Investigation of the Secretory Pathway in Trichomonas vaginalis Argues against a Moonlighting Function of Hydrogenosomal Enzymes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31077495
DOI
10.1111/jeu.12741
Knihovny.cz E-zdroje
- Klíčová slova
- Adhesins, hydrogenosomes, in vivo biotinylation,
- MeSH
- biotinylace MeSH
- protozoální proteiny genetika metabolismus MeSH
- sekreční dráha MeSH
- sukcinát-CoA-ligasy genetika metabolismus MeSH
- transport proteinů * MeSH
- Trichomonas vaginalis enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
- sukcinát-CoA-ligasy MeSH
The enzymes pyruvate ferredoxin oxidoreductase (PFO), malic enzyme (ME), and the α- and β-subunits of succinyl-CoA synthetase (SCS) catalyze key steps of energy metabolism in Trichomonas vaginalis hydrogenosomes. These proteins have also been characterized as the adhesins AP120 (PFO), AP65 (ME), AP33, and AP51 (α- and β-SCS), which are localized on the cell surface and mediate the T. vaginalis cytoadherence. However, the mechanisms that facilitate the targeting of these proteins to the cell surface via the secretory pathway and/or to hydrogenosomes are not known. Here we adapted an in vivo biotinylation system to perform highly sensitive tracing of protein trafficking in T. vaginalis. We showed that α- and β-SCS are biotinylated in the cytosol and imported exclusively into the hydrogenosomes. Neither α- nor β-SCS is biotinylated in the endoplasmic reticulum and delivered to the cell surface via the secretory pathway. In contrast, two surface proteins, tetratricopeptide domain-containing membrane-associated protein and tetraspanin family surface protein, as well as soluble-secreted β-amylase-1 are biotinylated in the endoplasmic reticulum and delivered through the secretory pathway to their final destinations. Taken together, these results demonstrate that the α- and β-SCS subunits are targeted only to the hydrogenosomes, which argues against their putative moonlighting function.
Zobrazit více v PubMed
Addis, M. F., Rappelli, P. & Fiori, P. L. 2000. Host and tissue specificity of Trichomonas vaginalis is not mediated by its known adhesion proteins. Infect. Immun., 68:4358-4360.
Alderete, J. F., Arroyo, R. & Lehker, M. W. 1995a. Analysis for adhesins and specific cytoadhesion of Trichomonas vaginalis. Methods Enzymol., 253:407-414.
Alderete, J. F., Bernardino, M. V. rgas. & Benchimol, M. 2000. Iron regulates compartmentalization of the Trichomonas vaginalis cytadhesins. Mol. Biol. Cell, 11:485.
Alderete, J. F., Demes, P., Gombosova, A., Valent, M., Fabusova, M., Janoska, A., Stefanovit, J. & Arroyo, R. 1988. Specific parasitism of purified vaginal epithelial cells by Trichomonas vaginalis. Infect. Immun., 56:2558-2562.
Alderete, J. F., Engbring, J., Lauriano, C. M. & O'Brien, J. L. 1998. Only two of the Trichomonas vaginalis triplet AP51 adhesins are regulated by iron. Microb. Pathog., 24:1-16.
Alderete, J. F. & Garza, G. E. 1988. Identification and properties of Trichomonas vaginalis proteins involved in cytoadherence. Infect. Immun., 56:28-33.
Alderete, J. F., Millsap, K. W., Lehker, M. W. & Benchimol, M. 2001. Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell. Microbiol., 3:359-370.
Alderete, J., Nguyen, J., Mundodi, V. & Lehker, M. 2004. Heme-iron increases levels of AP65-mediated adherence by Trichomonas vaginalis. Microb. Pathog., 36:263-271.
Alderete, J. F., O'Brien, J. L., Arroyo, R., Engbring, J. A., Musatovova, O., Lopez, O., Lauriano, C. & Nguyen, J. 1995b. Cloning and molecular characterization of two genes encoding adhesion proteins involved in Trichomonas vaginalis cytoadherence. Mol. Microbiol., 17:69-83.
Arroyo, R., Engbring, J. & Alderete, J. F. 1992. Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Mol. Microbiol., 6:853-862.
Arroyo, R., Engbring, J., Nguyen, J., Musatovova, O., López, O., Lauriano, C. & Alderete, J. F. 1995. Characterization of cDNAs encoding adhesin proteins involved in Trichomonas vaginalis cytoadherence. Arch. Med. Res., 26:361-369.
Arroyo, R., González-Robles, A., Martínez-Palomo, A. & Alderete, J. F. 1993. Signalling of Trichomonas vaginalis for amoeboid transformation and adhesin synthesis follows cytoadherence. Mol. Microbiol., 7:299-309.
