Amino-BODIPY as the ratiometric fluorescent sensor for monitoring drug release or "power supply" selector for molecular electronics

. 2019 Aug 08 ; 9 (43) : 25075-25083. [epub] 20190813

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35528670

The glutathione cleavable conjugates of amino-BODIPY dye with model drugs have been tested for monitoring the drug release via ratiometric fluorescence based on two excitation and one emission wavelength. As a self-immolative linker was used for the construction of conjugates, free amino-BODIPY was released with the drug. Different excitation profiles of the dye before and after conjugate cleavage and similar emission wavelengths that enabled monitoring the release of the drug via the OFF-ON effect were successfully tested inside the cancer cells. UV/Vis spectrometry could be used in the quantification of the conjugate/drug in an analyte irrespective of the cleavage grade. As the system functionality was based only on the altered acylamino-BODIPY present in the conjugate to amino-BODIPY released during the cleavage, the method could be applied as a ratiometric fluorescence theranostic system to other non-fluorescent drugs. Moreover, the present conjugates demonstrated their potential application in molecular electronics as a "power supply" selector enabling the application of two power sources for one "bulb" to maintain its light intensity.

Zobrazit více v PubMed

Lu Z.-R. Qiao P. Mol. Pharm. 2018;15:3603–3616. doi: 10.1021/acs.molpharmaceut.8b00037. PubMed DOI

Kelkar S. S. Reineke T. M. Bioconjugate Chem. 2011;22:1879–1903. doi: 10.1021/bc200151q. PubMed DOI

Kowada T. Maeda H. Kikuchi K. Chem. Soc. Rev. 2015;44:4953–4972. doi: 10.1039/C5CS00030K. PubMed DOI

Zhang D. Cochrane J. R. Martinez A. Gao G. RSC Adv. 2014;4:29735–29749. doi: 10.1039/C4RA02828G. DOI

Shanmugaraju S. Mukherjee P. S. Chem. Commun. 2015;51:16014–16032. doi: 10.1039/C5CC07513K. PubMed DOI

Rasheed T. Li C. Bilal M. Yu C. Iqbal H. M. N. Sci. Total Environ. 2018;640–641:174–193. doi: 10.1016/j.scitotenv.2018.05.232. PubMed DOI

Meng W. Chen Y. Feng Y. Zhang H. Xu Q. Sun M. Shi W. Cen J. Zhao J. Xiao K. Org. Biomol. Chem. 2018;16:6350–6357. doi: 10.1039/C8OB01608A. PubMed DOI

Huang Q. Li Q. Chen Y. Tong L. Lin X. Zhu J. Tong Q. Sens. Actuators, B. 2018;276:82–88. doi: 10.1016/j.snb.2018.08.089. DOI

Wang R. Wang R. Ju D. Lu W. Jiang C. Shan X. Chen Q. Sun G. Analyst. 2018;143:5834–5840. doi: 10.1039/C8AN01585F. PubMed DOI

Chabok A. Shamsipur M. Yeganeh-Faal A. Molaabasi F. Molaei K. Sarparast M. Talanta. 2019;194:752–762. doi: 10.1016/j.talanta.2018.10.072. PubMed DOI

Lee M. H. Kim J. S. Sessler J. L. Chem. Soc. Rev. 2015;44:4185–4191. doi: 10.1039/C4CS00280F. PubMed DOI PMC

Wu P. Hou X. Xu J.-J. Chen H.-Y. Nanoscale. 2016;8:8427–8442. doi: 10.1039/C6NR01912A. PubMed DOI

Yang Q. Li J. Wang X. Peng H. Xiong H. Chen L. Biosens. Bioelectron. 2018;112:54–71. doi: 10.1016/j.bios.2018.04.028. PubMed DOI

Schafer F. Q. Buettner G. R. Free Radicals Biol. Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4. PubMed DOI

Britten R. A. Green J. A. Warenius H. M. Int. J. Radiat. Oncol., Biol., Phys. 1992;24:527–531. doi: 10.1016/0360-3016(92)91069-Y. PubMed DOI

Kasibhatla M. S. Teeter S. D. Colvin O. M. Biomarkers. 2012;17:671–691. PubMed PMC

Lee M. H. Sessler J. L. Kim J. S. Acc. Chem. Res. 2015;48:2935–2946. doi: 10.1021/acs.accounts.5b00406. PubMed DOI

Wang Y. Zhang L. Zhang X. Wei X. Tang Z. Zhou S. ACS Appl. Mater. Interfaces. 2016;8:5833–5846. doi: 10.1021/acsami.5b11569. PubMed DOI

Lai J. Shah B. P. Garfunkel E. Lee K. B. ACS Nano. 2013;7:2741–2750. doi: 10.1021/nn400199t. PubMed DOI PMC

Santra S. Kaittanis C. Santiesteban O. J. Perez J. M. J. Am. Chem. Soc. 2011;133:16680–16688. doi: 10.1021/ja207463b. PubMed DOI PMC

Lee M. H. Kim J. Y. Han J. H. Bhuniya S. Sessler J. L. Kang C. Kim J. S. J. Am. Chem. Soc. 2012;134:12668–12674. doi: 10.1021/ja303998y. PubMed DOI

Wu X. Sun X. Guo Z. Tang J. Shen Y. James T. D. Tian H. Zhu W. J. Am. Chem. Soc. 2014;136:3579–3588. doi: 10.1021/ja412380j. PubMed DOI

Hu Y. Zeng F. Mater. Sci. Eng. C. 2017;72:77–85. doi: 10.1016/j.msec.2016.11.056. PubMed DOI

Liu Y. Pei Q. Chen L. Li Z. Xie Z. J. Mater. Chem. B. 2016;4:2332–2337. doi: 10.1039/C6TB00009F. PubMed DOI

Erbas-Cakmak S. Kolemen S. Sedgwick A. C. Gunnlaugsson T. James T. D. Yoon J. Akkaya E. U. Chem. Soc. Rev. 2018;47:2228–2248. doi: 10.1039/C7CS00491E. PubMed DOI

Li H. Vaughan J. C. Chem. Rev. 2018;118:9412–9454. doi: 10.1021/acs.chemrev.7b00767. PubMed DOI PMC

Motyka K. Hlaváč J. Soural M. Funk P. Tetrahedron Lett. 2010;51:5060–5063. doi: 10.1016/j.tetlet.2010.07.103. DOI

Motyka K. Hlaváč J. Soural M. Hradil P. Krejčí P. Kvapil L. Weiss M. Tetrahedron Lett. 2011;52:715–717. doi: 10.1016/j.tetlet.2010.12.013. DOI

Jain A. K. Gund M. G. Desai D. C. Borhade N. Senthilkumar S. P. Dhiman M. Mangu N. K. Mali S. V. Dubash N. P. Halder S. Satyam A. Bioorg. Chem. 2013;49:40–48. doi: 10.1016/j.bioorg.2013.06.007. PubMed DOI

Soural M. Hlaváč J. Hradil P. Fryšová I. Hajdúch M. Bertolasi V. Maloň M. Eur. J. Med. Chem. 2006;41:467–474. doi: 10.1016/j.ejmech.2005.12.008. PubMed DOI

Leen V. Leemans T. Boens N. Dehaen W. Eur. J. Org. Chem. 2011:4386–4396. doi: 10.1002/ejoc.201100324. DOI

Roy J. Nguyen T. X. Kanduluru A. K. Venkatesh C. Lv W. Reddy P. V. N. Low P. S. Cushman M. J. Med. Chem. 2015;58:3094–3103. doi: 10.1021/jm5018384. PubMed DOI

Giustarini D. Galvagni F. Tesei A. Farolfi A. Zanoni M. Pignatta S. Milzani A. Marone I. M. Dalle-Donne I. Nassini R. Rossi R. Free Radicals Biol. Med. 2015;89:972–981. doi: 10.1016/j.freeradbiomed.2015.10.410. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cytotoxicity of Amino-BODIPY Modulated via Conjugation with 2-Phenyl-3-Hydroxy-4(1H)-Quinolinones

. 2021 Nov ; 10 (11) : 1104-1110. [epub] 20210823

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...