• Je něco špatně v tomto záznamu ?

Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology

P. Dvořák, PI. Nikel, J. Damborský, V. de Lorenzo,

. 2017 ; 35 (7) : 845-866. [pub] 20170805

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024752

Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024752
003      
CZ-PrNML
005      
20180713102138.0
007      
ta
008      
180709s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biotechadv.2017.08.001 $2 doi
035    __
$a (PubMed)28789939
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Dvořák, Pavel $u Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
245    10
$a Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology / $c P. Dvořák, PI. Nikel, J. Damborský, V. de Lorenzo,
520    9_
$a Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow.
650    _2
$a Bacteria $x chemie $x genetika $x metabolismus $7 D001419
650    12
$a biodegradace $7 D001673
650    _2
$a biotechnologie $x trendy $7 D001709
650    _2
$a látky znečišťující životní prostředí $x chemie $x toxicita $7 D004785
650    _2
$a genetické inženýrství $x trendy $7 D005818
650    _2
$a lidé $7 D006801
650    _2
$a systémová biologie $x trendy $7 D049490
650    _2
$a xenobiotika $x chemie $7 D015262
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Nikel, Pablo I $u The Novo Nordisk Foundation Center for Biosustainability, 2800 Lyngby, Denmark.
700    1_
$a Damborský, Jiří $u Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
700    1_
$a de Lorenzo, Víctor $u Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain. Electronic address: vdlorenzo@cnb.csic.es.
773    0_
$w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 35, č. 7 (2017), s. 845-866
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28789939 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180713102432 $b ABA008
999    __
$a ok $b bmc $g 1316883 $s 1021673
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 35 $c 7 $d 845-866 $e 20170805 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...