Determining Validity and Reliability of an In-Field Performance Analysis System for Swimming

. 2024 Nov 09 ; 24 (22) : . [epub] 20241109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39598962

To permit the collection of quantitative data on start, turn and clean swimming performances in any swimming pool, the aims of the present study were to (1) validate a mobile in-field performance analysis system (PAS) against the Kistler starting block equipped with force plates and synchronized to a 2D camera system (KiSwim, Kistler, Winterthur, Switzerland), (2) assess the PAS's interrater reliability and (3) provide percentiles as reference values for elite junior and adult swimmers. Members of the Swiss junior and adult national swimming teams including medalists at Olympic Games, World and European Championships volunteered for the present study (n = 47; age: 17 ± 4 [range: 13-29] years; World Aquatics Points: 747 ± 100 [range: 527-994]). All start and turn trials were video-recorded and analyzed using two methods: PAS and KiSwim. The PAS involves one fixed view camera recording overwater start footage and a sport action camera that is moved underwater along the side of the pool perpendicular to the swimming lane on a 1.55 m long monostand. From a total of 25 parameters determined with the PAS, 16 are also measurable with the KiSwim, of which 7 parameters showed satisfactory validity (r = 0.95-1.00, p < 0.001, %-difference < 1%). Interrater reliability was determined for all 25 parameters of the PAS and reliability was accepted for 21 of those start, turn and swimming parameters (ICC = 0.78-1.00). The percentiles for all valid and reliable parameters provide reference values for assessment of start, turn and swimming performance for junior and adult national team swimmers. The in-field PAS provides a mobile method to assess start, turn and clean swimming performance with high validity and reliability. The analysis template and manual included in the present article aid the practical application of the PAS in research and development projects as well as academic works.

Zobrazit více v PubMed

Staunton C.A., Romann M., Bjorklund G., Born D.P. Diving into a pool of data: Using principal component analysis to optimize performance prediction in women’s short-course swimming. J. Sports Sci. 2024;42:519–526. doi: 10.1080/02640414.2024.2346670. PubMed DOI

Barbosa T.M., Barbosa A.C., Simbana Escobar D., Mullen G.J., Cossor J.M., Hodierne R., Arellano R., Mason B.R. The role of the biomechanics analyst in swimming training and competition analysis. Sports Biomech. 2021;22:1–18. doi: 10.1080/14763141.2021.1960417. PubMed DOI

Hughes M., Franks I.M. Essentials of Performance Analysis in Sport. 2nd ed. Routledge; Oxon, UK: 2015. p. XXVIII.

Ruiz-Navarro J.J., Morouco P.G., Arellano R. Relationship Between Tethered Swimming in a Flume and Swimming Performance. Int. J. Sports Physiol. Perform. 2020;15:1087–1094. doi: 10.1123/ijspp.2019-0466. PubMed DOI

Qi Y., Sun K., Zhao D., Liu L., Zhang S. Kinematic and electromyography characteristics of performing butterfly stroke with different swimming speeds in flow environment. Heliyon. 2023;9:e20122. doi: 10.1016/j.heliyon.2023.e20122. PubMed DOI PMC

Crocker G.H., Moon J.F., Nessler J.A., Newcomer S.C. Energetics of Swimming with Hand Paddles of Different Surface Areas. J. Strength Cond. Res. 2021;35:205–211. doi: 10.1519/JSC.0000000000002637. PubMed DOI

Veiga S., Pla R., Qiu X., Boudet D., Guimard A. Effects of Extended Underwater Sections on the Physiological and Biomechanical Parameters of Competitive Swimmers. Front. Physiol. 2022;13:815766. doi: 10.3389/fphys.2022.815766. PubMed DOI PMC

Polach M., Thiel D., Krenik J., Born D.P. Swimming turn performance: The distinguishing factor in 1500 m world championship freestyle races? BMC Res. Notes. 2021;14:248. doi: 10.1186/s13104-021-05665-x. PubMed DOI PMC

Cuenca-Fernandez F., Ruiz-Navarro J.J., Polach M., Arellano R., Born D.P. Turn Performance Variation in European Elite Short-Course Swimmers. Int. J. Environ. Res. Public. Health. 2022;19:5033. doi: 10.3390/ijerph19095033. PubMed DOI PMC

Staunton C.A., Romann M., Bjorklund G., Born D.P. Streamlining performance prediction: Data-driven KPIs in all swimming strokes. BMC Res. Notes. 2024;17:52. doi: 10.1186/s13104-024-06714-x. PubMed DOI PMC

Nagle E.F., Nagai T., Beethe A., Lovalekar M., Tuite M.S., Beckner M.E., Zera J.N., Sanders M.E., Connaboy C., Abt J.P., et al. Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test. Sports. 2023;11:42. doi: 10.3390/sports11020042. PubMed DOI PMC

Morais J.E., Oliveira J.P., Sampaio T., Barbosa T.M. Wearables in Swimming for Real-Time Feedback: A Systematic Review. Sensors. 2022;22:3677. doi: 10.3390/s22103677. PubMed DOI PMC

