Ono K, Miyatake K, Inui H et al (1994) Induction of glyoxylate cycle-key enzymes, malate synthase, and isocitrate lyase in ethanol-grown Euglena gracilis. Biosci Biotechnol Biochem 58:582–583. https://doi.org/10.1271/bbb.58.582 DOI
Hammond MJ, Nenarokova A, Butenko A et al (2020) A uniquely complex mitochondrial proteome from Euglena gracilis. Mol Biol Evol 37:2173–2191. https://doi.org/10.1093/molbev/msaa061 PubMed DOI PMC
Ebenezer TE, Carrington M, Lebert M, et al (2017) Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. Springer International Publishing, pp. 125–140
Wu M, Li J, Qin H et al (2020) Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca3(PO4)2, Mg3(PO4)2, and derivatives. Biotechnol Biofuels 13:98. https://doi.org/10.1186/s13068-020-01734-8 PubMed DOI PMC
Nagamine S, Oishi R, Ueda M et al (2024) Genome editing-based mutagenesis stably modifies composition of wax esters synthesized by Euglena gracilis under anaerobic conditions. Bioresour Technol:131255. https://doi.org/10.1016/j.biortech.2024.131255
Collins N, Merrett MJ (1975) Microbody-marker enzymes during transition from phototrophic to organotrophic growth in Euglena. Plant Physiol 55:1018–1022. https://doi.org/10.1104/pp.55.6.1018 PubMed DOI PMC
Park B-S, Hirotani A, Nakano Y, Kitaoka S (1985) Subcellular distribution and some properties of citrullinase in Euglena gracilis Z. Agric Biol Chem 49:2205–2206. https://doi.org/10.1080/00021369.1985.10867052 DOI
Nakano Y, Urade Y, Urade R, Kitaoka S (1987) Isolation, purification, and characterization of the pellicle of Euglena gracilis z. J Biochem 102:1053–1063. https://doi.org/10.1093/oxfordjournals.jbchem.a122143 PubMed DOI
Nakazawa M, Inui H, Yamaji R et al (2000) The origin of pyruvate:NADP+ oxidoreductase in mitochondria of Euglena gracilis. FEBS Lett 479:155–156. https://doi.org/10.1016/s0014-5793(00)01882-2 PubMed DOI
Nakazawa M, Minami T, Teramura K et al (2005) Molecular characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, in Euglena gracilis. Comp Biochem Physiol Part B: Biochem Mol Biol 141:445–452. https://doi.org/10.1016/j.cbpc.2005.05.006 DOI
Miranda-Astudillo HV, Yadav KNS, Colina-Tenorio L et al (2018) The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in Euglena gracilis. Sci Rep 8:9698. https://doi.org/10.1038/s41598-018-28039-z PubMed DOI PMC
Nasir A, Bail AL, Daiker V et al (2018) Identification of a flagellar protein implicated in the gravitaxis in the flagellate Euglena gracilis. Sci Rep 8:7605. https://doi.org/10.1038/s41598-018-26046-8 PubMed DOI PMC
Mulvey CM, Breckels LM, Geladaki A et al (2017) Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nat Protoc 12:1110–1135. https://doi.org/10.1038/nprot.2017.026 PubMed DOI
Konupková A, Peña-Diaz P, Hampl V (2025) Visualisation of Euglena gracilis organelles and cytoskeleton using expansion microscopy. Life Sci Alliance 8:e202403110. https://doi.org/10.26508/lsa.202403110 PubMed DOI PMC
Gain G, de Luna FV, Cordoba J et al (2021) Trophic state alters the mechanism whereby energetic coupling between photosynthesis and respiration occurs in Euglena gracilis. New Phytol 232:1603–1617. https://doi.org/10.1111/nph.17677 PubMed DOI PMC
Kim JI, Linton EW, Shin W (2015) Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Front Ecol Evol 3:98. https://doi.org/10.3389/fevo.2015.00098 DOI
Moreno-Sánchez R, Covián R, Jasso-Chávez R et al (2000) Oxidative phosphorylation supported by an alternative respiratory pathway in mitochondria from euglena. Biochim Biophys Acta 1457:200–210 PubMed DOI
Dobáková E, Flegontov P, Skalický T, Lukeš J (2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol evv229. https://doi.org/10.1093/gbe/evv229
Vacula R, Slàvikovà S, Schwartzbach SD (2007) Protein targeting protocols. Methods Mol Biol Clifton NJ 390:219–237. https://doi.org/10.1007/978-1-59745-466-7_15 DOI
Šubrtová K, Panicucci B, Zíková A (2015) ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog 11:e1004660–e1004627. https://doi.org/10.1371/journal.ppat.1004660 PubMed DOI PMC
Hierro-Yap C, Šubrtová K, Gahura O et al (2021) Bioenergetic consequences of FoF1–ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 296:100357. https://doi.org/10.1016/j.jbc.2021.100357 PubMed DOI PMC
Hutner SH, Bach MK, Ross GTM (1956) A sugar-containing basal medium for vitamin B12-assay with Euglena; application to body fluids. J Protozool 3:101–112. https://doi.org/10.1111/j.1550-7408.1956.tb02442.x DOI
Vanclová AMGN, Zoltner M, Kelly S et al (2020) Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol 225:1578–1592. https://doi.org/10.1111/nph.16237 DOI
Tomečková L, Tomčala A, Oborník M, Hampl V (2020) The lipid composition of Euglena gracilis middle plastid membrane resembles that of primary plastid envelopes. Plant Physiol 184:2052–2063. https://doi.org/10.1104/pp.20.00505 PubMed DOI PMC
Peltier J-B, Friso G, Kalume DE et al (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–341. https://doi.org/10.1105/tpc.12.3.319 PubMed DOI PMC
Monroy AF, Schwartzbach SD (1984) Catabolite repression of chloroplast development in Euglena. Proc Natl Acad Sci U S A 81:2786–2790. https://doi.org/10.1073/pnas.81.9.2786 PubMed DOI PMC