Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
EPA999999
Intramural EPA - United States
R01 NS090645
NINDS NIH HHS - United States
PubMed
33766860
PubMed Central
PMC8318203
DOI
10.1126/science.aax9050
PII: 371/6536/eaax9050
Knihovny.cz E-zdroje
- MeSH
- Accipitridae * MeSH
- bakteriální geny MeSH
- bakteriální toxiny biosyntéza chemie izolace a purifikace toxicita MeSH
- brom analýza MeSH
- bromidy metabolismus MeSH
- Caenorhabditis elegans účinky léků MeSH
- dánio pruhované MeSH
- demyelinizační nemoci chemicky indukované veterinární MeSH
- Hydrocharitaceae metabolismus mikrobiologie MeSH
- indolové alkaloidy chemie izolace a purifikace toxicita MeSH
- kur domácí MeSH
- LD50 MeSH
- multigenová rodina MeSH
- nemoci ptáků chemicky indukované MeSH
- neurotoxiny biosyntéza chemie izolace a purifikace toxicita MeSH
- sinice * genetika růst a vývoj metabolismus MeSH
- tryptofan metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- jihovýchod USA MeSH
- Názvy látek
- bakteriální toxiny MeSH
- brom MeSH
- bromidy MeSH
- indolové alkaloidy MeSH
- neurotoxiny MeSH
- tryptofan MeSH
Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production.
Centre Algatech Institute of Microbiology of the Czech Academy of Sciences Třeboň Czech Republic
Cyano Biotech GmbH Berlin Germany
Department of Cellular Biology University of Georgia Athens GA USA
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Horticulture Department University of Georgia Athens GA USA
Institute of Chemistry Martin Luther University Halle Wittenberg Halle Germany
Institute of Pharmacy Martin Luther University Halle Wittenberg Halle Germany
Leibniz Forschungsinstitut für Molekulare Pharmakologie Berlin Germany
Max Planck Institute for Marine Microbiology Bremen Germany
Warnell School of Forestry and Natural Resources University of Georgia Athens GA USA
Zobrazit více v PubMed
Thomas NJ, Meteyer CU, Sileo L, Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana). Vet. Pathol 35, 479–487 (1998). doi:10.1177/030098589803500602 PubMed DOI
Larsen RS, Nutter FB, Augspurger T, Rocke TE, Tomlinson L, Thomas NJ, Stoskopf MK, Clinical features of avian vacuolar myelinopathy in American coots. J. Am. Vet. Med. Assoc 221, 80–85 (2002). doi:10.2460/javma.2002.221.80 PubMed DOI
Fischer JR, Lewis-Weis LA, Tate CM, Gaydos JK, Gerhold RW, Poppenga RH, Avian vacuolar myelinopathy outbreaks at a southeastern reservoir. J. Wildl. Dis 42, 501–510 (2006). doi:10.7589/0090-3558-42.3.501 PubMed DOI
Rocke TE, Thomas NJ, Augspurger T, Miller K, Epizootiologic studies of avian vacuolar myelinopathy in waterbirds. J. Wildl. Dis 38, 678–684 (2002). doi:10.7589/0090-3558-38.4.678 PubMed DOI
Fischer JR, Lewis LA, Augspurger T, Rocke TE, “Avian vacuolar myelinopathy: A newly recognized fatal neurological disease of eagles, waterfowl, and other birds,” in Transactions of the 67th North American Wildlife and Natural Resources Conference (US Fish and Wildlife Publications, 2002), pp. 51–61.
Augspurger T, Fischer JR, Thomas NJ, Sileo L, Brannian RE, Miller KJ, Rocke TE, Vacuolar myelinopathy in waterfowl from a North Carolina impoundment. J. Wildl. Dis 39, 412–417 (2003). doi:10.7589/0090-3558-39.2.412 PubMed DOI
Fischer JR, Lewis-Weis LA, Tate CM, Experimental vacuolar myelinopathy in red-tailed hawks. J. Wildl. Dis 39, 400–406 (2003). doi:10.7589/0090-3558-39.2.400 PubMed DOI
Bryan AL Jr., Murphy TM, Bildstein KL, Brisbin IL Jr., Mayer JJ, in Raptors in Human Landscapes: Adaptation to Built and Cultivated Environments, Bird DM, Varland DE, Negro JJ, Eds. (Academic Press, 1996), pp. 285–298.