Benchimol, M. 1999. Hydrogenosome autophagy: an ultrastructural and cytochemical study. Biol. Cell, 91:165-174.
Benchimol, M., Consort Ribeiro, K., Meyer Mariante, R. & Alderete, J. F. 2001. Structure and division of the Golgi complex in Trichomonas vaginalis and Tritrichomonas foetus. Eur. J. Cell Biol., 80:593-607.
Brown, M. T., Goldstone, H. M. H., Bastida-Corcuera, F., Delgadillo-Correa, M. G., McArthur, A. G. & Johnson, P. J. 2007. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Mol. Microbiol., 64:1154-1163.
Brugerolle, G., Bricheux, G. & Coffe, G. 2000. Immunolocalization of two hydrogenosomal enzymes of Trichomonas vaginalis. Parasitol. Res., 86:30-35.
Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C. M., Besteiro, S., Sicheritz-Ponten, T., Noel, C. J., Dacks, J. B., Foster, P. G., Simillion, C., Van de Peer, Y., Miranda-Saavedra, D., Barton, G. J., Westrop, G. D., Müller, S., Dessi, D., Fiori, P. L., Ren, Q., Paulsen, I., Zhang, H., Bastida-Corcuera, F. D., Simoes-Barbosa, A., Brown, M. T., Hayes, R. D., Mukherjee, M., Okumura, C. Y., Schneider, R., Smith, A. J., Vanacova, S., Villalvazo, M., Haas, B. J., Pertea, M., Feldblyum, T. V., Utterback, T. R., Shu, C.-L., Osoegawa, K., de Jong, P. J., Hrdy, I., Horvathova, L., Zubacova, Z., Dolezal, P., Malik, S.-B., Logsdon, J. M., Henze, K., Gupta, A., Wang, C. C., Dunne, R. L., Upcroft, J. A., Upcroft, P., White, O., Salzberg, S. L., Tang, P., Chiu, C.-H., Lee, Y.-S., Embley, T. M., Coombs, G. H., Mottram, J. C., Tachezy, J., Fraser-Liggett, C. M., Johnson, P. J. & Johnson, P. J. 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 315:207-212.
Čerkasovová, A., Lukášová, G., Čerkasov, J. & Kulda, J. 1973. Biochemical characterization of large granule frantion of Tritrichomonas foetus (strain KV). J. Protozool., 20:535.
Diamond, L. S. 1957. The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol., 43:488-490.
Dionne-Odom, J., Westfall, A. O., Van Der Pol, B., Fry, K. & Marrazzo, J. 2018. Sexually transmitted infection prevalence in women with HIV. Sex. Transm. Dis., 45:762-769.
Dolezal, P., Smid, O., Rada, P., Zubáčová, Z., Bursać, D., Sutak, R., Nebesářová, J., Lithgow, T. & Tachezy, J. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA, 102:10924-10929.
Drmota, T., Proost, P., Van Ranst, M., Weyda, F., Kulda, J. & Tachezy, J. 1996. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol. Biochem. Parasitol., 83:221-234.
Dyall, S. D. & Dolezal, P. 2007. Protein import into hydrogenosomes and mitosomes. In: Tachezy, J. (ed.), Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Springer-Verlag, Berlin, Heidelberg. p. 21-73.
Engbring, J. A. & Alderete, J. F. 1998. Characterization of Trichornonas vaginalis AP33 adhesin and cell surface interactive domains. Microbiology, 144:3011-3018.
Feng, R.-M., Z Wang, M., Smith, J. S., Dong, L., Chen, F., Pan, Q.-J., Zhang, X., Qiao, Y.-L. & Zhao, F.-H. 2018. Risk of high-risk human papillomavirus infection and cervical precancerous lesions with past or current trichomonas infection: a pooled analysis of 25,054 women in rural China. J. Clin. Virol., 99-100:84-90.
Garcia, A. F. & Alderete, J. 2007. Characterization of the Trichomonas vaginalis surface-associated AP65 and binding domain interacting with trichomonads and host cells. BMC Microbiol., 7:116.
Garcia, A. F., Benchimol, M. & Alderete, J. F. 2005. Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity. Infect. Immun., 73:2602-2610.
Garcia, A. F., Chang, T.-H., Benchimol, M., Klumpp, D. J., Lehker, M. W. & Alderete, J. F. 2003. Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Mol. Microbiol., 47:1207-1224.
Garg, S., Stölting, J., Zimorski, V., Rada, P., Tachezy, J., Martin, W. F. & Gould, S. B. 2015. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol. Evol., 7:2716-2726.
Gould, S. B., Woehle, C., Kusdian, G., Landan, G., Tachezy, J., Zimorski, V. & Martin, W. F. 2013. Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int. J. Parasitol., 43:707-719.
Grimstone, A. V. 1959. Cytoplasmic membranes and the nuclear membrane in the flagellate Trichonympha. J. Biophys. Biochem. Cytol., 6:369-378.
Hirt, R. P. 2013. Trichomonas vaginalis virulence factors: an integrative overview. Sex. Transm. Infect., 89:439-443.
Hirt, R. P., Noel, C. J., Sicheritz-Ponten, T., Tachezy, J. & Fiori, P.-L. 2007. Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol., 23:540-547.
Howarth, M. & Ting, A. Y. 2008. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc., 3:534-545.
Hrdý, I., Hirt, R. P., Dolezal, P., Bardonová, L., Foster, P. G., Tachezy, J. & Embley, T. M. 2004. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature, 432:618-622.
Hrdý, I. & Müller, M. 1995. Primary structure and eubacterial relationships of the pyruvate: ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J. Mol. Evol., 41:388-396.
Hrdý, I., Tachezy, J. & Müller, M. 2008. Metabolism of trichomonad hydrogenosomes. In: Tachezy, J. (ed.), Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic eukaryotes. Springer-Verlag, Berlin, Heidelberg. p. 114-145.
Jeffery, C. J. 2018. Protein moonlighting: what is it, and why is it important?. Philos. Trans. R. Soc. Lond. B Biol. Sci., 373:20160523.
Johnson, P. J., Lahti, C. J. & Bradley, P. J. 1993. Biogenesis of the hydrogenosome in the anaerobic protist Trichomonas vaginalis. J. Parasitol., 79:664-670.
Kiel, J. A. K. W. 2010. Autophagy in unicellular eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365:819-830.
Kim, J., Cantor, A. B., Orkin, S. H. & Wang, J. 2009. Use of in vivo biotinylation to study protein-protein and protein-DNA interactions in mouse embryonic stem cells. Nat. Protoc., 4:506-517.
Kucknoor, A. S., Mundodi, V. & Alderete, J. F. 2007. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell. Microbiol., 9:2586-2597.
Lahti, C. J., Bradley, P. J. & Johnson, P. J. 1994. Molecular characterization of the α-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol. Biochem. Parasitol., 66:309-318.
Lahti, C. J., d'Oliveira, C. E. & Johnson, P. J. 1992. Beta-succinyl-coenzymeA synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J. Bacteriol., 174:6822-6830.
Lehker, M. W., Arroyo, R. & Alderete, J. F. 1991. The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. J. Exp. Med., 174:311-318.
Lindmark, D. G. & Müller, M. 1973. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem., 248:7724-7728.
Lindmark, D. G., Müller, M. & Shio, H. 1975. Hydrogenosomes in Trichomonas vaginalis. J. Parasitol., 61:552.
Makki, A., Rada, P., Žárský, V., Kereiche, S., Kovacik, L., Novotny, M., Jores, T., Rapaport, D. & Tachezy, J. 2019. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biology., 17:e3000098.
Marous, M., Huang, W.-Y., Rabkin, C. S., Hayes, R. B., Alderete, J. F., Rosner, B., Grubb, R. L., Winter, A. C. & Sutcliffe, S. 2017. Trichomonas vaginalis infection and risk of prostate cancer: associations by disease aggressiveness and race/ethnicity in the PLCO trial. Cancer Causes Control, 28:889-898.
de Miguel, N., Lustig, G., Twu, O., Chattopadhyay, A., Wohlschlegel, J. A. & Johnson, P. J. 2010. Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol. Cell Proteomics, 9:1554-1566.
Moreno-Brito, V., Yáñez-Gómez, C., Meza-Cervantez, P., Ávila-González, L., Rodríguez, M. A., Ortega-López, J., González-Robles, A. & Arroyo, R. 2004. A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate: ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell. Microbiol., 7:245-258.
Nanda, N., Michel, R. G., Kurdgelashvili, G. & Wendel, K. A. 2006. Trichomoniasis and its treatment. Expert Rev. Anti. Infect. Ther., 4:125-135.
Newman, L., Rowley, J., Vander Hoorn, S., Wijesooriya, N. S., Unemo, M., Low, N., Stevens, G., Gottlieb, S., Kiarie, J. & Temmerman, M. 2015. Global estimates of the prevalence and incidence of four curable sexually transmitted Infections in 2012 based on systematic review and global reporting. PLoS One., 10:e0143304.
Nickel, W. & Rabouille, C. 2009. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol., 10:148-155.
Nickel, W. & Seedorf, M. 2008. Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu. Rev. Cell Dev. Biol., 24:287-308.
Nievas, Y. R., Coceres, V. M., Midlej, V., de Souza, W., Benchimol, M., Pereira-Neves, A., Vashisht, A. A., Wohlschlegel, J. A., Johnson, P. J. & de Miguel, N. 2018. Membrane-shed vesicles from the parasite Trichomonas vaginalis: characterization and their association with cell interaction. Cell. Mol. Life Sci., 75:2211-2226.
Noël, C. J., Diaz, N., Sicheritz-Ponten, T., Safarikova, L., Tachezy, J., Tang, P., Fiori, P.-L. & Hirt, R. P. 2010. Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics. BMC Genom., 11:99.
Okumura, C. Y. M., Baum, L. G. & Johnson, P. J. 2008. Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell. Microbiol., 10:2078-2090.
Pereira-Neves, A. & Benchimol, M. 2007. Phagocytosis by Trichomonas vaginalis: new insights. Biol. Cell, 99:87-101.
Petrin, D., Delgaty, K., Bhatt, R. & Garber, G. 1998. Clinical and microbiological aspects of Trichomonas vaginalis. Clin. Microbiol. Rev., 11:300-317.
Rabouille, C. 2017. Pathways of unconventional protein secretion. Trends Cell Biol., 27:230-240.
Rada, P., Doležal, P., Jedelský, P. L., Bursac, D., Perry, A. J., Šedinová, M., Smíšková, K., Novotný, M., Beltrán, N. C., Hrdý, I., Lithgow, T. & Tachezy, J. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS ONE, 6:e24428.
Rada, P., Makki, A. R., Zimorski, V., Garg, S., Hampl, V., Hrdý, I., Gould, S. B. & Tachezy, J. 2015. N-Terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot. Cell, 14:1264-1275.
Rendon-Maldonado, J., Espinosa-Cantellano, M., Soler, C., Torres, J. V. & Martinez-Palomo, A. 2003. Trichomonas vaginalis: in vitro attachment and internalization of HIV-1 and HIV-1-infected lymphocytes. J. Eukaryot. Microbiol., 50:43-48.
Ryan, C. M., de Miguel, N. & Johnson, P. J. 2011. Trichomonas vaginalis : current understanding of host-parasite interactions. Essays Biochem., 51:161-175.
Schneider, R. E., Brown, M. T., Shiflett, A. M., Dyall, S. D., Hayes, R. D., Xie, Y., Loo, J. A. & Johnson, P. J. 2011. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int. J. Parasitol., 41:1421-1434.
Smid, O., Matusková, A., Harris, S. R., Kucera, T., Novotný, M., Horváthová, L., Hrdý, I., Kutejová, E., Hirt, R. P., Embley, T. M., Janata, J. & Tachezy, J. 2008. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog., 4:e1000243.
Smutna, T., Goncalves, V. L., Saraiva, L. M., Tachezy, J., Teixeira, M. & Hrdy, I. 2009. Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryot. Cell, 8:47-55.
Smutná, T., Pilarová, K., Tarábek, J., Tachezy, J. & Hrdý, I. 2014. Novel functions of an iron-sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes. Antimicrob. Agents Chemother., 58:3224-3232.
Štáfková, J., Rada, P., Meloni, D., Žárský, V., Smutná, T., Zimmann, N., Harant, K., Pompach, P., Hrdý, I. & Tachezy, J. 2018. Dynamic secretome of Trichomonas vaginalis: case study of β-amylases. Mol. Cell Proteomics, 17:304-320.
Sutak, R., Dolezal, P., Fiumera, H. L., Hrdy, I., Dancis, A., Delgadillo-Correa, M., Johnson, P. J., Müller, M. & Tachezy, J. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl Acad. Sci. USA, 101:10368-10373.
Sutton, M., Sternberg, M., Koumans, E. H., McQuillan, G., Berman, S. & Markowitz, L. 2007. The prevalence of Trichomonas vaginalis infection among reproductive-age women in the United States, 2001-2004. Clin. Infect. Dis., 45:1319-1326.
Tachezy, J. 1999. More on iron acquisition by parasitic protozoa. Parasitol. Today, 15:207.
Trombetta, E. S. & Parodi, A. J. 2003. Quality control and protein folding in the secretory pathway. Annu. Rev. Cell Dev. Biol., 19:649-676.
Twu, O., de Miguel, N., Lustig, G., Stevens, G. C., Vashisht, A. A., Wohlschlegel, J. A. & Johnson, P. J. 2013. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions. PLoS Pathog., 9:e1003482.
Wexler-Cohen, Y., Stevens, G. C., Barnoy, E., van der Bliek, A. M. & Johnson, P. J. 2014. A dynamin-related protein contributes to Trichomonas vaginalis hydrogenosomal fission. FASEB J., 28:1113-1121.
Zimorski, V., Major, P., Hoffmann, K., Brás, X. P., Martin, W. F. & Gould, S. B. 2013. The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J. Eukaryot. Microbiol., 60:89-97.
The expanded genome of Hexamita inflata, a free-living diplomonad