Bioremediation
Dotaz
Zobrazit nápovědu
elektronický časopis
- MeSH
- biodegradace MeSH
- Konspekt
- Biologické vědy
- NLK Obory
- biologie
- environmentální vědy
- zemědělství a potravinářství
- NLK Publikační typ
- elektronické časopisy
Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow.
- MeSH
- Bacteria chemie genetika metabolismus MeSH
- biodegradace * MeSH
- biotechnologie trendy MeSH
- genetické inženýrství trendy MeSH
- látky znečišťující životní prostředí chemie toxicita MeSH
- lidé MeSH
- systémová biologie trendy MeSH
- xenobiotika chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The objective of this work was to test the PCB-degrading abilities of two white-rot fungi, namely Pleurotus ostreatus and Irpex lacteus, in real contaminated soils with different chemical properties and autochthonous microflora. In addition to the efficiency in PCB removal, attention was given to other important parameters, such as changes in the toxicity and formation of PCB transformation products. Moreover, structural shifts and dynamics of both bacterial and fungal communities were monitored using next-generation sequencing and phospholipid fatty acid analysis. The best results were obtained with P. ostreatus, which resulted in PCB removals of 18.5, 41.3 and 50.5% from the bulk, top (surface) and rhizosphere, respectively, of dumpsite soils after 12 weeks of treatment. Numerous transformation products were detected (hydoxylated and methoxylated PCBs, chlorobenzoates and chlorobenzyl alcohols), which indicates that both fungi were able to oxidize and decompose the aromatic moiety of PCBs in the soils. Microbial community analysis revealed that P. ostreatus efficiently colonized the soil samples and suppressed other fungal genera. However, the same fungus substantially stimulated bacterial taxa that encompass putative PCB degraders. The results of this study finally demonstrated the feasibility of using this fungus for possible scaled-up bioremediation applications.
- MeSH
- biodegradace MeSH
- látky znečišťující půdu analýza metabolismus MeSH
- Pleurotus růst a vývoj metabolismus MeSH
- polychlorované bifenyly analýza metabolismus MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Organophosphorus compounds (OP) are part of a group of compounds that may be hazardous to health. They are called neurotoxic agents because of their action on the nervous system, inhibiting the acetylcholinesterase (AChE) enzyme and resulting in a cholinergic crisis. Their high toxicity and rapid action lead to irreversible damage to the nervous system, drawing attention to developing new treatment methods. The diisopropyl fluorophosphatase (DFPase) enzyme has been considered as a potent biocatalyst for the hydrolysis of toxic OP and has potential for bioremediation of this kind of intoxication. In order to investigate the degradation process of the nerve agents Tabun, Cyclosarin and Soman through the wild-type DFPase, and taking into account their stereochemistry, theoretical studies were carried out. The intermolecular interaction energy and other parameters obtained from the molecular docking calculations were used to construct a data matrix, which were posteriorly treated by statistical analyzes of chemometrics, using the PCA (Principal Components Analysis) multivariate analysis. The analyzed parameters seem to be quite important for the reaction mechanisms simulation (QM/MM). Our findings showed that the wild-type DFPase enzyme is stereoselective in hydrolysis, showing promising results for the catalytic degradation of the neurotoxic agents under study, with the degradation mechanism performed through two proposed pathways.
An experiment was established to compare composting and vermicomposting for decreasing the content of polycyclic aromatic hydrocarbons (PAHs) in biomass fly ash incorporated into organic waste mixtures. PAH removal from the ash-organic waste mixture was compared to the same mixture spiked with PAHs. The removal of 16 individual ash PAHs ranged between 28.7 and 98.5% during the 240 day experiment. Greater dissipation of total PAH content of ash origin was observed at the end of composting (84.5%) than after the vermicomposting (61.6%). Most ash PAHs were removed similarly to spiked PAHs through the composting and vermicomposting processes. Higher manganese peroxidase in composting treatments indicated increased activity of ligninolytic PAH-degrading microorganisms. 3D models of total PAH removal were parametrized using the polarity index and organic matter content, and paraboloid equations for each treatment were estimated (all R2 > 0.91). A two-phase model of pseudo-first order kinetics analysis showed faster PAH removal by higher rate constants during the first 120 days of the experiment. The compost and vermicompost produced from the bioremediation treatments are usable as soil organic amendments.
- MeSH
- biodegradace * MeSH
- biomasa * MeSH
- kinetika MeSH
- kompostování * MeSH
- látky znečišťující půdu analýza MeSH
- lipasa chemie MeSH
- odpadní vody analýza MeSH
- Oligochaeta MeSH
- peroxidasy chemie MeSH
- polycyklické aromatické uhlovodíky chemie MeSH
- popel uhelný MeSH
- půda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chlorophenols (CPs), including pentachlorophenol (PCP), are chemicals of concern due to their toxicity and persistence. Here we describe a successful reactor-based remediation of CP-contaminated soil and assess changes in the toxicity patterns and bacterial communities during the remediation. The remediation consisted of separating half of the contaminated soil to be ground (samples M) in order to test whether the grinding expedited the remediation, the other half was left unground (samples P). Both soils were mixed with wastewater treatment sludge to increase their bacterial diversity and facilitate the degradation of CPs, and the resultant mixtures were placed in 2 bioreactors, M and P, operated for 16 months under anaerobic conditions to favor dehalogenation and for an additional 16 months under aerobic conditions to achieve complete mineralization. Samples were taken every 4 months for toxicity and microbial analyses. The results showed a 64% removal of total CPs (ΣCPs) in reactor P after just 18 months of remediation, whereas similar depletion in reactor M occurred after ∼25 months, indicating that the grinding decelerated the remediation. By the end of the experiment, both reactors achieved 93.5-95% removal. The toxicity tests showed a decrease in toxicity as the remediation progressed. The succession of bacterial communities over time was significantly associated with pH, anaerobic/aerobic phase and the concentration of the majority of CP congeners. Our data indicate that the supplementation of contaminated soil with sludge and further incubation in pilot-scale bioreactors under consecutive anaerobic-aerobic conditions proved to be effective at the remediation of CP-contaminated soil.
- MeSH
- aerobióza MeSH
- anaerobióza MeSH
- biodegradace MeSH
- bioreaktory mikrobiologie MeSH
- chlorfenoly analýza MeSH
- látky znečišťující půdu analýza MeSH
- odpadní vody mikrobiologie MeSH
- pentachlorfenol analýza MeSH
- pilotní projekty MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.
- MeSH
- arsen * metabolismus MeSH
- Bacteria genetika metabolismus MeSH
- biodegradace MeSH
- biotransformace MeSH
- lidé MeSH
- oxidace-redukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this review, research on the use of microalgae as an option for bioremediation purposes of pharmaceutical compounds is reported and discussed thoroughly. Pharmaceuticals have been detected in water bodies around the world, attracting attention towards the increasing potential risks to humans and aquatic biota. Unfortunately, pharmaceuticals have no regulatory standards for safe disposal in many countries. Despite the advances in new analytical techniques, the current wastewater treatment facilities in many countries are ineffective to remove the whole presence of pharmaceutical compounds and their metabolites. Though new methods are substantially effective, removal rates of drugs from wastewater make the cost-effectiveness ratio a not viable option. Therefore, the necessity for investigating and developing more adequate removal treatments with a higher efficiency rate and at a lower cost is mandatory. The present review highlights the algae-based removal strategies for bioremediation purposes, considering their pathway as well as the removal rate and efficiency of the microalgae species used in assays. We have critically reviewed both application of living and non-living microalgae biomass for bioremediation purposes considering the most commonly used microalgae species. In addition, the use of modified and immobilized microalgae biomass for the removal of pharmaceutical compounds from water was discussed. Furthermore, research considering various microalgal species and their potential use to detoxify organic and inorganic toxic compounds were well evaluated in the review. Further research is required to exploit the potential use of microalgae species as an option for the bioremediation of pharmaceuticals in water.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- léčivé přípravky metabolismus MeSH
- lidé MeSH
- mikrořasy * metabolismus MeSH
- odpadní voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Whey, the main by-product obtained from the manufacture of cheese, which contains a very high organic load (mainly due to the lactose content), is not easily degradable and creates concern over environmental issues. Hydrolysis of lactose present in whey and conversion of whey lactose into valuable products such as bioethanol, sweet syrup, and animal feed offers the possibility of whey bioremediation. The increasing need for bioremediation in the dairy industry has compelled researchers to search for a novel source of β-galactosidase with diverse properties. In the present study, the bacterium Paracoccus marcusii KGP producing β-galactosidase was subjected to morphological, biochemical, and probiotic characterisation. The bacterial isolate was found to be non-pathogenic and resistant to low pH (3 and 4), bile salts (0.2%), salt (10%), pepsin (at pH 3), and pancreatin (at pH 8). Further characterisation revealed that the bacteria have a good auto-aggregation ability (40% at 24 h), higher hydrophobicity (chloroform-60%, xylene-50%, and ethyl acetate-40%) and a broad spectrum of antibiotic susceptibility. The highest growth of P. marcusii KGP was achieved at pH 7 and 28 °C, and the yeast extract, galactose, and MgSO4 were the best for the growth of the bacterial cells. The bacterium KGP was able to utilise whey as a substrate for its growth with good β-galactosidase production potential. Furthermore, the β-galactosidase extracted from the isolate KGP could hydrolyse 47% whey lactose efficiently at 50 °C. The study thus reveals the potential application of β-galactosidase from P. marcusii KGP in whey bioremediation.
- MeSH
- biodegradace MeSH
- mlékárenství MeSH
- Paracoccus * metabolismus MeSH
- probiotika * metabolismus MeSH
- průmyslový odpad * MeSH
- syrovátka * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH