Amino-BODIPY as the ratiometric fluorescent sensor for monitoring drug release or "power supply" selector for molecular electronics
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35528670
PubMed Central
PMC9069925
DOI
10.1039/c9ra03472b
PII: c9ra03472b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The glutathione cleavable conjugates of amino-BODIPY dye with model drugs have been tested for monitoring the drug release via ratiometric fluorescence based on two excitation and one emission wavelength. As a self-immolative linker was used for the construction of conjugates, free amino-BODIPY was released with the drug. Different excitation profiles of the dye before and after conjugate cleavage and similar emission wavelengths that enabled monitoring the release of the drug via the OFF-ON effect were successfully tested inside the cancer cells. UV/Vis spectrometry could be used in the quantification of the conjugate/drug in an analyte irrespective of the cleavage grade. As the system functionality was based only on the altered acylamino-BODIPY present in the conjugate to amino-BODIPY released during the cleavage, the method could be applied as a ratiometric fluorescence theranostic system to other non-fluorescent drugs. Moreover, the present conjugates demonstrated their potential application in molecular electronics as a "power supply" selector enabling the application of two power sources for one "bulb" to maintain its light intensity.
Zobrazit více v PubMed
Lu Z.-R. Qiao P. Mol. Pharm. 2018;15:3603–3616. doi: 10.1021/acs.molpharmaceut.8b00037. PubMed DOI
Kelkar S. S. Reineke T. M. Bioconjugate Chem. 2011;22:1879–1903. doi: 10.1021/bc200151q. PubMed DOI
Kowada T. Maeda H. Kikuchi K. Chem. Soc. Rev. 2015;44:4953–4972. doi: 10.1039/C5CS00030K. PubMed DOI
Zhang D. Cochrane J. R. Martinez A. Gao G. RSC Adv. 2014;4:29735–29749. doi: 10.1039/C4RA02828G. DOI
Shanmugaraju S. Mukherjee P. S. Chem. Commun. 2015;51:16014–16032. doi: 10.1039/C5CC07513K. PubMed DOI
Rasheed T. Li C. Bilal M. Yu C. Iqbal H. M. N. Sci. Total Environ. 2018;640–641:174–193. doi: 10.1016/j.scitotenv.2018.05.232. PubMed DOI
Meng W. Chen Y. Feng Y. Zhang H. Xu Q. Sun M. Shi W. Cen J. Zhao J. Xiao K. Org. Biomol. Chem. 2018;16:6350–6357. doi: 10.1039/C8OB01608A. PubMed DOI
Huang Q. Li Q. Chen Y. Tong L. Lin X. Zhu J. Tong Q. Sens. Actuators, B. 2018;276:82–88. doi: 10.1016/j.snb.2018.08.089. DOI
Wang R. Wang R. Ju D. Lu W. Jiang C. Shan X. Chen Q. Sun G. Analyst. 2018;143:5834–5840. doi: 10.1039/C8AN01585F. PubMed DOI
Chabok A. Shamsipur M. Yeganeh-Faal A. Molaabasi F. Molaei K. Sarparast M. Talanta. 2019;194:752–762. doi: 10.1016/j.talanta.2018.10.072. PubMed DOI
Lee M. H. Kim J. S. Sessler J. L. Chem. Soc. Rev. 2015;44:4185–4191. doi: 10.1039/C4CS00280F. PubMed DOI PMC
Wu P. Hou X. Xu J.-J. Chen H.-Y. Nanoscale. 2016;8:8427–8442. doi: 10.1039/C6NR01912A. PubMed DOI
