More than just an eagle killer: The freshwater cyanobacterium Aetokthonos hydrillicola produces highly toxic dolastatin derivatives
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37751550
PubMed Central
PMC10556625
DOI
10.1073/pnas.2219230120
Knihovny.cz E-zdroje
- Klíčová slova
- aetokthonostatin, biosynthesis, cyanotoxin, cytotoxicity, dolastatin,
- MeSH
- Accipitridae * MeSH
- Caenorhabditis elegans MeSH
- ekosystém MeSH
- sinice * genetika MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aetokthonotoxin MeSH Prohlížeč
Cyanobacteria are infamous producers of toxins. While the toxic potential of planktonic cyanobacterial blooms is well documented, the ecosystem level effects of toxigenic benthic and epiphytic cyanobacteria are an understudied threat. The freshwater epiphytic cyanobacterium Aetokthonos hydrillicola has recently been shown to produce the "eagle killer" neurotoxin aetokthonotoxin (AETX) causing the fatal neurological disease vacuolar myelinopathy. The disease affects a wide array of wildlife in the southeastern United States, most notably waterfowl and birds of prey, including the bald eagle. In an assay for cytotoxicity, we found the crude extract of the cyanobacterium to be much more potent than pure AETX, prompting further investigation. Here, we describe the isolation and structure elucidation of the aetokthonostatins (AESTs), linear peptides belonging to the dolastatin compound family, featuring a unique modification of the C-terminal phenylalanine-derived moiety. Using immunofluorescence microscopy and molecular modeling, we confirmed that AEST potently impacts microtubule dynamics and can bind to tubulin in a similar matter as dolastatin 10. We also show that AEST inhibits reproduction of the nematode Caenorhabditis elegans. Bioinformatic analysis revealed the AEST biosynthetic gene cluster encoding a nonribosomal peptide synthetase/polyketide synthase accompanied by a unique tailoring machinery. The biosynthetic activity of a specific N-terminal methyltransferase was confirmed by in vitro biochemical studies, establishing a mechanistic link between the gene cluster and its product.
Faculty of Science University of South Bohemia České Budějovice 37005 Czech Republic
Institute of Pharmacy Pharmaceutical Biology Free University of Berlin Berlin 14195 Germany
Institute of Pharmacy Pharmacognosy Martin Luther University Halle Wittenberg Halle 06120 Germany
Zobrazit více v PubMed
Niedermeyer T., Brönstrup M., "Natural product drug discovery from microalgae" in Microalgal Biotechnology: Integration and Economy, Posten W., Ed. (de Gruyter, 2012), pp. 169–200.
Tidgewell K., Clark B. R., Gerwick W. H., "The natural products chemistry of cyanobacteria" in Comprehensive Natural Products II, Liu H.-W., Mander L., Eds. (Elsevier, 2010), pp. 141–188.
Nunnery J. K., Mevers E., Gerwick W. H., Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 21, 787–793 (2010). PubMed PMC
Hudnell H. K., Ed., Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs (Springer, 2008). PubMed
Chorus I., Bartram J., Eds., Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring, and Management (CRC Press, 2021).
O’Neil J. M., Davis T. W., Burford M. A., Gobler C. J., The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).
Wood S. A., et al. , Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshw. Biol. 65, 1824–1842 (2020). PubMed PMC
Breinlinger S., et al. , Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 371, eaax9050 (2021). PubMed PMC
Newman D. J., Cragg G. M., Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs 12, 255–278 (2014). PubMed PMC
Salvador-Reyes L. A., Luesch H., Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat. Prod. Rep. 32, 478–503 (2015). PubMed PMC
Llewellyn L. E., Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat. Prod. Rep. 23, 200–222 (2006). PubMed
Thottumkara A. P., Parsons W. H., Du Bois J., Saxitoxin. Angew. Chem. Int. Ed. Engl. 53, 5760–5784 (2014). PubMed
Eggen M., Georg G. I., The cryptophycins: Their synthesis and anticancer activity. Med. Res. Rev. 22, 85–101 (2002). PubMed
Rohr J., Cryptophycin anticancer drugs revisited. ACS Chem. Biol. 1, 747–750 (2006). PubMed
Bai R., Pettit G. R., Hamel E., Dolastatin 10, a powerful cytostatic peptide derived from a marine animal. Biochem. Pharmacol. 39, 1941–1949 (1990). PubMed
Harrigan G. G., et al. , Symplostatin 1: A dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J. Nat. Prod. 61, 1075–1077 (1998). PubMed
Horgen F. D., Kazmierski E. B., Westenburg H. E., Yoshida W. Y., Scheuer P. J., Malevamide D: Isolation and structure determination of an isodolastatin H analogue from the marine cyanobacterium Symploca hydnoides. J. Nat. Prod. 65, 487–491 (2002). PubMed
Beckwith M., Urba W. J., Longo D. L., Growth inhibition of human lymphoma cell lines by the marine products, dolastatins 10 and 15. J. Nat. Cancer Inst. 85, 483–488 (1993). PubMed
Cormier A., Marchand M., Ravelli R. B. G., Knossow M., Gigant B., Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep. 9, 1101–1106 (2008). PubMed PMC
Bai R. L., Pettit G. R., Hamel E., Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J. Biol. Chem. 265, 17141–17149 (1990). PubMed
Pettit G. R., et al. , The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 109, 6883–6885 (1987).
Luesch H., Moore R. E., Paul V. J., Mooberry S. L., Corbett T. H., Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Prod. 64, 907–910 (2001). PubMed
Luesch H., Harrigan G. G., Goetz G., Horgen F. D., The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr. Med. Chem. 9, 1791–1806 (2002). PubMed
Engene N., Tronholm A., Salvador-Reyes L. A., Luesch H., Paul V. J., Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. J. Phycol. 51, 670–681 (2015). PubMed PMC
Leão T., et al. , A multi-omics characterization of the natural product potential of tropical filamentous marine cyanobacteria. Mar. Drugs 19, 20 (2021). PubMed PMC
Maderna A., Leverett C. A., Recent advances in the development of new auristatins: Structural modifications and application in antibody drug conjugates. Mol. Pharmaceut. 12, 1798–1812 (2015). PubMed
Johansson M. P., Maaheimo H., Ekholm F. S., New insight on the structural features of the cytotoxic auristatins MMAE and MMAF revealed by combined NMR spectroscopy and quantum chemical modelling. Sci. Rep. 7, 15920 (2017). PubMed PMC
Nothias L.-F., et al. , Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020). PubMed PMC
Singh S. B., Discovery and development of dolastatin 10-derived antibody drug conjugate anticancer drugs. J. Nat. Prod. 85, 666–687 (2022). PubMed
Doronina S. O., et al. , Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778–784 (2003). PubMed
Doronina S. O., et al. , Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: Effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 17, 114–124 (2006). PubMed
Moquist P. N., et al. , Novel auristatins with high bystander and cytotoxic activities in drug efflux-positive tumor models. Mol. Cancer Ther. 20, 320–328 (2021). PubMed
Miyazaki K., et al. , Synthesis and antitumor activity of novel dolastatin 10 analogs. Chem. Pharm. Bull. 43, 1706–1718 (1995). PubMed
Poncet J., et al. , Synthesis and biological activity of chimeric structures derived from the cytotoxic natural compounds dolastatin 10 and dolastatin 15. J. Med. Chem. 41, 1524–1530 (1998). PubMed
Pettit G. R., et al. , Antineoplastic agents 365. Dolastatin 10 SAR probes. Anticancer Drug Des. 13, 243–277 (1998). PubMed
Zubovych I., Doundoulakis T., Harran P. G., Roth M. G., A missense mutation in Caenorhabditis elegans prohibitin 2 confers an atypical multidrug resistance. Proc. Natl. Acad. Sci. U.S.A. 103, 15523–15528 (2006). PubMed PMC
Traitcheva N., Jenke-Kodama H., He J., Dittmann E., Hertweck C., Non-colinear polyketide biosynthesis in the aureothin and neoaureothin pathways: An evolutionary perspective. Chembiochem 8, 1841–1849 (2007). PubMed
Mareš J., et al. , Alternative biosynthetic starter units enhance the structural diversity of cyanobacterial lipopeptides. Appl. Environ. Microbiol. 85, e02675-18 (2019). PubMed PMC
Moss N. A., et al. , Nature’s combinatorial biosynthesis produces vatiamides A-F. Angew. Chem. Int. Ed. Engl. 58, 9027–9031 (2019). PubMed PMC
Eusébio N., et al. , Discovery and heterologous expression of microginins from Microcystis aeruginosa LEGE 91341. ACS Synth. Biol. 11, 3493–3503 (2022). PubMed PMC
Moldenhauer J., Chen X.-H., Borriss R., Piel J., Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew. Chem. Int. Ed. Engl. 46, 8195–8197 (2007). PubMed
Little R. F., Hertweck C., Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat. Prod. Rep. 39, 163–205 (2021). PubMed
Young J., et al. , Elucidation of gephyronic acid biosynthetic pathway revealed unexpected SAM-dependent methylations. J. Nat. Prod. 76, 2269–2276 (2013). PubMed
Ratnayake R., et al. , Dolastatin 15 from a marine cyanobacterium suppresses HIF-1α mediated cancer cell viability and vascularization. ChemBioChem 21, 2356–2366 (2020), 10.1002/cbic.202000180. PubMed DOI PMC
Luesch H., Harrigan G. G., Goetz G., Horgen F. D., The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr. Med. Chem. 9, 1791–1806 (2002). PubMed
Luesch H., et al. , Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J. Nat. Prod. 65, 16–20 (2002). PubMed
Lassiter G., et al. , Belantamab mafodotin to treat multiple myeloma: A comprehensive review of disease, drug efficacy and side effects. Curr. Oncol. 28, 640–660 (2021). PubMed PMC
Ansari M. Z., Sharma J., Gokhale R. S., Mohanty D., In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites. BMC Bioinform. 9, 454 (2008). PubMed PMC
Mareš J., et al. , Aetokthonos hydrillicola Thurmond2011, whole genome shotgun sequencing project. NCBI GenBank. https://www.ncbi.nlm.nih.gov/nuccore/JAALHA000000000.2. Deposited 24 June 2022.
Schwark M., Niedermeyer T. H. J., Analytical data of Aetokthonostatins. Figshare. 10.6084/m9.figshare.22578616.v1. Deposited 3 September 2023. DOI