Birrenkott AH, Wilde SB, Hains JJ, Fischer JR, Murphy TM, Hope CP, Parnell PG, Bowerman WW, Establishing a food-chain link between aquatic plant material and avian vacuolar myelinopathy in mallards (Anas platyrhynchos). J. Wildl. Dis 40, 485–492 (2004). doi:10.7589/0090-3558-40.3.485 PubMed DOI
Haram BN, Wilde SB, Chamberlain MJ, Boyd KH, Vacuolar myelinopathy: Waterbird risk on a southeastern impoundment co-infested with Hydrilla verticillata and Aetokthonos hydrillicola. Biol. Invasions 22, 2651–2660 (2020). doi:10.1007/s10530-020-02282-w DOI
Dorman DC, Zachary JF, Buck WB, Neuropathologic findings of bromethalin toxicosis in the cat. Vet. Pathol 29, 139–144 (1992). doi:10.1177/030098589202900206 PubMed DOI
Dodder NG, Strandberg B, Augspurger T, Hites RA, Lipophilic organic compounds in lake sediment and American coot (Fulica americana) tissues, both affected and unaffected by avian vacuolar myelinopathy. Sci. Total Environ 311, 81–89 (2003). doi:10.1016/S0048-9697(02)00682-4 PubMed DOI
Larsen RS, Nutter FB, Augspurger T, Rocke TE, Thomas NJ, Stoskopf MK, Failure to transmit avian vacuolar myelinopathy to mallard ducks. J. Wildl. Dis 39, 707–711 (2003). doi:10.7589/0090-3558-39.3.707 PubMed DOI
Rocke TE, Thomas NJ, Meteyer CU, Quist CF, Fischer JR, Augspurger T, Ward SE, Attempts to identify the source of avian vacuolar myelinopathy for waterbirds. J. Wildl. Dis 41, 163–170 (2005). doi:10.7589/0090-3558-41.1.163 PubMed DOI
Lewis-Weis LA, Gerhold RW, Fischer JR, Attempts to reproduce vacuolar myelinopathy in domestic swine and chickens. J. Wildl. Dis 40, 476–484 (2004). doi:10.7589/0090-3558-40.3.476 PubMed DOI
Wilde SB, Murphy TM, Hope CP, Habrun SK, Kempton J, Birrenkott A, Wiley F, Bowerman WW, Lewitus AJ, Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacterial species. Environ. Toxicol 20, 348–353 (2005). doi:10.1002/tox.20111 PubMed DOI
Wilde SB, Johansen JR, Wilde HD, Jiang P, Bartelme B, Haynie RS, Aetokthonos hydrillicola gen. et sp. nov.: Epiphytic cyanobacteria on invasive aquatic plants implicated in Avian Vacuolar Myelinopathy. Phytotaxa 181, 243–260 (2014). doi:10.11646/phytotaxa.181.5.1 DOI
Williams SK, Kempton J, Wilde SB, Lewitus A, A novel epiphytic cyanobacterium associated with reservoirs affected by avian vacuolar myelinopathy. Harmful Algae 6, 343–353 (2007). doi:10.1016/j.hal.2006.07.005 DOI
Wiley FE, Wilde SB, Birrenkott AH, Williams SK, Murphy TM, Hope CP, Bowerman WW, Fischer JR, Investigation of the link between avian vacuolar myelinopathy and a novel species of cyanobacteria through laboratory feeding trials. J. Wildl. Dis 43, 337–344 (2007). doi:10.7589/0090-3558-43.3.337 PubMed DOI
Wiley FE, Twiner MJ, Leighfield TA, Wilde SB, Van Dolah FM, Fischer JR, Bowerman WW, An extract of Hydrilla verticillata and associated epiphytes induces avian vacuolar myelinopathy in laboratory mallards. Environ. Toxicol 24, 362–368 (2009). doi:10.1002/tox.20424 PubMed DOI
Haynie RS, Bowerman WW, Williams SK, Morrison JR, Grizzle JM, Fischer JM, Wilde SB, Triploid grass carp susceptibility and potential for disease transfer when used to control aquatic vegetation in reservoirs with avian vacuolar myelinopathy. J. Aquat. Anim. Health 25, 252–259 (2013). doi:10.1080/08997659.2013.833556 PubMed DOI
Mercurio AD, Hernandez SM, Maerz JC, Yabsley MJ, Ellis AE, Coleman AL, Shelnutt LM, Fischer JR, Wilde SB, Experimental feeding of Hydrilla verticillata colonized by stigonematales cyanobacteria induces vacuolar myelinopathy in painted turtles (Chrysemys picta). PLOS ONE 9, e93295 (2014). doi:10.1371/journal.pone.0093295 PubMed DOI PMC
Maerz JC, Wilde SB, Terrell VK, Haram B, Trimmer RC, Nunez C, Cork E, Pessier A, Lannoo S, Lannoo MJ, Diamond SL, Seasonal and plant specific vulnerability of amphibian tadpoles to the invasion of a novel cyanobacteria. Biol. Invasions 21, 821–831 (2019). doi:10.1007/s10530-018-1861-6 DOI
Dodd SR, Haynie RS, Williams SM, Wilde SB, Alternate food-chain transfer of the toxin linked to Avian Vacuolar Myelinopathy and implications for the endangered florida snail kite (Rostrhamus sociabilis). J. Wildl. Dis 52, 335–344 (2016). doi:10.7589/2015-03-061 PubMed DOI
Chorus I, Bartram J, Eds., Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management (E. & F.N. Spon, 1999).
Nunnery JK, Mevers E, Gerwick WH, Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol 21, 787–793 (2010). doi:10.1016/j.copbio.2010.09.019 PubMed DOI PMC
Hudnell HK, Ed., Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs (Springer, ed. 1, 2008).
Tidgewell K, Clark BR, Gerwick WH, in Comprehensive Natural Products II: Chemistry and Biology, Mander L, Liu H-W, Eds. (Elsevier, 2010), pp. 141–188.
Niedermeyer T, Brönstrup M, in Microalgal Biotechnology: Integration and Economy, Posten C, Walter C, Eds. (de Gruyter, 2012), pp. 169–200.
Van Sant F, Hassan SM, Reavill D, McManamon R, Howerth EW, Seguel M, Bauer R, Loftis KM, Gregory CR, Ciembor PG, Ritchie BW, Evidence of bromethalin toxicosis in feral San Francisco “Telegraph Hill” conures. PLOS ONE 14, e0213248 (2019). doi:10.1371/journal.pone.0213248 PubMed DOI PMC
Gribble GW, The natural production of organobromine compounds. Environ. Sci. Pollut. Res 7, 37–47 (2000). doi:10.1065/espr199910.002 PubMed DOI
Yanagisawa I, Yoshikawa H, A bromine compound isolated from human cerebrospinal fluid. Biochim. Biophys. Acta 329, 283–294 (1973). doi:10.1016/0304-4165(73)90293-6 PubMed DOI
Faulkner DJ, Marine natural products. Nat. Prod. Rep 18, 1–49 (2001). doi:10.1039/b006897g PubMed DOI
Gribble GW, Occurrence of halogenated alkaloids. Alkaloids Chem. Biol 71, 1–165 (2012). doi:10.1016/B978-0-12-398282-7.00001-1 PubMed DOI
Friedländer P, Über den Farbstoff des antiken Purpurs aus murex brandaris. Ber. Dtsch. Chem. Ges 42, 765–770 (1909). doi:10.1002/cber.190904201122 DOI
Gribble GW, Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar. Drugs 13, 4044–4136 (2015). doi:10.3390/md13074044 PubMed DOI PMC
Weigel S, Bester K, Hühnerfuss H, Identification and quantification of pesticides, industrial chemicals, and organobromine compounds of medium to high polarity in the North Sea. Mar. Pollut. Bull 50, 252–263 (2005). doi:10.1016/j.marpolbul.2004.10.011 PubMed DOI