Yang Q. Li J. Wang X. Peng H. Xiong H. Chen L. Biosens. Bioelectron. 2018;112:54–71. doi: 10.1016/j.bios.2018.04.028. PubMed DOI
Schafer F. Q. Buettner G. R. Free Radicals Biol. Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4. PubMed DOI
Britten R. A. Green J. A. Warenius H. M. Int. J. Radiat. Oncol., Biol., Phys. 1992;24:527–531. doi: 10.1016/0360-3016(92)91069-Y. PubMed DOI
Kasibhatla M. S. Teeter S. D. Colvin O. M. Biomarkers. 2012;17:671–691. PubMed PMC
Lee M. H. Sessler J. L. Kim J. S. Acc. Chem. Res. 2015;48:2935–2946. doi: 10.1021/acs.accounts.5b00406. PubMed DOI
Wang Y. Zhang L. Zhang X. Wei X. Tang Z. Zhou S. ACS Appl. Mater. Interfaces. 2016;8:5833–5846. doi: 10.1021/acsami.5b11569. PubMed DOI
Lai J. Shah B. P. Garfunkel E. Lee K. B. ACS Nano. 2013;7:2741–2750. doi: 10.1021/nn400199t. PubMed DOI PMC
Santra S. Kaittanis C. Santiesteban O. J. Perez J. M. J. Am. Chem. Soc. 2011;133:16680–16688. doi: 10.1021/ja207463b. PubMed DOI PMC
Lee M. H. Kim J. Y. Han J. H. Bhuniya S. Sessler J. L. Kang C. Kim J. S. J. Am. Chem. Soc. 2012;134:12668–12674. doi: 10.1021/ja303998y. PubMed DOI
Wu X. Sun X. Guo Z. Tang J. Shen Y. James T. D. Tian H. Zhu W. J. Am. Chem. Soc. 2014;136:3579–3588. doi: 10.1021/ja412380j. PubMed DOI
Hu Y. Zeng F. Mater. Sci. Eng. C. 2017;72:77–85. doi: 10.1016/j.msec.2016.11.056. PubMed DOI
Liu Y. Pei Q. Chen L. Li Z. Xie Z. J. Mater. Chem. B. 2016;4:2332–2337. doi: 10.1039/C6TB00009F. PubMed DOI
Erbas-Cakmak S. Kolemen S. Sedgwick A. C. Gunnlaugsson T. James T. D. Yoon J. Akkaya E. U. Chem. Soc. Rev. 2018;47:2228–2248. doi: 10.1039/C7CS00491E. PubMed DOI
Li H. Vaughan J. C. Chem. Rev. 2018;118:9412–9454. doi: 10.1021/acs.chemrev.7b00767. PubMed DOI PMC
Motyka K. Hlaváč J. Soural M. Funk P. Tetrahedron Lett. 2010;51:5060–5063. doi: 10.1016/j.tetlet.2010.07.103. DOI
Motyka K. Hlaváč J. Soural M. Hradil P. Krejčí P. Kvapil L. Weiss M. Tetrahedron Lett. 2011;52:715–717. doi: 10.1016/j.tetlet.2010.12.013. DOI
Jain A. K. Gund M. G. Desai D. C. Borhade N. Senthilkumar S. P. Dhiman M. Mangu N. K. Mali S. V. Dubash N. P. Halder S. Satyam A. Bioorg. Chem. 2013;49:40–48. doi: 10.1016/j.bioorg.2013.06.007. PubMed DOI
Soural M. Hlaváč J. Hradil P. Fryšová I. Hajdúch M. Bertolasi V. Maloň M. Eur. J. Med. Chem. 2006;41:467–474. doi: 10.1016/j.ejmech.2005.12.008. PubMed DOI
Leen V. Leemans T. Boens N. Dehaen W. Eur. J. Org. Chem. 2011:4386–4396. doi: 10.1002/ejoc.201100324. DOI
Roy J. Nguyen T. X. Kanduluru A. K. Venkatesh C. Lv W. Reddy P. V. N. Low P. S. Cushman M. J. Med. Chem. 2015;58:3094–3103. doi: 10.1021/jm5018384. PubMed DOI
Giustarini D. Galvagni F. Tesei A. Farolfi A. Zanoni M. Pignatta S. Milzani A. Marone I. M. Dalle-Donne I. Nassini R. Rossi R. Free Radicals Biol. Med. 2015;89:972–981. doi: 10.1016/j.freeradbiomed.2015.10.410. PubMed DOI