Determining Validity and Reliability of an In-Field Performance Analysis System for Swimming
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39598962
PubMed Central
PMC11598412
DOI
10.3390/s24227186
PII: s24227186
Knihovny.cz E-zdroje
- Klíčová slova
- competitive swimming, elite athlete, junior, youth,
- MeSH
- audiovizuální záznam metody MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- plavání * fyziologie MeSH
- reprodukovatelnost výsledků MeSH
- sportovní výkon * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
To permit the collection of quantitative data on start, turn and clean swimming performances in any swimming pool, the aims of the present study were to (1) validate a mobile in-field performance analysis system (PAS) against the Kistler starting block equipped with force plates and synchronized to a 2D camera system (KiSwim, Kistler, Winterthur, Switzerland), (2) assess the PAS's interrater reliability and (3) provide percentiles as reference values for elite junior and adult swimmers. Members of the Swiss junior and adult national swimming teams including medalists at Olympic Games, World and European Championships volunteered for the present study (n = 47; age: 17 ± 4 [range: 13-29] years; World Aquatics Points: 747 ± 100 [range: 527-994]). All start and turn trials were video-recorded and analyzed using two methods: PAS and KiSwim. The PAS involves one fixed view camera recording overwater start footage and a sport action camera that is moved underwater along the side of the pool perpendicular to the swimming lane on a 1.55 m long monostand. From a total of 25 parameters determined with the PAS, 16 are also measurable with the KiSwim, of which 7 parameters showed satisfactory validity (r = 0.95-1.00, p < 0.001, %-difference < 1%). Interrater reliability was determined for all 25 parameters of the PAS and reliability was accepted for 21 of those start, turn and swimming parameters (ICC = 0.78-1.00). The percentiles for all valid and reliable parameters provide reference values for assessment of start, turn and swimming performance for junior and adult national team swimmers. The in-field PAS provides a mobile method to assess start, turn and clean swimming performance with high validity and reliability. The analysis template and manual included in the present article aid the practical application of the PAS in research and development projects as well as academic works.
Faculty of Science and Medicine University of Fribourg 1700 Fribourg Switzerland
Swiss Federal Institute of Sport Magglingen Department for Elite Sport 2532 Magglingen Switzerland
Zobrazit více v PubMed
Staunton C.A., Romann M., Bjorklund G., Born D.P. Diving into a pool of data: Using principal component analysis to optimize performance prediction in women’s short-course swimming. J. Sports Sci. 2024;42:519–526. doi: 10.1080/02640414.2024.2346670. PubMed DOI
Barbosa T.M., Barbosa A.C., Simbana Escobar D., Mullen G.J., Cossor J.M., Hodierne R., Arellano R., Mason B.R. The role of the biomechanics analyst in swimming training and competition analysis. Sports Biomech. 2021;22:1–18. doi: 10.1080/14763141.2021.1960417. PubMed DOI
Hughes M., Franks I.M. Essentials of Performance Analysis in Sport. 2nd ed. Routledge; Oxon, UK: 2015. p. XXVIII.
Ruiz-Navarro J.J., Morouco P.G., Arellano R. Relationship Between Tethered Swimming in a Flume and Swimming Performance. Int. J. Sports Physiol. Perform. 2020;15:1087–1094. doi: 10.1123/ijspp.2019-0466. PubMed DOI
Qi Y., Sun K., Zhao D., Liu L., Zhang S. Kinematic and electromyography characteristics of performing butterfly stroke with different swimming speeds in flow environment. Heliyon. 2023;9:e20122. doi: 10.1016/j.heliyon.2023.e20122. PubMed DOI PMC
Crocker G.H., Moon J.F., Nessler J.A., Newcomer S.C. Energetics of Swimming with Hand Paddles of Different Surface Areas. J. Strength Cond. Res. 2021;35:205–211. doi: 10.1519/JSC.0000000000002637. PubMed DOI
Veiga S., Pla R., Qiu X., Boudet D., Guimard A. Effects of Extended Underwater Sections on the Physiological and Biomechanical Parameters of Competitive Swimmers. Front. Physiol. 2022;13:815766. doi: 10.3389/fphys.2022.815766. PubMed DOI PMC
Polach M., Thiel D., Krenik J., Born D.P. Swimming turn performance: The distinguishing factor in 1500 m world championship freestyle races? BMC Res. Notes. 2021;14:248. doi: 10.1186/s13104-021-05665-x. PubMed DOI PMC
Cuenca-Fernandez F., Ruiz-Navarro J.J., Polach M., Arellano R., Born D.P. Turn Performance Variation in European Elite Short-Course Swimmers. Int. J. Environ. Res. Public. Health. 2022;19:5033. doi: 10.3390/ijerph19095033. PubMed DOI PMC
Staunton C.A., Romann M., Bjorklund G., Born D.P. Streamlining performance prediction: Data-driven KPIs in all swimming strokes. BMC Res. Notes. 2024;17:52. doi: 10.1186/s13104-024-06714-x. PubMed DOI PMC
Nagle E.F., Nagai T., Beethe A., Lovalekar M., Tuite M.S., Beckner M.E., Zera J.N., Sanders M.E., Connaboy C., Abt J.P., et al. Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test. Sports. 2023;11:42. doi: 10.3390/sports11020042. PubMed DOI PMC
Morais J.E., Oliveira J.P., Sampaio T., Barbosa T.M. Wearables in Swimming for Real-Time Feedback: A Systematic Review. Sensors. 2022;22:3677. doi: 10.3390/s22103677. PubMed DOI PMC
Kwok W.Y., So B.C.L., Ng S.M.S. Underwater Surface Electromyography for the Evaluation of Muscle Activity during Front Crawl Swimming: A Systematic Review. J. Sports Sci. Med. 2023;22:1–16. doi: 10.52082/jssm.2023.1. PubMed DOI PMC
Hamidi Rad M., Gremeaux V., Masse F., Dadashi F., Aminian K. Monitoring weekly progress of front crawl swimmers using IMU-based performance evaluation goal metrics. Front. Bioeng. Biotechnol. 2022;10:910798. doi: 10.3389/fbioe.2022.910798. PubMed DOI PMC
Slopecki M., Charbonneau M., Lavalliere J.M., Cote J.N., Clement J. Validation of Automatically Quantified Swim Stroke Mechanics Using an Inertial Measurement Unit in Paralympic Athletes. Bioengineering. 2023;11:15. doi: 10.3390/bioengineering11010015. PubMed DOI PMC
Stamm A., Thiel D.V. Investigating Forward Velocity and Symmetry in Freestyle Swimming Using Inertial Sensors. Procedia Eng. 2015;112:522–527. doi: 10.1016/j.proeng.2015.07.236. DOI
Born D.P., Romann M., Stöggl T. Start Fast, Swim Faster, Turn Fastest: Section Analyses and Normative Data for Individual Medley. J. Sports Sci. Med. 2022;21:233–244. doi: 10.52082/jssm.2022.233. PubMed DOI PMC
Sandbakk O. Let’s Close the Gap Between Research and Practice to Discover New Land Together! Int. J. Sports Physiol. Perform. 2018;13:961. doi: 10.1123/ijspp.2018-0550. PubMed DOI
Gonjo T., Olstad B.H. Race Analysis in Competitive Swimming: A Narrative Review. Int. J. Environ. Res. Public Health. 2020;18:69. doi: 10.3390/ijerph18010069. PubMed DOI PMC
Morais J.E., Barbosa T.M., Lopes T., Simbana-Escobar D., Marinho D.A. Race analysis of the men’s 50 m events at the 2021 LEN European Championships. Sports Biomech. 2022:1–17. doi: 10.1080/14763141.2022.2125430. PubMed DOI
Tor E., Pease D.L., Ball K.A. Key parameters of the swimming start and their relationship to start performance. J. Sports Sci. 2015;33:1313–1321. doi: 10.1080/02640414.2014.990486. PubMed DOI
Tor E., Pease D.L., Ball K.A. The reliability of an instrumented start block analysis system. J. Appl. Biomech. 2015;31:62–67. doi: 10.1123/JAB.2014-0155. PubMed DOI
Burkhardt D., Born D.P., Singh N.B., Oberhofer K., Carradori S., Sinistaj S., Lorenzetti S. Key performance indicators and leg positioning for the kick-start in competitive swimmers. Sports Biomech. 2020;22:1–15. doi: 10.1080/14763141.2020.1761435. PubMed DOI
Nicol E., Ball K., Tor E. The biomechanics of freestyle and butterfly turn technique in elite swimmers. Sports Biomech. 2021;20:444–457. doi: 10.1080/14763141.2018.1561930. PubMed DOI
de Jesus K., de Jesus K., Mourao L., Roesler H., Fernandes R.J., Vaz M.A.P., Vilas-Boas J.P., Machado L.J. Swimmers’ Effective Actions during the Backstroke Start Technique. Sensors. 2023;23:7723. doi: 10.3390/s23187723. PubMed DOI PMC
Barker-Ruchti N., Schubring A., Aarresola O., Kerr R., Grahn K., McMahon J. Producing success: A critical analysis of athlete development governance in six countries. Int. J. Sport. Policy Politics. 2018;10:215–234. doi: 10.1080/19406940.2017.1348381. DOI
Skorski S., Hecksteden A. Coping With the “Small Sample-Small Relevant Effects” Dilemma in Elite Sport Research. Int. J. Sports Physiol. Perform. 2021;16:1559–1560. doi: 10.1123/ijspp.2021-0467. PubMed DOI
Bernardina G.R., Cerveri P., Barros R.M., Marins J.C., Silvatti A.P. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras. J. Biomech. 2017;51:77–82. doi: 10.1016/j.jbiomech.2016.11.068. PubMed DOI
Bernardina G.R., Cerveri P., Barros R.M., Marins J.C., Silvatti A.P. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis. PLoS ONE. 2016;11:e0160490. doi: 10.1371/journal.pone.0160490. PubMed DOI PMC
Born D.P., Burkhardt D., Buck M., Schwab L., Roman M. Key performance indicators and reference values for turn performance in elite youth, junior and adult swimmers. Sports Biomech. 2024;2:1–21. doi: 10.1080/14763141.2024.2409657. PubMed DOI
Born D.P., Lomax I., Rüeger E., Romann M. Normative data and percentile curves for long-term athlete development in swimming. J. Sci. Med. Sport. 2022;25:266–271. doi: 10.1016/j.jsams.2021.10.002. PubMed DOI
Alshdokhi K., Petersen C., Clarke J. Improvement and Variability of Adolescent Backstroke Swimming Performance by Age. Front. Sports Act. Living. 2020;2:46. doi: 10.3389/fspor.2020.00046. PubMed DOI PMC
McKay A.K.A., Stellingwerff T., Smith E.S., Martin D.T., Mujika I., Goosey-Tolfrey V.L., Sheppard J., Burke L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022;17:317–331. doi: 10.1123/ijspp.2021-0451. PubMed DOI
Born D.P., Schönfelder M., Logan O., Olstad B.H., Romann M. Performance Development of European Swimmers Across the Olympic Cycle. Front. Sports Act. Living. 2022;4:894066. doi: 10.3389/fspor.2022.894066. PubMed DOI PMC
Field A. Discovering Statistics Using IBM SPSS Statistics. Sage Publications Ltd.; Los Angeles, CA, USA: 2013.
Hopkins W. A Scale Magnitude for Effect Statistics. [(accessed on 3 June 2024)]. Available online: http://www.sportsci.org/resource/stats/effectmag.html.
Bland J.M., Altman D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999;8:135–160. doi: 10.1177/096228029900800204. PubMed DOI
Shrout P.E., Fleiss J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420. PubMed DOI
Koo T.K., Li M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012. PubMed DOI PMC
Altmann S., Ringhof S., Neumann R., Woll A., Rumpf M.C. Validity and reliability of speed tests used in soccer: A systematic review. PLoS ONE. 2019;14:e0220982. doi: 10.1371/journal.pone.0220982. PubMed DOI PMC
Hopkins W.G. Measures of reliability in sports medicine and science. Sports Med. 2000;30:1–15. doi: 10.2165/00007256-200030010-00001. PubMed DOI
Atkinson G., Nevill A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26:217–238. doi: 10.2165/00007256-199826040-00002. PubMed DOI
Papic C., Sinclair P., Fornusek C., Sanders R. The effect of auditory stimulus training on swimming start reaction time. Sports Biomech. 2018;18:1–12. doi: 10.1080/14763141.2017.1409260. PubMed DOI
Washino S., Mayfield D.L., Lichtwark G.A., Mankyu H., Yoshitake Y. Swimming performance is reduced by reflective markers intended for the analysis of swimming kinematics. J. Biomech. 2019;91:109–113. doi: 10.1016/j.jbiomech.2019.05.017. PubMed DOI
Ceccon S., Ceseracciu E., Sawacha Z., Gatta G., Cortesi M., Cobelli C., Fantozzi S. Motion analysis of front crawl swimming applying CAST technique by means of automatic tracking. J. Sports Sci. 2013;31:276–287. doi: 10.1080/02640414.2012.729134. PubMed DOI
Ceseracciu E., Sawacha Z., Fantozzi S., Cortesi M., Gatta G., Corazza S., Cobelli C. Markerless analysis of front crawl swimming. J. Biomech. 2011;44:2236–2242. doi: 10.1016/j.jbiomech.2011.06.003. PubMed DOI
World Aquatics Swimming Rules and Swimming Points. [(accessed on 10 March 2024)]. Available online: https://www.worldaquatics.com/rules/competition-regulations.
Gonjo T., Olstad B.H. Start and Turn Performances of Competitive Swimmers in Sprint Butterfly Swimming. J. Sports Sci. Med. 2020;19:727–734. PubMed PMC
Elipot M., Dietrich G., Hellard P., Houel N. High-level swimmers’ kinetic efficiency during the underwater phase of a grab start. J. Appl. Biomech. 2010;26:501–507. doi: 10.1123/jab.26.4.501. PubMed DOI
Dobosz J., Mayorga-Vega D., Viciana J. Percentile Values of Physical Fitness Levels among Polish Children Aged 7 to 19 Years—A Population-Based Study. Cent. Eur. J. Public. Health. 2015;23:340–351. doi: 10.21101/cejph.a4153. PubMed DOI
Golle K., Muehlbauer T., Wick D., Granacher U. Physical Fitness Percentiles of German Children Aged 9–12 Years: Findings from a Longitudinal Study. PLoS ONE. 2015;10:e0142393. doi: 10.1371/journal.pone.0142393. PubMed DOI PMC
Thomas E., Petrigna L., Tabacchi G., Teixeira E., Pajaujiene S., Sturm D.J., Sahin F.N., Gomez-Lopez M., Pausic J., Paoli A., et al. Percentile values of the standing broad jump in children and adolescents aged 6–18 years old. Eur. J. Transl. Myol. 2020;30:9050. doi: 10.4081/ejtm.2020.9050. PubMed DOI PMC
Sandercock G., Voss C., Cohen D., Taylor M., Stasinopoulos D.M. Centile curves and normative values for the twenty metre shuttle-run test in English schoolchildren. J. Sports Sci. 2012;30:679–687. doi: 10.1080/02640414.2012.660185. PubMed DOI