Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world

. 2022 Nov 01 ; 11 (11) : . [epub] 20221122

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36412269

Grantová podpora
BBS/E/J/000C0618 Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/000PR9790 Biotechnology and Biological Sciences Research Council - United Kingdom

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.

Biomedical Research Centre Norwich Medical School University of East Anglia Norwich Research Park Norwich NR4 7TJ UK

Center for Global Infectious Disease Research Seattle Children's Research Institute and Department of Biomedical Informatics and Medical Education University of Washington WA 98109 USA

Center of Excellence for Bionanoscience Research King Abdul Aziz University Jeddah Saudi Arabia

Charles University Faculty of Science Department of Parasitology BIOCEV Vestec 25250 Czech Republic

Department of Applied Biochemistry Faculty of Agriculture Osaka Metropolitan University Sakai Osaka 599 8531 Japan

Department of Biology and Institute for Comparative Genomics Dalhousie University Halifax Nova Scotia B3H 4R2 Canada

Department of Biology Central Michigan University Mt Pleasant MI 48859 USA

Department of Chemistry and Manchester Institute of Biotechnology University of Manchester Manchester M1 7DN UK

Department of Life Sciences Institut de Botanique Université de Liège Liège 4000 Belgium

Discovery Biology Noblegen Inc Peterborough Ontario K9L 1Z8 Canada

Environmental and Life Sciences Graduate Program Trent University Peterborough Ontario K9L 0G2 Canada

European Molecular Biology Laboratory European Bioinformatics Institute Wellcome Genome Campus Hinxton Cambridge CB10 1SD UK

Forensic Science Environmental and Life Sciences Graduate Program Trent University Peterborough K9L 0G2 Canada

Institute of Agricultural and Life Sciences Academic Assembly Shimane University Matsue 690 8504 Japan

Institute of Evolutionary Biology Faculty of Biology University of Warsaw Warsaw 02 089 Poland

Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice 370 05 Czech Republic

Instituto Nacional de Cardiología Ignacio Chávez Mexico 14080 Mexico

Kemin Industries Research and Development Plymouth MI 48170 USA

Laboratorio de Enzimología Molecular Instituto de Agrobiotecnología del Litoral CCT CONICET Santa Fe Santa Fe 3000 Argentina

Office of Regulatory Science United States Food and Drug Administration Center for Food Safety and Applied Nutrition College Park MD 20740 USA

Organisms and Ecosystems Earlham Institute Norwich Research Park Norwich NR4 7UZ UK

PVZimba LLC 12241 Percival St Chester VA 23831 USA

R and D Company Euglena Co Ltd 2F Yokohama Bio Industry Center 1 6 Suehiro Tsurumi Yokohama Kanagawa 230 0045 Japan

Rice Rivers Center VA Commonwealth University Richmond VA 23284 USA

School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK

School of Biological Sciences University of East Anglia Norwich NR4 7TJ Norfolk UK

School of Chemistry University of Nottingham Nottingham NG7 2RD UK

School of Life Sciences University of Dundee Dundee DD1 5EH UK

The BioRobotics Institute Scuola Superiore Sant'Anna Pisa 56127 Italy

Zobrazit více v PubMed

Aldholmi, M., Ahmad, R., Carretero-Molina, D., Pérez-Victoria, I., Martín, J., Reyes, F., Genilloud, O., Gourbeyre, L., Gefflaut, T., Carlsson, H.et al. (2022). Euglenatides, potent antiproliferative cyclic peptides isolated from the freshwater photosynthetic microalga Euglena gracilis. Angewandte Chemie Int. Ed. 61, e202203175. 10.1002/anie.202203175 PubMed DOI PMC

Avramia, I. and Amariei, S. (2021). Spent Brewer's yeast as a source of insoluble β-glucans. Int. J. Mol. Sci. 22, 1-26. 10.3390/ijms22020825 PubMed DOI PMC

Burlacot, A., Peltier, G. and Li-Beisson, Y. (2019). Subcellular energetics and carbon storage in Chlamydomonas. Cells 8, 1154. 10.3390/cells8101154 PubMed DOI PMC

Cabang, A. B., De Mukhopadhyay, K., Meyers, S., Morris, J., Zimba, P. V. and Wargovich, M. J. (2017). Therapeutic effects of the euglenoid ichthyotoxin, euglenophycin, in colon cancer. Oncotarget 8, 104347-104358. 10.18632/oncotarget.22238 PubMed DOI PMC

Cahill, J. F., Riba, J. and Kertesz, V. (2019). Rapid, untargeted chemical profiling of single cells in their native environment. Anal. Chem. 91, 6118-6126. 10.1021/acs.analchem.9b00680 PubMed DOI

Chae, S. R., Hwang, E. J. and Shin, H. S. (2006). Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 97, 322-329. 10.1016/j.biortech.2005.02.037 PubMed DOI

Chen, O., Blonquist, T., Sudakaran, S., Mah, E., Kelley, K., Sanoshy, K., Falcone, P. and Herrlinger, K. (2021). Effect of whole cell algae fermentate on gut health and microbiome in healthy adults with mild gastrointestinal issues: a randomized, controlled, crossover study. FASEB J. 35. 10.1096/fasebj.2021.35.S1.02401 DOI

Digumarti, K. M., Conn, A. T. and Rossiter, J. (2017). Euglenoid-inspired giant shape change for highly deformable soft robots. IEEE Robotics Automation Lett. 2, 2302-2307. 10.1109/LRA.2017.2726113 DOI

Dorrell, R. G., Gile, G., McCallum, G., Méheust, R., Bapteste, E. P., Klinger, C. M., Brillet-Guéguen, L., Freeman, K. D. and Bowler, C. (2017). Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6, 1-45. 10.7554/eLife.23717 PubMed DOI PMC

Ebenezer, T. G. E., Carrington, M., Lebert, M., Kelly, S. and Field, M. C. (2017). Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. Adv. Exp. Med. Biol. 979, 125-140. 10.1007/978-3-319-54910-1_7 PubMed DOI

Ebenezer, T. E., Zoltner, M., Burrell, A., Nenarokova, A., Novák Vanclová, A. M. G., Prasad, B., Soukal, P., Santana-Molina, C., O'Neill, E., Nankissoor, N. N.et al. (2019). Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17, 1-23. 10.1186/s12915-019-0626-8 PubMed DOI PMC

Evans, M., Falcone, P. H., Crowley, D. C., Sulley, A. M., Campbell, M., Zakaria, N., Lasrado, J. A., Fritz, E. P. and Herrlinger, K. A. (2019). Effect of a Euglena gracilis fermentate on immune function in healthy, active adults: a randomized, double-blind, placebo-controlled trial. Nutrients 11, 2926. 10.3390/nu11122926 PubMed DOI PMC

Gissibl, A., Sun, A., Care, A., Nevalainen, H. and Sunna, A. (2019). Bioproducts from Euglena gracilis: synthesis and applications. Front. Bioeng. Biotechnol. 7, 108. 10.3389/fbioe.2019.00108 PubMed DOI PMC

Häder, D.-P. (2020). On the Way to Mars—flagellated algae in bioregenerative life support systems under microgravity conditions. Front. Plant Sci. 10, 1621. 10.3389/fpls.2019.01621 PubMed DOI PMC

Harada, R., Nomura, T., Yamada, K., Mochida, K. and Suzuki, K. (2020). Genetic engineering strategies for Euglena gracilis and its industrial contribution to sustainable development goals: a review. Front. Bioeng. Biotechnol. 8, 790. 10.3389/fbioe.2020.00790 PubMed DOI PMC

Haslam, S. M., Freedberg, D. I., Mulloy, B., Dell, A., Stanley, P. and Prestegard, J. H. (2022). Structural Analysis of Glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Mohnen D, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH, editors. Essentials of Glycobiology [Internet]. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 50. PMID: 35536953. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579945/ 10.1101/glycobiology.4e.50 DOI

Hauslage, J., Strauch, S. M., Eßmann, O., Haag, F. W. M., Richter, P., Krüger, J., Stoltze, J., Becker, I., Nasir, A., Bornemann, G.et al. (2018). Eu:CROPIS – “Euglena gracilis: combined regenerative organic-food production in space” - a space experiment testing biological life support systems under lunar and martian gravity. Microgravity Sci. Technol. 30, 933-942. 10.1007/s12217-018-9654-1 DOI

He, J., Liu, C. C., Du, M., Zhou, X., Hu, Z., Lei, A. and Wang, J. (2021). Metabolic responses of a model green microalga Euglena gracilis to different environmental stresses. Front. Bioeng. Biotechnol. 9, 575. 10.3389/fbioe.2021.662655 PubMed DOI PMC

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A.et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. 10.1038/s41586-021-03819-2 PubMed DOI PMC

Kaszecki, E., Kennedy, V., Shah, M., Maciszewski, K., Karnkowska, A., Linton, E., Farrow, S. and Ebenezer, E. T. (2022). Meeting report: euglenids in the age of symbiogenesis: origins, innovations, and prospects, November 8-11, 2021. Protist 173, 125894. 10.1016/j.protis.2022.125894 PubMed DOI

Kaurov, I., Vancová, M., Schimanski, B., Cadena, L. R., Heller, J., Bílý, T., Potěšil, D., Eichenberger, C., Bruce, H., Oeljeklaus, S.et al. (2018). The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr. Biol. 28, 3393-3407.e5. 10.1016/j.cub.2018.09.008 PubMed DOI

Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 91, 1481-1493. 10.3732/ajb.91.10.1481 PubMed DOI

Khatiwada, B., Sunna, A. and Nevalainen, H. (2020). Molecular tools and applications of Euglena gracilis : From biorefineries to bioremediation. Biotechnol. Bioeng. 117, 3952-3967. 10.1002/bit.27516 PubMed DOI

Kim, H., Gerber, L. C., Chiu, D., Lee, S. A., Cira, N. J., Xia, S. Y. and Riedel-Kruse, I. H. (2016). LudusScope: accessible interactive smartphone microscopy for life-science education. PLoS ONE 11, e0162602. 10.1371/journal.pone.0162602 PubMed DOI PMC

Kings, A. J., Raj, R. E., Miriam, L. R. M. and Visvanathan, M. A. (2017). Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Convers. Manage. 141, 224-235. 10.1016/j.enconman.2016.08.018 DOI

Kiss, J. Z., Vasconcelos, A. C. and Triemer, R. E. (1988). The intramembranous particle profile of the paramylon membrane during paramylon synthesis in euglena (EUGLENOPHYCEAE)1. J. Phycol. 24, 152-157.

Kostygov, A. Y., Karnkowska, A., Votýpka, J., Tashyreva, D., Maciszewski, K., Yurchenko, V. and Lukeš, J. (2021). Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 11(3), 1-47. 10.1098/rsob.200407 PubMed DOI PMC

Kottuparambil, S., Thankamony, R. L. and Agusti, S. (2019). Euglena as a potential natural source of value-added metabolites. A review. Algal Res. 37, 154-159. 10.1016/j.algal.2018.11.024 DOI

Lam, A. T., Ma, J., Barr, C., Lee, S. A., White, A. K., Yu, K. and Riedel-Kruse, I. H. (2019). First-hand, immersive full-body experiences with living cells through interactive museum exhibits. Nat. Biotechnol. 37, 1238-1241. 10.1038/s41587-019-0272-2 PubMed DOI

Lam, A. T., Griffin, J., Loeun, M. A., Cira, N. J., Lee, S. A. and Riedel-Kruse, I. H. (2020). Pac-Euglena: A Living Cellular Pac-Man Meets Virtual Ghosts. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI 20). Association for Computing Machinery, New York, NY, USA, 1-13. 10.1145/3313831.3376378 DOI

Lax, G., Kolisko, M., Eglit, Y., Lee, W. J., Yubuki, N., Karnkowska, A., Leander, B. S., Burger, G., Keeling, P. J. and Simpson, A. G. B. (2021). Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Mol. Phylogenet. Evol. 159, 107088. 10.1016/J.YMPEV.2021.107088 PubMed DOI

Leander, B. S., Lax, G., Karnkowska, A., Simpson, A. G. B. (2017). Euglenida. In Handbook of the Protists (ed. Archibald J. M., et al.). Wien: Springer-Verlag, pp 1047-1088, 10.1007/978-3-319-32669-6_13-1 DOI

Levine, R. B., LeBrun, J. R. and Horst, G. P.. Algal Scientific Corp (2017) Multi-stage process for production of immune modulator. U.S. Patent 9574217B2.

Levine, R., Horst, G., Tonda, R., Lumpkins, B. and Mathis, G. (2018). Evaluation of the effects of feeding dried algae containing beta-1,3-glucan on broilers challenged with Eimeria. Poult. Sci. 97, 3494-3500. 10.3382/ps/pey227 PubMed DOI

Li, J., Zheng, Z., Du, M., Chen, J., Zhu, H., Hu, Z., Zhu, Y. and Wang, J. (2021). Euglena gracilis and its aqueous extract constructed with chitosan-hyaluronic acid hydrogel facilitate cutaneous wound healing in mice without inducing excessive inflammatory response. Front. Bioeng. Biotechnol. 9, 1181. 10.3389/fbioe.2021.713840 PubMed DOI PMC

Mikami, H., Harmon, J., Kobayashi, H., Hamad, S., Wang, Y., Iwata, O., Suzuki, K., Ito, T., Aisaka, Y., Kutsuna, N.et al. (2018). Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Undefined 5, 117-126. 10.1364/OPTICA.5.000117 DOI

Mikami, H., Kawaguchi, M., Huang, C. J., Matsumura, H., Sugimura, T., Huang, K., Lei, C., Ueno, S., Miura, T., Ito, T.et al. (2020). Virtual-freezing fluorescence imaging flow cytometry. Nat. Commun. 11, 1-11. 10.1038/s41467-020-14929-2 PubMed DOI PMC

Monfils, A. K., Triemer, R. E. and Bellairs, E. F. (2019). Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50, 156-169. 10.2216/09-112.1 DOI

Moreno-Sánchez, R., Rodríguez-Enríquez, S., Jasso-Chávez, R., Saavedra, E. and García-García, J. D. (2017). Biochemistry and physiology of heavy metal resistance and accumulation in Euglena. Adv. Exp. Med. Biol. 979, 91-121. 10.1007/978-3-319-54910-1_6 PubMed DOI

Muchut, R. J., Calloni, R. D., Arias, D. G., Arce, A. L., Iglesias, A. A. and Guerrero, S. A. (2021). Elucidating carbohydrate metabolism in Euglena gracilis: Reverse genetics-based evaluation of genes coding for enzymes linked to paramylon accumulation. Biochimie 184, 125-131. 10.1016/j.biochi.2021.02.016 PubMed DOI

Nakashima, A., Yamada, K., Iwata, O., Sugimoto, R., Atsuji, K., Ogawa, T., Ishibashi-Ohgo, N. and Suzuki, K. (2018). β-Glucan in foods and its physiological functions. J. Nutr. Sci. Vitaminol. 64, 8-17. 10.3177/jnsv.64.8 PubMed DOI

Nakashima, A., Yasuda, K., Murata, A., Suzuki, K. and Miura, N. (2020). Effects of Euglena gracilis intake on mood and autonomic activity under mental workload, and subjective sleep quality: a randomized, double-blind, placebo-controlled trial. Nutrients 12, 3243. 10.3390/nu12113243 PubMed DOI PMC

Nakazawa, M., Andoh, H., Koyama, K., Watanabe, Y., Nakai, T., Ueda, M., Sakamoto, T., Inui, H., Nakano, Y. and Miyatake, K. (2015). Alteration of wax ester content and composition in Euglena gracilis with gene silencing of 3-ketoacyl-CoA Thiolase Isozymes. Lipids 50, 483-492. 10.1007/s11745-015-4010-3 PubMed DOI

Nomura, T., Yoshikawa, M., Suzuki, K. and Mochida, K. (2020). Highly efficient CRISPR-associated protein 9 ribonucleoprotein-based genome editing in Euglena gracilis. STAR Protocols 1, 100023. 10.1016/j.xpro.2020.100023 PubMed DOI PMC

O'Neill, E. C., Trick, M., Henrissat, B. and Field, R. A. (2015a). Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect. Sci. 6, 84-93. 10.1016/j.pisc.2015.07.002 DOI

O'Neill, E. C., Trick, M., Hill, L., Rejzek, M., Dusi, R. G., Hamilton, C. J., Zimba, P. V., Henrissat, B. and Field, R. A. (2015b). The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol. Biosyst. 11, 2808-2820. 10.1039/C5MB00319A PubMed DOI

Padermshoke, A., Ogawa, T., Nishio, K., Nakazawa, M., Nakamoto, M., Okazawa, A., Kanaya, S., Arita, M. and Ohta, D. (2016). Critical involvement of environmental carbon dioxide fixation to drive wax ester fermentation in Euglena. PLoS ONE 11, e0162827. 10.1371/journal.pone.0162827 PubMed DOI PMC

Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S.-E., Walford, G. A., Sugiana, C., Boneh, A., Chen, W. K.et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123. 10.1016/j.cell.2008.06.016 PubMed DOI PMC

Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., Chow, W., Fungtammasan, A., Kim, J.et al. (2021). Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737-746. 10.1038/s41586-021-03451-0 PubMed DOI PMC

Ruiz-Herrera, J. and Ortiz-Castellanos, L. (2019). Cell wall glucans of fungi. A review. Cell Surface (Amsterdam, Netherlands) 5, 100022. 10.1016/J.TCSW.2019.100022 PubMed DOI PMC

Sakanoi, Y., Shuang, E., Yamamoto, K., Ota, T., Seki, K., Imai, M., Ota, R., Asayama, Y., Nakashima, A., Suzuki, K.et al. (2018). Simultaneous intake of Euglena Gracilis and vegetables synergistically exerts an anti-inflammatory effect and attenuates visceral fat accumulation by affecting gut microbiota in mice. Nutrients 10, 1417. 10.3390/NU10101417 PubMed DOI PMC

Schneider, A. (2018). Mitochondrial protein import in trypanosomatids: variations on a theme or fundamentally different? PLoS Pathog. 14, e1007351. 10.1371/journal.ppat.1007351 PubMed DOI PMC

Singdevsachan, S. K., Auroshree, P., Mishra, J., Baliyarsingh, B., Tayung, K. and Thatoi, H. (2016). Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioactive Carbohydrates Dietary Fibre 7, 1-14. 10.1016/j.bcdf.2015.11.001 DOI

Sugiyama, A., Hata, S., Suzuki, K., Yoshida, E., Nakano, R., Mitra, S., Arashida, R., Asayama, Y., Yabuta, Y. and Takeuchi, T. (2010). Oral administration of paramylon, a β-1,3-D-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Vet. Med. Sci. 72, 755-763. 10.1292/jvms.09-0526 PubMed DOI

Toyama, T., Hanaoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M. and Mori, K. (2019). Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnol. Biofuels 12, 205. 10.1186/s13068-019-1544-2 PubMed DOI PMC

Triemer, R. E. and Zakryś, B. (2015). Photosynthetic Euglenoids. In Freshwater Algae of North America: Ecology and Classification (eds. Wehr, J. D., Sheath, R. G., Kociolek, J. P.). Academic Press, pp. 459-483. 10.1016/B978-0-12-385876-4.00010-4 DOI

Tsang, A. C. H., Lam, A. T. and Riedel-Kruse, I. H. (2018). Polygonal motion and adaptable phototaxis via flagellar beat switching in the microswimmer Euglena gracilis. Nat. Phys. 14, 1216-1222. 10.1038/s41567-018-0277-7 DOI

Turck, D., Castenmiller, J., De Henauw, S., Hirsch–Ernst, K. I., Kearney, J., Maciuk, A. and … Knutsen, H. K. (2020). Safety of dried whole cell Euglena gracilis as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 18, e06100. PubMed PMC

Wakisaka, Y., Suzuki, Y., Iwata, O., Nakashima, A., Ito, T., Hirose, M., Domon, R., Sugawara, M., Tsumura, N., Watarai, H.et al. (2016). Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat. Microbiol. 1, 1-4. 10.1038/nmicrobiol.2016.124 PubMed DOI

Wang, Y., Seppänen-Laakso, T., Rischer, H. and Wiebe, M. G. (2018). Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS ONE 13, e0195329. 10.1371/JOURNAL.PONE.0195329 PubMed DOI PMC

Washington, P., Samuel-Gama, K. G., Goyal, S., Ramaswami, A. and Riedel-Kruse, I. H. (2019). Interactive programming paradigm for real-time experimentation with remote living matter. Proc. Natl. Acad. Sci. U.S.A. 116, 5411-5419. 10.1073/pnas.1815367116 PubMed DOI PMC

Watanabe, T., Shimada, R., Matsuyama, A., Yuasa, M., Sawamura, H., Yoshida, E. and Suzuki, K. (2013). Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice. Food Function 4, 1685-1690. 10.1039/c3fo60256g PubMed DOI

Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D.et al. (2019). Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155-1162. 10.1038/s41587-019-0217-9 PubMed DOI PMC

Yamamoto, F. Y., Sutili, F. J., Hume, M. and Gatlin, D. M. (2018). The effect of β-1,3-glucan derived from Euglena gracilis (AlgamuneTM) on the innate immunological responses of Nile tilapia (Oreochromis niloticus L.). J. Fish Dis. 41, 1579-1588. 10.1111/jfd.12871 PubMed DOI

Zimba, P. V., Huang, I.-S., Gutierrez, D., Shin, W., Bennett, M. S. and Triemer, R. E. (2017). Euglenophycin is produced in at least six species of euglenoid algae and six of seven strains of Euglena sanguinea. Harmful Algae 63, 79-84. 10.1016/j.hal.2017.01.010 PubMed DOI PMC

Zoltner, M. and Field, M. C. (2022). Microbe Profile: Euglena gracilis: Tough, flagellated and enigmatic. Microbiology 168(9). 10.1099/mic.0.001241 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Visualisation of Euglena gracilis organelles and cytoskeleton using expansion microscopy

. 2025 Apr ; 8 (4) : . [epub] 20250207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...