Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BBS/E/J/000C0618
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/000PR9790
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
36412269
PubMed Central
PMC9836076
DOI
10.1242/bio.059561
PII: 284354
Knihovny.cz E-zdroje
- Klíčová slova
- Biofuels, Bioremediation, Biotechnology, Euglena, Food supplements, Networks,
- MeSH
- biotechnologie MeSH
- Euglena * fyziologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
Center of Excellence for Bionanoscience Research King Abdul Aziz University Jeddah Saudi Arabia
Charles University Faculty of Science Department of Parasitology BIOCEV Vestec 25250 Czech Republic
Department of Biology Central Michigan University Mt Pleasant MI 48859 USA
Department of Life Sciences Institut de Botanique Université de Liège Liège 4000 Belgium
Discovery Biology Noblegen Inc Peterborough Ontario K9L 1Z8 Canada
Institute of Evolutionary Biology Faculty of Biology University of Warsaw Warsaw 02 089 Poland
Instituto Nacional de Cardiología Ignacio Chávez Mexico 14080 Mexico
Kemin Industries Research and Development Plymouth MI 48170 USA
Organisms and Ecosystems Earlham Institute Norwich Research Park Norwich NR4 7UZ UK
PVZimba LLC 12241 Percival St Chester VA 23831 USA
Rice Rivers Center VA Commonwealth University Richmond VA 23284 USA
School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
School of Biological Sciences University of East Anglia Norwich NR4 7TJ Norfolk UK
School of Chemistry University of Nottingham Nottingham NG7 2RD UK
School of Life Sciences University of Dundee Dundee DD1 5EH UK
The BioRobotics Institute Scuola Superiore Sant'Anna Pisa 56127 Italy
Zobrazit více v PubMed
Aldholmi, M., Ahmad, R., Carretero-Molina, D., Pérez-Victoria, I., Martín, J., Reyes, F., Genilloud, O., Gourbeyre, L., Gefflaut, T., Carlsson, H.et al. (2022). Euglenatides, potent antiproliferative cyclic peptides isolated from the freshwater photosynthetic microalga Euglena gracilis. Angewandte Chemie Int. Ed. 61, e202203175. 10.1002/anie.202203175 PubMed DOI PMC
Avramia, I. and Amariei, S. (2021). Spent Brewer's yeast as a source of insoluble β-glucans. Int. J. Mol. Sci. 22, 1-26. 10.3390/ijms22020825 PubMed DOI PMC
Burlacot, A., Peltier, G. and Li-Beisson, Y. (2019). Subcellular energetics and carbon storage in Chlamydomonas. Cells 8, 1154. 10.3390/cells8101154 PubMed DOI PMC
Cabang, A. B., De Mukhopadhyay, K., Meyers, S., Morris, J., Zimba, P. V. and Wargovich, M. J. (2017). Therapeutic effects of the euglenoid ichthyotoxin, euglenophycin, in colon cancer. Oncotarget 8, 104347-104358. 10.18632/oncotarget.22238 PubMed DOI PMC
Cahill, J. F., Riba, J. and Kertesz, V. (2019). Rapid, untargeted chemical profiling of single cells in their native environment. Anal. Chem. 91, 6118-6126. 10.1021/acs.analchem.9b00680 PubMed DOI
Chae, S. R., Hwang, E. J. and Shin, H. S. (2006). Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 97, 322-329. 10.1016/j.biortech.2005.02.037 PubMed DOI
Chen, O., Blonquist, T., Sudakaran, S., Mah, E., Kelley, K., Sanoshy, K., Falcone, P. and Herrlinger, K. (2021). Effect of whole cell algae fermentate on gut health and microbiome in healthy adults with mild gastrointestinal issues: a randomized, controlled, crossover study. FASEB J. 35. 10.1096/fasebj.2021.35.S1.02401 DOI
Digumarti, K. M., Conn, A. T. and Rossiter, J. (2017). Euglenoid-inspired giant shape change for highly deformable soft robots. IEEE Robotics Automation Lett. 2, 2302-2307. 10.1109/LRA.2017.2726113 DOI
Dorrell, R. G., Gile, G., McCallum, G., Méheust, R., Bapteste, E. P., Klinger, C. M., Brillet-Guéguen, L., Freeman, K. D. and Bowler, C. (2017). Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6, 1-45. 10.7554/eLife.23717 PubMed DOI PMC
Ebenezer, T. G. E., Carrington, M., Lebert, M., Kelly, S. and Field, M. C. (2017). Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. Adv. Exp. Med. Biol. 979, 125-140. 10.1007/978-3-319-54910-1_7 PubMed DOI
Ebenezer, T. E., Zoltner, M., Burrell, A., Nenarokova, A., Novák Vanclová, A. M. G., Prasad, B., Soukal, P., Santana-Molina, C., O'Neill, E., Nankissoor, N. N.et al. (2019). Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17, 1-23. 10.1186/s12915-019-0626-8 PubMed DOI PMC
Evans, M., Falcone, P. H., Crowley, D. C., Sulley, A. M., Campbell, M., Zakaria, N., Lasrado, J. A., Fritz, E. P. and Herrlinger, K. A. (2019). Effect of a Euglena gracilis fermentate on immune function in healthy, active adults: a randomized, double-blind, placebo-controlled trial. Nutrients 11, 2926. 10.3390/nu11122926 PubMed DOI PMC
Gissibl, A., Sun, A., Care, A., Nevalainen, H. and Sunna, A. (2019). Bioproducts from Euglena gracilis: synthesis and applications. Front. Bioeng. Biotechnol. 7, 108. 10.3389/fbioe.2019.00108 PubMed DOI PMC
Häder, D.-P. (2020). On the Way to Mars—flagellated algae in bioregenerative life support systems under microgravity conditions. Front. Plant Sci. 10, 1621. 10.3389/fpls.2019.01621 PubMed DOI PMC
Harada, R., Nomura, T., Yamada, K., Mochida, K. and Suzuki, K. (2020). Genetic engineering strategies for Euglena gracilis and its industrial contribution to sustainable development goals: a review. Front. Bioeng. Biotechnol. 8, 790. 10.3389/fbioe.2020.00790 PubMed DOI PMC
Haslam, S. M., Freedberg, D. I., Mulloy, B., Dell, A., Stanley, P. and Prestegard, J. H. (2022). Structural Analysis of Glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Mohnen D, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH, editors. Essentials of Glycobiology [Internet]. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 50. PMID: 35536953. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579945/ 10.1101/glycobiology.4e.50 DOI
Hauslage, J., Strauch, S. M., Eßmann, O., Haag, F. W. M., Richter, P., Krüger, J., Stoltze, J., Becker, I., Nasir, A., Bornemann, G.et al. (2018). Eu:CROPIS – “Euglena gracilis: combined regenerative organic-food production in space” - a space experiment testing biological life support systems under lunar and martian gravity. Microgravity Sci. Technol. 30, 933-942. 10.1007/s12217-018-9654-1 DOI
He, J., Liu, C. C., Du, M., Zhou, X., Hu, Z., Lei, A. and Wang, J. (2021). Metabolic responses of a model green microalga Euglena gracilis to different environmental stresses. Front. Bioeng. Biotechnol. 9, 575. 10.3389/fbioe.2021.662655 PubMed DOI PMC
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A.et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. 10.1038/s41586-021-03819-2 PubMed DOI PMC
Kaszecki, E., Kennedy, V., Shah, M., Maciszewski, K., Karnkowska, A., Linton, E., Farrow, S. and Ebenezer, E. T. (2022). Meeting report: euglenids in the age of symbiogenesis: origins, innovations, and prospects, November 8-11, 2021. Protist 173, 125894. 10.1016/j.protis.2022.125894 PubMed DOI
Kaurov, I., Vancová, M., Schimanski, B., Cadena, L. R., Heller, J., Bílý, T., Potěšil, D., Eichenberger, C., Bruce, H., Oeljeklaus, S.et al. (2018). The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr. Biol. 28, 3393-3407.e5. 10.1016/j.cub.2018.09.008 PubMed DOI
Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 91, 1481-1493. 10.3732/ajb.91.10.1481 PubMed DOI
Khatiwada, B., Sunna, A. and Nevalainen, H. (2020). Molecular tools and applications of Euglena gracilis : From biorefineries to bioremediation. Biotechnol. Bioeng. 117, 3952-3967. 10.1002/bit.27516 PubMed DOI
Kim, H., Gerber, L. C., Chiu, D., Lee, S. A., Cira, N. J., Xia, S. Y. and Riedel-Kruse, I. H. (2016). LudusScope: accessible interactive smartphone microscopy for life-science education. PLoS ONE 11, e0162602. 10.1371/journal.pone.0162602 PubMed DOI PMC
Kings, A. J., Raj, R. E., Miriam, L. R. M. and Visvanathan, M. A. (2017). Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Convers. Manage. 141, 224-235. 10.1016/j.enconman.2016.08.018 DOI
Kiss, J. Z., Vasconcelos, A. C. and Triemer, R. E. (1988). The intramembranous particle profile of the paramylon membrane during paramylon synthesis in euglena (EUGLENOPHYCEAE)1. J. Phycol. 24, 152-157.