Kwok W.Y., So B.C.L., Ng S.M.S. Underwater Surface Electromyography for the Evaluation of Muscle Activity during Front Crawl Swimming: A Systematic Review. J. Sports Sci. Med. 2023;22:1–16. doi: 10.52082/jssm.2023.1. PubMed DOI PMC

Hamidi Rad M., Gremeaux V., Masse F., Dadashi F., Aminian K. Monitoring weekly progress of front crawl swimmers using IMU-based performance evaluation goal metrics. Front. Bioeng. Biotechnol. 2022;10:910798. doi: 10.3389/fbioe.2022.910798. PubMed DOI PMC

Slopecki M., Charbonneau M., Lavalliere J.M., Cote J.N., Clement J. Validation of Automatically Quantified Swim Stroke Mechanics Using an Inertial Measurement Unit in Paralympic Athletes. Bioengineering. 2023;11:15. doi: 10.3390/bioengineering11010015. PubMed DOI PMC

Stamm A., Thiel D.V. Investigating Forward Velocity and Symmetry in Freestyle Swimming Using Inertial Sensors. Procedia Eng. 2015;112:522–527. doi: 10.1016/j.proeng.2015.07.236. DOI

Born D.P., Romann M., Stöggl T. Start Fast, Swim Faster, Turn Fastest: Section Analyses and Normative Data for Individual Medley. J. Sports Sci. Med. 2022;21:233–244. doi: 10.52082/jssm.2022.233. PubMed DOI PMC

Sandbakk O. Let’s Close the Gap Between Research and Practice to Discover New Land Together! Int. J. Sports Physiol. Perform. 2018;13:961. doi: 10.1123/ijspp.2018-0550. PubMed DOI

Gonjo T., Olstad B.H. Race Analysis in Competitive Swimming: A Narrative Review. Int. J. Environ. Res. Public Health. 2020;18:69. doi: 10.3390/ijerph18010069. PubMed DOI PMC

Morais J.E., Barbosa T.M., Lopes T., Simbana-Escobar D., Marinho D.A. Race analysis of the men’s 50 m events at the 2021 LEN European Championships. Sports Biomech. 2022:1–17. doi: 10.1080/14763141.2022.2125430. PubMed DOI

Tor E., Pease D.L., Ball K.A. Key parameters of the swimming start and their relationship to start performance. J. Sports Sci. 2015;33:1313–1321. doi: 10.1080/02640414.2014.990486. PubMed DOI

Tor E., Pease D.L., Ball K.A. The reliability of an instrumented start block analysis system. J. Appl. Biomech. 2015;31:62–67. doi: 10.1123/JAB.2014-0155. PubMed DOI

Burkhardt D., Born D.P., Singh N.B., Oberhofer K., Carradori S., Sinistaj S., Lorenzetti S. Key performance indicators and leg positioning for the kick-start in competitive swimmers. Sports Biomech. 2020;22:1–15. doi: 10.1080/14763141.2020.1761435. PubMed DOI

Nicol E., Ball K., Tor E. The biomechanics of freestyle and butterfly turn technique in elite swimmers. Sports Biomech. 2021;20:444–457. doi: 10.1080/14763141.2018.1561930. PubMed DOI

de Jesus K., de Jesus K., Mourao L., Roesler H., Fernandes R.J., Vaz M.A.P., Vilas-Boas J.P., Machado L.J. Swimmers’ Effective Actions during the Backstroke Start Technique. Sensors. 2023;23:7723. doi: 10.3390/s23187723. PubMed DOI PMC

Barker-Ruchti N., Schubring A., Aarresola O., Kerr R., Grahn K., McMahon J. Producing success: A critical analysis of athlete development governance in six countries. Int. J. Sport. Policy Politics. 2018;10:215–234. doi: 10.1080/19406940.2017.1348381. DOI

Skorski S., Hecksteden A. Coping With the “Small Sample-Small Relevant Effects” Dilemma in Elite Sport Research. Int. J. Sports Physiol. Perform. 2021;16:1559–1560. doi: 10.1123/ijspp.2021-0467. PubMed DOI

Bernardina G.R., Cerveri P., Barros R.M., Marins J.C., Silvatti A.P. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras. J. Biomech. 2017;51:77–82. doi: 10.1016/j.jbiomech.2016.11.068. PubMed DOI

Bernardina G.R., Cerveri P., Barros R.M., Marins J.C., Silvatti A.P. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis. PLoS ONE. 2016;11:e0160490. doi: 10.1371/journal.pone.0160490. PubMed DOI PMC

Born D.P., Burkhardt D., Buck M., Schwab L., Roman M. Key performance indicators and reference values for turn performance in elite youth, junior and adult swimmers. Sports Biomech. 2024;2:1–21. doi: 10.1080/14763141.2024.2409657. PubMed DOI

Born D.P., Lomax I., Rüeger E., Romann M. Normative data and percentile curves for long-term athlete development in swimming. J. Sci. Med. Sport. 2022;25:266–271. doi: 10.1016/j.jsams.2021.10.002. PubMed DOI

Alshdokhi K., Petersen C., Clarke J. Improvement and Variability of Adolescent Backstroke Swimming Performance by Age. Front. Sports Act. Living. 2020;2:46. doi: 10.3389/fspor.2020.00046. PubMed DOI PMC

McKay A.K.A., Stellingwerff T., Smith E.S., Martin D.T., Mujika I., Goosey-Tolfrey V.L., Sheppard J., Burke L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022;17:317–331. doi: 10.1123/ijspp.2021-0451. PubMed DOI

Born D.P., Schönfelder M., Logan O., Olstad B.H., Romann M. Performance Development of European Swimmers Across the Olympic Cycle. Front. Sports Act. Living. 2022;4:894066. doi: 10.3389/fspor.2022.894066. PubMed DOI PMC

Field A. Discovering Statistics Using IBM SPSS Statistics. Sage Publications Ltd.; Los Angeles, CA, USA: 2013.

Hopkins W. A Scale Magnitude for Effect Statistics. [(accessed on 3 June 2024)]. Available online: http://www.sportsci.org/resource/stats/effectmag.html.

Bland J.M., Altman D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999;8:135–160. doi: 10.1177/096228029900800204. PubMed DOI

Shrout P.E., Fleiss J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420. PubMed DOI

Koo T.K., Li M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012. PubMed DOI PMC

Altmann S., Ringhof S., Neumann R., Woll A., Rumpf M.C. Validity and reliability of speed tests used in soccer: A systematic review. PLoS ONE. 2019;14:e0220982. doi: 10.1371/journal.pone.0220982. PubMed DOI PMC

Hopkins W.G. Measures of reliability in sports medicine and science. Sports Med. 2000;30:1–15. doi: 10.2165/00007256-200030010-00001. PubMed DOI

Atkinson G., Nevill A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26:217–238. doi: 10.2165/00007256-199826040-00002. PubMed DOI

Papic C., Sinclair P., Fornusek C., Sanders R. The effect of auditory stimulus training on swimming start reaction time. Sports Biomech. 2018;18:1–12. doi: 10.1080/14763141.2017.1409260. PubMed DOI

Washino S., Mayfield D.L., Lichtwark G.A., Mankyu H., Yoshitake Y. Swimming performance is reduced by reflective markers intended for the analysis of swimming kinematics. J. Biomech. 2019;91:109–113. doi: 10.1016/j.jbiomech.2019.05.017. PubMed DOI

Ceccon S., Ceseracciu E., Sawacha Z., Gatta G., Cortesi M., Cobelli C., Fantozzi S. Motion analysis of front crawl swimming applying CAST technique by means of automatic tracking. J. Sports Sci. 2013;31:276–287. doi: 10.1080/02640414.2012.729134. PubMed DOI

Ceseracciu E., Sawacha Z., Fantozzi S., Cortesi M., Gatta G., Corazza S., Cobelli C. Markerless analysis of front crawl swimming. J. Biomech. 2011;44:2236–2242. doi: 10.1016/j.jbiomech.2011.06.003. PubMed DOI

World Aquatics Swimming Rules and Swimming Points. [(accessed on 10 March 2024)]. Available online: https://www.worldaquatics.com/rules/competition-regulations.

Gonjo T., Olstad B.H. Start and Turn Performances of Competitive Swimmers in Sprint Butterfly Swimming. J. Sports Sci. Med. 2020;19:727–734. PubMed PMC

Elipot M., Dietrich G., Hellard P., Houel N. High-level swimmers’ kinetic efficiency during the underwater phase of a grab start. J. Appl. Biomech. 2010;26:501–507. doi: 10.1123/jab.26.4.501. PubMed DOI

Dobosz J., Mayorga-Vega D., Viciana J. Percentile Values of Physical Fitness Levels among Polish Children Aged 7 to 19 Years—A Population-Based Study. Cent. Eur. J. Public. Health. 2015;23:340–351. doi: 10.21101/cejph.a4153. PubMed DOI

Golle K., Muehlbauer T., Wick D., Granacher U. Physical Fitness Percentiles of German Children Aged 9–12 Years: Findings from a Longitudinal Study. PLoS ONE. 2015;10:e0142393. doi: 10.1371/journal.pone.0142393. PubMed DOI PMC

Thomas E., Petrigna L., Tabacchi G., Teixeira E., Pajaujiene S., Sturm D.J., Sahin F.N., Gomez-Lopez M., Pausic J., Paoli A., et al. Percentile values of the standing broad jump in children and adolescents aged 6–18 years old. Eur. J. Transl. Myol. 2020;30:9050. doi: 10.4081/ejtm.2020.9050. PubMed DOI PMC

Sandercock G., Voss C., Cohen D., Taylor M., Stasinopoulos D.M. Centile curves and normative values for the twenty metre shuttle-run test in English schoolchildren. J. Sports Sci. 2012;30:679–687. doi: 10.1080/02640414.2012.660185. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...