Fielman KT, Woodin SA, Lincoln DE, Polychaete indicator species as a source of natural halogenated organic compounds in marine sediments. Environ. Toxicol. Chem 20, 738–747 (2001). doi:10.1002/etc.5620200407 PubMed DOI
Reineke N, Biselli S, Franke S, Francke W, Heinzel N, Hühnerfuss H, Iznaguen H, Kammann U, Theobald N, Vobach M, Wosniok W, Brominated indoles and phenols in marine sediment and water extracts from the north and baltic seas-concentrations and effects. Arch. Environ. Contam. Toxicol 51, 186–196 (2006). doi:10.1007/s00244-005-0135-3 PubMed DOI
Sridevi KV, Venkatesham U, VijenderReddy A, Venkateswarlu Y, Chemical constituents of the red alga Nitophyllum marginata. Biochem. Syst. Ecol 31, 335–337 (2003). doi:10.1016/S0305-1978(02)00160-6 DOI
Rahelivao MP, Gruner M, Andriamanantoanina H, Andriamihaja B, Bauer I, Knölker H-J, Red Algae (Rhodophyta) from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products. Mar. Drugs 13, 4197–4216 (2015). doi:10.3390/md13074197 PubMed DOI PMC
Norton RS, Wells RJ, A series of chiral polybrominated biindoles from the marine blue-green alga Rivularia firma. Application of carbon-13 NMR spin-lattice relaxation data and carbon-13-proton coupling constants to structure elucidation. J. Am. Chem. Soc 104, 3628–3635 (1982). doi:10.1021/ja00377a014 DOI
Fu X, Schmitz FJ, Tanner RS, Chemical constituents of halophilic facultatively anaerobic bacteria, 1. J. Nat. Prod 58, 1950–1954 (1995). doi:10.1021/np50126a026 PubMed DOI
Snell EE, in Advances in Enzymology and Related Areas of Molecular Biology, Meister A, Ed. (Wiley, 2006), pp. 287–333. PubMed
Cadel-Six S, Dauga C, Castets AM, Rippka R, Bouchier C, Tandeau de Marsac N, Welker M, Halogenase genes in nonribosomal peptide synthetase gene clusters of Microcystis (cyanobacteria): Sporadic distribution and evolution. Mol. Biol. Evol 25, 2031–2041 (2008). doi:10.1093/molbev/msn150 PubMed DOI PMC
Moss NA, Seiler G, Leão TF, Castro-Falcón G, Gerwick L, Hughes CC, Gerwick WH, Nature’s Combinatorial Biosynthesis Produces Vatiamides A-F. Angew. Chem. Int. Ed 58, 9027–9031 (2019). doi:10.1002/anie.201902571 PubMed DOI PMC
Olano C, Moss SJ, Braña AF, Sheridan RM, Math V, Weston AJ, Méndez C, Leadlay PF, Wilkinson B, Salas JA, Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: Insights into nitrile formation. Mol. Microbiol 52, 1745–1756 (2004). doi:10.1111/j.1365-2958.2004.04090.x PubMed DOI
Fouts KL, Poudyal NC, Moore R, Herrin J, Wilde SB, Informed stakeholder support for managing invasive Hydrilla verticillata linked to wildlife deaths in a Southeastern reservoir. Lake Reserv. Manage 33, 260–269 (2017). doi:10.1080/10402381.2017.1334017 DOI
Weber MA, Wainger LA, Harms NE, Nesslage GM, The economic value of research in managing invasive hydrilla in Florida public lakes. Lake Reserv. Manage 644, 1–14 (2020). doi:10.1080/10402381.2020.1824047 DOI
Niedermeyer T, Breinlinger S, Analytical Data of Aetokthonotoxin, Figshare; (2021); .doi:10.6084/m9.figshare.12098304.v1 DOI
Sheldrick GM, A short history of SHELX. Acta Cryst. A64, 112–122 (2008). doi:10.1107/S0108767307043930 PubMed DOI
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst 42, 339–341 (2009). doi:10.1107/S0021889808042726 DOI
Bergerhoff G, