The divergent ER-mitochondria encounter structures (ERMES) are conserved in parabasalids but lost in several anaerobic lineages with hydrogenosomes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
22-14413S
Grantová Agentura České Republiky
352722
Grantová Agentura, Univerzita Karlova
UNCE/SCI/012
Univerzita Karlova v Praze
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000759
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
37968591
PubMed Central
PMC10648710
DOI
10.1186/s12915-023-01765-1
PII: 10.1186/s12915-023-01765-1
Knihovny.cz E-zdroje
- Klíčová slova
- Anaerobiosis, Cardiolipin, ERMES, Endoplasmic reticulum, Hydrogenosomes, Structure, Trichomonas vaginalis,
- MeSH
- anaerobióza MeSH
- endoplazmatické retikulum * metabolismus MeSH
- fosfolipidy metabolismus MeSH
- membránové proteiny * metabolismus MeSH
- mitochondrie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfolipidy MeSH
- membránové proteiny * MeSH
BACKGROUND: The endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCS) are extensively studied in aerobic eukaryotes; however, little is known about MCS in anaerobes with reduced forms of mitochondria named hydrogenosomes. In several eukaryotic lineages, the direct physical tether between ER and the outer mitochondrial membrane is formed by ER-mitochondria encounter structure (ERMES). The complex consists of four core proteins (Mmm1, Mmm2, Mdm12, and Mdm10) which are involved in phospholipid trafficking. Here we investigated ERMES distribution in organisms bearing hydrogenosomes and employed Trichomonas vaginalis as a model to estimate ERMES cellular localization, structure, and function. RESULTS: Homology searches revealed that Parabasalia-Anaeramoebae, anaerobic jakobids, and anaerobic fungi are lineages with hydrogenosomes that retain ERMES, while ERMES components were gradually lost in Fornicata, and are absent in Preaxostyla and Archamoebae. In T. vaginalis and other parabasalids, three ERMES components were found with the expansion of Mmm1. Immunofluorescence microscopy confirmed that Mmm1 localized in ER, while Mdm12 and Mmm2 were partially localized in hydrogenosomes. Pull-down assays and mass spectrometry of the ERMES components identified a parabasalid-specific Porin2 as a substitute for the Mdm10. ERMES modeling predicted a formation of a continuous hydrophobic tunnel of TvMmm1-TvMdm12-TvMmm2 that is anchored via Porin2 to the hydrogenosomal outer membrane. Phospholipid-ERMES docking and Mdm12-phospholipid dot-blot indicated that ERMES is involved in the transport of phosphatidylinositol phosphates. The absence of enzymes involved in hydrogenosomal phospholipid metabolism implies that ERMES is not involved in the exchange of substrates between ER and hydrogenosomes but in the unidirectional import of phospholipids into hydrogenosomal membranes. CONCLUSIONS: Our investigation demonstrated that ERMES mediates ER-hydrogenosome interactions in parabasalid T. vaginalis, while the complex was lost in several other lineages with hydrogenosomes.
Zobrazit více v PubMed
Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009;325:477–481. doi: 10.1126/science.1175088. PubMed DOI PMC
AhYoung AP, Jiang J, Zhang J, Dang XK, Loo JA, Zhou ZH, et al. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc Natl Acad Sci U S A. 2015;112(25):E3179–E3188. doi: 10.1073/pnas.1422363112. PubMed DOI PMC
Jeong H, Park J, Jun Y, Lee C. Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites. Proc Natl Acad Sci U S A. 2017;114(45):E9502–E9511. doi: 10.1073/pnas.1715592114. PubMed DOI PMC
Berger KH, Sogo LF, Yaffe MP. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol. 1997;136(3):545–553. doi: 10.1083/jcb.136.3.545. PubMed DOI PMC
Murley A, Lackner LL, Osman C, West M, Voeltz GK, Walter P, et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife. 2013;2:e00422. PubMed PMC
Böckler S, Westermann B. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell. 2014;28(4):450–458. doi: 10.1016/j.devcel.2014.01.012. PubMed DOI
Wideman JG, Go NE, Klein A, Redmond E, Lackey SW, Tao T, et al. Roles of the Mdm10, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa. Mol Biol Cell. 2010;21(10):1725–1736. doi: 10.1091/mbc.e09-10-0844. PubMed DOI PMC
Wideman JG, Lackey SWK, Srayko MA, Norton KA, Nargang FE. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One. 2013;8(8):e71837. PubMed PMC
Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA, Lee J, et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science. 2017;358(6363):623–630. doi: 10.1126/science.aan6009. PubMed DOI PMC
Schauder CM, Wu X, Saheki Y, Narayanaswamy P, Torta F, Wenk MR, et al. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature. 2014;510(7506):552–555. doi: 10.1038/nature13269. PubMed DOI PMC