Kostygov, A. Y., Karnkowska, A., Votýpka, J., Tashyreva, D., Maciszewski, K., Yurchenko, V. and Lukeš, J. (2021). Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 11(3), 1-47. 10.1098/rsob.200407 PubMed DOI PMC
Kottuparambil, S., Thankamony, R. L. and Agusti, S. (2019). Euglena as a potential natural source of value-added metabolites. A review. Algal Res. 37, 154-159. 10.1016/j.algal.2018.11.024 DOI
Lam, A. T., Ma, J., Barr, C., Lee, S. A., White, A. K., Yu, K. and Riedel-Kruse, I. H. (2019). First-hand, immersive full-body experiences with living cells through interactive museum exhibits. Nat. Biotechnol. 37, 1238-1241. 10.1038/s41587-019-0272-2 PubMed DOI
Lam, A. T., Griffin, J., Loeun, M. A., Cira, N. J., Lee, S. A. and Riedel-Kruse, I. H. (2020). Pac-Euglena: A Living Cellular Pac-Man Meets Virtual Ghosts. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI 20). Association for Computing Machinery, New York, NY, USA, 1-13. 10.1145/3313831.3376378 DOI
Lax, G., Kolisko, M., Eglit, Y., Lee, W. J., Yubuki, N., Karnkowska, A., Leander, B. S., Burger, G., Keeling, P. J. and Simpson, A. G. B. (2021). Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol. Phylogenet. Evol. 159, 107088. 10.1016/J.YMPEV.2021.107088 PubMed DOI
Leander, B. S., Lax, G., Karnkowska, A., Simpson, A. G. B. (2017). Euglenida. In Handbook of the Protists (ed. Archibald J. M., et al.). Wien: Springer-Verlag, pp 1047-1088, 10.1007/978-3-319-32669-6_13-1 DOI
Levine, R. B., LeBrun, J. R. and Horst, G. P.. Algal Scientific Corp (2017) Multi-stage process for production of immune modulator. U.S. Patent 9574217B2.
Levine, R., Horst, G., Tonda, R., Lumpkins, B. and Mathis, G. (2018). Evaluation of the effects of feeding dried algae containing beta-1,3-glucan on broilers challenged with Eimeria. Poult. Sci. 97, 3494-3500. 10.3382/ps/pey227 PubMed DOI
Li, J., Zheng, Z., Du, M., Chen, J., Zhu, H., Hu, Z., Zhu, Y. and Wang, J. (2021). Euglena gracilis and its aqueous extract constructed with chitosan-hyaluronic acid hydrogel facilitate cutaneous wound healing in mice without inducing excessive inflammatory response. Front. Bioeng. Biotechnol. 9, 1181. 10.3389/fbioe.2021.713840 PubMed DOI PMC
Mikami, H., Harmon, J., Kobayashi, H., Hamad, S., Wang, Y., Iwata, O., Suzuki, K., Ito, T., Aisaka, Y., Kutsuna, N.et al. (2018). Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Undefined 5, 117-126. 10.1364/OPTICA.5.000117 DOI
Mikami, H., Kawaguchi, M., Huang, C. J., Matsumura, H., Sugimura, T., Huang, K., Lei, C., Ueno, S., Miura, T., Ito, T.et al. (2020). Virtual-freezing fluorescence imaging flow cytometry. Nat. Commun. 11, 1-11. 10.1038/s41467-020-14929-2 PubMed DOI PMC
Monfils, A. K., Triemer, R. E. and Bellairs, E. F. (2019). Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50, 156-169. 10.2216/09-112.1 DOI
Moreno-Sánchez, R., Rodríguez-Enríquez, S., Jasso-Chávez, R., Saavedra, E. and García-García, J. D. (2017). Biochemistry and physiology of heavy metal resistance and accumulation in Euglena. Adv. Exp. Med. Biol. 979, 91-121. 10.1007/978-3-319-54910-1_6 PubMed DOI
Muchut, R. J., Calloni, R. D., Arias, D. G., Arce, A. L., Iglesias, A. A. and Guerrero, S. A. (2021). Elucidating carbohydrate metabolism in Euglena gracilis: Reverse genetics-based evaluation of genes coding for enzymes linked to paramylon accumulation. Biochimie 184, 125-131. 10.1016/j.biochi.2021.02.016 PubMed DOI
Nakashima, A., Yamada, K., Iwata, O., Sugimoto, R., Atsuji, K., Ogawa, T., Ishibashi-Ohgo, N. and Suzuki, K. (2018). β-Glucan in foods and its physiological functions. J. Nutr. Sci. Vitaminol. 64, 8-17. 10.3177/jnsv.64.8 PubMed DOI
Nakashima, A., Yasuda, K., Murata, A., Suzuki, K. and Miura, N. (2020). Effects of Euglena gracilis intake on mood and autonomic activity under mental workload, and subjective sleep quality: a randomized, double-blind, placebo-controlled trial. Nutrients 12, 3243. 10.3390/nu12113243 PubMed DOI PMC
Nakazawa, M., Andoh, H., Koyama, K., Watanabe, Y., Nakai, T., Ueda, M., Sakamoto, T., Inui, H., Nakano, Y. and Miyatake, K. (2015). Alteration of wax ester content and composition in Euglena gracilis with gene silencing of 3-ketoacyl-CoA Thiolase Isozymes. Lipids 50, 483-492. 10.1007/s11745-015-4010-3 PubMed DOI
Nomura, T., Yoshikawa, M., Suzuki, K. and Mochida, K. (2020). Highly efficient CRISPR-associated protein 9 ribonucleoprotein-based genome editing in Euglena gracilis. STAR Protocols 1, 100023. 10.1016/j.xpro.2020.100023 PubMed DOI PMC
O'Neill, E. C., Trick, M., Henrissat, B. and Field, R. A. (2015a). Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect. Sci. 6, 84-93. 10.1016/j.pisc.2015.07.002 DOI
O'Neill, E. C., Trick, M., Hill, L., Rejzek, M., Dusi, R. G., Hamilton, C. J., Zimba, P. V., Henrissat, B. and Field, R. A. (2015b). The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol. Biosyst. 11, 2808-2820. 10.1039/C5MB00319A PubMed DOI
Padermshoke, A., Ogawa, T., Nishio, K., Nakazawa, M., Nakamoto, M., Okazawa, A., Kanaya, S., Arita, M. and Ohta, D. (2016). Critical involvement of environmental carbon dioxide fixation to drive wax ester fermentation in Euglena. PLoS ONE 11, e0162827. 10.1371/journal.pone.0162827 PubMed DOI PMC
Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S.-E., Walford, G. A., Sugiana, C., Boneh, A., Chen, W. K.et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123. 10.1016/j.cell.2008.06.016 PubMed DOI PMC
Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., Chow, W., Fungtammasan, A., Kim, J.et al. (2021). Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737-746. 10.1038/s41586-021-03451-0 PubMed DOI PMC
Ruiz-Herrera, J. and Ortiz-Castellanos, L. (2019). Cell wall glucans of fungi. A review. Cell Surface (Amsterdam, Netherlands) 5, 100022. 10.1016/J.TCSW.2019.100022 PubMed DOI PMC
Sakanoi, Y., Shuang, E., Yamamoto, K., Ota, T., Seki, K., Imai, M., Ota, R., Asayama, Y., Nakashima, A., Suzuki, K.et al. (2018). Simultaneous intake of Euglena Gracilis and vegetables synergistically exerts an anti-inflammatory effect and attenuates visceral fat accumulation by affecting gut microbiota in mice. Nutrients 10, 1417. 10.3390/NU10101417 PubMed DOI PMC
Schneider, A. (2018). Mitochondrial protein import in trypanosomatids: variations on a theme or fundamentally different? PLoS Pathog. 14, e1007351. 10.1371/journal.ppat.1007351 PubMed DOI PMC
Singdevsachan, S. K., Auroshree, P., Mishra, J., Baliyarsingh, B., Tayung, K. and Thatoi, H. (2016). Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioactive Carbohydrates Dietary Fibre 7, 1-14. 10.1016/j.bcdf.2015.11.001 DOI
Sugiyama, A., Hata, S., Suzuki, K., Yoshida, E., Nakano, R., Mitra, S., Arashida, R., Asayama, Y., Yabuta, Y. and Takeuchi, T. (2010). Oral administration of paramylon, a β-1,3-D-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Vet. Med. Sci. 72, 755-763. 10.1292/jvms.09-0526 PubMed DOI
Toyama, T., Hanaoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M. and Mori, K. (2019). Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnol. Biofuels 12, 205. 10.1186/s13068-019-1544-2 PubMed DOI PMC
Triemer, R. E. and Zakryś, B. (2015). Photosynthetic Euglenoids. In Freshwater Algae of North America: Ecology and Classification (eds. Wehr, J. D., Sheath, R. G., Kociolek, J. P.). Academic Press, pp. 459-483. 10.1016/B978-0-12-385876-4.00010-4 DOI
Tsang, A. C. H., Lam, A. T. and Riedel-Kruse, I. H. (2018). Polygonal motion and adaptable phototaxis via flagellar beat switching in the microswimmer Euglena gracilis. Nat. Phys. 14, 1216-1222. 10.1038/s41567-018-0277-7 DOI
Turck, D., Castenmiller, J., De Henauw, S., Hirsch–Ernst, K. I., Kearney, J., Maciuk, A. and … Knutsen, H. K. (2020). Safety of dried whole cell Euglena gracilis as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 18, e06100. PubMed PMC
Wakisaka, Y., Suzuki, Y., Iwata, O., Nakashima, A., Ito, T., Hirose, M., Domon, R., Sugawara, M., Tsumura, N., Watarai, H.et al. (2016). Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat. Microbiol. 1, 1-4. 10.1038/nmicrobiol.2016.124 PubMed DOI
Wang, Y., Seppänen-Laakso, T., Rischer, H. and Wiebe, M. G. (2018). Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS ONE 13, e0195329. 10.1371/JOURNAL.PONE.0195329 PubMed DOI PMC
Washington, P., Samuel-Gama, K. G., Goyal, S., Ramaswami, A. and Riedel-Kruse, I. H. (2019). Interactive programming paradigm for real-time experimentation with remote living matter. Proc. Natl. Acad. Sci. U.S.A. 116, 5411-5419. 10.1073/pnas.1815367116 PubMed DOI PMC
Watanabe, T., Shimada, R., Matsuyama, A., Yuasa, M., Sawamura, H., Yoshida, E. and Suzuki, K. (2013). Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice. Food Function 4, 1685-1690. 10.1039/c3fo60256g PubMed DOI
Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D.et al. (2019). Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155-1162. 10.1038/s41587-019-0217-9 PubMed DOI PMC
Yamamoto, F. Y., Sutili, F. J., Hume, M. and Gatlin, D. M. (2018). The effect of β-1,3-glucan derived from Euglena gracilis (AlgamuneTM) on the innate immunological responses of Nile tilapia (Oreochromis niloticus L.). J. Fish Dis. 41, 1579-1588. 10.1111/jfd.12871 PubMed DOI
Zimba, P. V., Huang, I.-S., Gutierrez, D., Shin, W., Bennett, M. S. and Triemer, R. E. (2017). Euglenophycin is produced in at least six species of euglenoid algae and six of seven strains of Euglena sanguinea. Harmful Algae 63, 79-84. 10.1016/j.hal.2017.01.010 PubMed DOI PMC
Zoltner, M. and Field, M. C. (2022). Microbe Profile: Euglena gracilis: Tough, flagellated and enigmatic. Microbiology 168(9). 10.1099/mic.0.001241 PubMed DOI