Flinner N, Ellenrieder L, Stiller SB, Becker T, Schleiff E, Mirus O. Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim Biophys Acta - Mol Cell Res. 2013;1833:3314–3325. doi: 10.1016/j.bbamcr.2013.10.006. PubMed DOI
Kornmann B, Osman C, Walter P. The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci U S A. 2011;108(34):14151–14156. doi: 10.1073/pnas.1111314108. PubMed DOI PMC
Zhang B, Yu Q, Huo D, Li J, Liang C, Li H, et al. Arf1 regulates the ER–mitochondria encounter structure (ERMES) in a reactive oxygen species-dependent manner. FEBS J. 2018;285(11):2004–2018. doi: 10.1111/febs.14445. PubMed DOI
Rasul F, Zheng F, Dong F, He J, Liu L, Liu W, et al. Emr1 regulates the number of foci of the endoplasmic reticulum-mitochondria encounter structure complex. Nat Commun. 2021;12(1):521. doi: 10.1038/s41467-020-20866-x. PubMed DOI PMC
Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013;30(9):2044–2049. doi: 10.1093/molbev/mst120. PubMed DOI
Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol. 2017;1(4):0092. doi: 10.1038/s41559-017-0092. PubMed DOI PMC
Tachezy J, Makki A, Hrdý I. The hydrogenosome of Trichomonas vaginalis. J Eukaryot Microbiol. 2022;69(6):e12922. doi: 10.1111/jeu.12922. PubMed DOI
Benchimol M. Hydrogenosomes under microscopy. Tissue Cell. 2009;41(3):151–168. doi: 10.1016/j.tice.2009.01.001. PubMed DOI
Burgess SM, Delannoy M, Jensen RE. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol. 1994;126(6):1375–1391. doi: 10.1083/jcb.126.6.1375. PubMed DOI PMC
Youngman MJ, Hobbs AE, Burgess SM, Srinivasan M, Jensen RE. Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. J Cell Biol. 2004;164(5):677–688. doi: 10.1083/jcb.200308012. PubMed DOI PMC
Sogo LF, Yaffe MP. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol. 1994;126(6):1361–1373. doi: 10.1083/jcb.126.6.1361. PubMed DOI PMC
Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: an evolutionary view from comparative cell biology. Biochim Biophys Acta. 2016;1861(8 Pt B):900–12. doi: 10.1016/j.bbalip.2016.01.015. PubMed DOI
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426(6963):172–176. doi: 10.1038/nature01945. PubMed DOI
Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, et al. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun. 2013;4:2493. doi: 10.1038/ncomms3493. PubMed DOI PMC
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, et al. A Eukaryote without a Mitochondrial Organelle. Curr Biol. 2016;26(10):1274–1284. doi: 10.1016/j.cub.2016.03.053. PubMed DOI
Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol. 2021;31:5605–5612.e5. doi: 10.1016/j.cub.2021.10.010. PubMed DOI
Barlow LD, Maciejowski W, More K, Terry K, Vargová R, Záhonová K, et al. Comparative Genomics for evolutionary cell biology using AMOEBAE: Understanding the Golgi and beyond. Methods Mol Biol. 2023;2557:431–452. doi: 10.1007/978-1-0716-2639-9_26. PubMed DOI
Liu LK, Choudhary V, Toulmay A, Prinz WA. An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J Cell Biol. 2017;216(1):131–147. doi: 10.1083/jcb.201606059. PubMed DOI PMC
Luévano-Martínez LA. The chimeric origin of the cardiolipin biosynthetic pathway in the Eukarya domain. Biochim Biophys Acta. 2015;1847(6–7):599–606. doi: 10.1016/j.bbabio.2015.03.005. PubMed DOI
Rada P, Makki A, Žárský V, Tachezy J. Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol. 2019;111(3):588–603. doi: 10.1111/mmi.14175. PubMed DOI
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82. doi: 10.1038/s41592-022-01488-1. PubMed DOI PMC
Lang A, John Peter AT, Kornmann B. ER-mitochondria contact sites in yeast: beyond the myths of ERMES. Curr Opin Cell Biol. 2015;35:7–12. doi: 10.1016/j.ceb.2015.03.002. PubMed DOI
Wozny MR, Di Luca A, Morado DR, Picco A, Khaddaj R, Campomanes P, et al. In situ architecture of the ER-mitochondria encounter structure. Nature. 2023;618(7963):188–192. doi: 10.1038/s41586-023-06050-3. PubMed DOI PMC
Fernández-Murray JP, McMaster CR. Lipid synthesis and membrane contact sites: a crossroads for cellular physiology. J Lipid Res. 2016;57(10):1789–1805. doi: 10.1194/jlr.R070920. PubMed DOI PMC
Guschina IA, Harris KM, Maskrey B, Goldberg B, Lloyd D, Harwood JL. The microaerophilic flagellate, Trichomonas vaginalis, contains unusual acyl lipids but no detectable cardiolipin. J Eukaryot Microbiol. 2009;56(1):52–57. doi: 10.1111/j.1550-7408.2008.00365.x. PubMed DOI
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J Chem Inf Model. 2021;61(8):3891–8. doi: 10.1021/acs.jcim.1c00203. PubMed DOI PMC
Tachezy J, editor. Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. 2nd ed. Springer; 2019.
Takishita K, Kolisko M, Komatsuzaki H, Yabuki A, Inagaki Y, Cepicka I, et al. Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of “amitochondriate” diplomonads and retortamonads. Protist. 2012;163(3):344–355. doi: 10.1016/j.protis.2011.12.007. PubMed DOI
Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, Čepička I, et al. Between a Pod and a Hard Test: The Deep Evolution of Amoebae. Mol Biol Evol. 2017;34(9):2258–2270. doi: 10.1093/molbev/msx162. PubMed DOI PMC
Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS ONE. 2011;6(9):e24428. doi: 10.1371/journal.pone.0024428. PubMed DOI PMC
Jeong H, Park J, Lee C. Crystal structure of Mdm12 reveals the architecture and dynamic organization of the ERMES complex. EMBO Rep. 2016;17(12):1857–1871. doi: 10.15252/embr.201642706. PubMed DOI PMC
Cerkasovova A, Cerkasov J, Kulda J, Reischig J. Circular DNA and cardiolipin in hydrogenosomes, microbody-like organelles of trichomonads. Folia Parasitol (Praha) 1976;23(1):33–37. PubMed
Rosa IDA, Einicker-Lamas M, Bernardo RR, Previatto LM, Mohana-Borges R, Morgado-Díaz JA, et al. Cardiolipin in hydrogenosomes: evidence of symbiotic origin. Eukaryot Cell. 2006;5(4):784–787. doi: 10.1128/EC.5.4.784-787.2006. PubMed DOI PMC
Paltauf F, Meingassner JG. The absence of cardiolipin in hydrogenosomes of Trichomonas vaginalis and Tritrichomonas foetus. J Parasitol. 1982;68(5):949–950. doi: 10.2307/3281012. PubMed DOI
Vance JE. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16(1):1–18. doi: 10.1111/tra.12230. PubMed DOI
Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41(13–14):1421–1434. doi: 10.1016/j.ijpara.2011.10.001. PubMed DOI PMC
Beltrán NC, Horváthová L, Jedelský PL, Šedinová M, Rada P, Marcinčiková M, et al. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS ONE. 2013;8(5):e65148. doi: 10.1371/journal.pone.0065148. PubMed DOI PMC
D’Angelo G, Vicinanza M, De Matteis MA. Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol. 2008;20(4):360–370. doi: 10.1016/j.ceb.2008.03.013. PubMed DOI
Kawano S, Tamura Y, Kojima R, Bala S, Asai E, Michel AH, et al. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J Cell Biol. 2018;217(3):959–974. doi: 10.1083/jcb.201704119. PubMed DOI PMC
Beach DH, Holz GG, Singh BN, Lindmark DG. Phospholipid metabolism of cultured Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol. 1991;44(1):97–108. doi: 10.1016/0166-6851(91)90225-U. PubMed DOI
Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol. 2022;23(12):797–816. doi: 10.1038/s41580-022-00490-x. PubMed DOI PMC
Davy de Virville J, Brown S, Cochet F, Soler MN, Hoffelt M, Ruelland E, et al. Assessment of mitochondria as a compartment for phosphatidylinositol synthesis in Solanum tuberosum. Plant Physiol Biochem. 2010;48(12):952–60. doi: 10.1016/j.plaphy.2010.09.004. PubMed DOI
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21. doi: 10.1038/35036035. PubMed DOI
Benchimol M, de Souza W. Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. J Protozool. 1983;30(2):422–425. doi: 10.1111/j.1550-7408.1983.tb02942.x. PubMed DOI
Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ. The EF-hand domain: a globally cooperative structural unit. Protein Sci. 2002;11:198–205. doi: 10.1110/ps.33302. PubMed DOI PMC
Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, et al. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 2019;17(1):e3000098. doi: 10.1371/journal.pbio.3000098. PubMed DOI PMC
Das S, Stevens T, Castillo C, Villasenõr A, Arredondo H, Reddy K. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol. 2002;32(6):655–675. doi: 10.1016/S0020-7519(02)00006-1. PubMed DOI
Tai JH, Su HM, Tsai J, Shaio MF, Wang CC. The divergence of Trichomonas vaginalis virus RNAs among various isolates of Trichomonas vaginalis. Exp Parasitol. 1993;76(3):278–286. doi: 10.1006/expr.1993.1033. PubMed DOI
Diamond LS. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957;43(4):488–490. doi: 10.2307/3274682. PubMed DOI
Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, et al. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics. 2018;17(2):304–320. doi: 10.1074/mcp.RA117.000434. PubMed DOI PMC
Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancist A, Delgadillo-Correa M, et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A. 2004;101(28):10368–10373. doi: 10.1073/pnas.0401319101. PubMed DOI PMC
Rada P, Kellerová P, Verner Z, Tachezy J. Investigation of the secretory pathway in Trichomonas vaginalis argues against a moonlighting function of hydrogenosomal enzymes. J Eukaryot Microbiol. 2019;66(6):899–910. doi: 10.1111/jeu.12741. PubMed DOI
Nývltová E, Smutná T, Tachezy J, Hrdý I. OsmC and incomplete glycine decarboxylase complex mediate reductive detoxification of peroxides in hydrogenosomes of Trichomonas vaginalis. Mol Biochem Parasitol. 2016;206(1–2):29–38. doi: 10.1016/j.molbiopara.2016.01.006. PubMed DOI
Drmota T, Proost P, Van Ranst M, Weyda F, Kulda J, Tachezy J. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol. 1996;83(2):221–234. doi: 10.1016/S0166-6851(96)02777-6. PubMed DOI
Verner Z, Žárský V, Le T, Narayanasamy RK, Rada P, Rozbeský D, et al. Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol. PLoS. 2021;17(11):e1010041. PubMed PMC
Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7(2):731–740. doi: 10.1021/pr700658q. PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B, Gao X, et al. EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res. 2010;38(Database issue):D415–9. doi: 10.1093/nar/gkp941. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315(5809):207–212. doi: 10.1126/science.1132894. PubMed DOI PMC
Palmieri N, de Jesus Ramires M, Hess M, Bilic I. Complete genomes of the eukaryotic poultry parasite Histomonas meleagridis: linking sequence analysis with virulence / attenuation. BMC Genomics. 2021;22:753. doi: 10.1186/s12864-021-08059-2. PubMed DOI PMC
Benchimol M, de Almeida LGP, Vasconcelos AT, de Andrade RI, Bogo MR, Kist LW, et al. Draft genome sequence of Tritrichomonas foetus strain K. Genome Announc. 2017;5(16):e00195–e217. doi: 10.1128/genomeA.00195-17. PubMed DOI PMC
Handrich MR, Garg SG, Sommerville EW, Hirt RP, Gould SB. Characterization of the BspA and Pmp protein family of trichomonads. Parasit Vectors. 2019;12(1):406. doi: 10.1186/s13071-019-3660-z. PubMed DOI PMC
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, et al. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022;2:e56. doi: 10.24072/pcjournal.173. DOI
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. InterPro in 2022. Nucleic Acids Res. 2023;51(D1):D418–D427. doi: 10.1093/nar/gkac993. PubMed DOI PMC
Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430(15):2237–2243. doi: 10.1016/j.jmb.2017.12.007. PubMed DOI
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46(W1):W200–W204. doi: 10.1093/nar/gky448. PubMed DOI PMC
Armenteros JJA, Salvatore M, Emanuelsson O, Winther O, Von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429. doi: 10.26508/lsa.201900429. PubMed DOI PMC
Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics. 2015;14(4):1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC
Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022;50(W1):W228–34. doi: 10.1093/nar/gkac278. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol. 2011;60(5):685–699. doi: 10.1093/sysbio/syr041. PubMed DOI PMC
Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2021;10(04):463034.
Bryant P, Pozzati G, Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat Commun. 2022;13(1):1265. doi: 10.1038/s41467-022-28865-w. PubMed DOI PMC
Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Biol. 2003;10:980. doi: 10.1038/nsb1203-980. PubMed DOI
Zhang Y, Sanner MF. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes. Bioinformatics. 2019;35(24):5121–5127. doi: 10.1093/bioinformatics/btz459. PubMed DOI PMC
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC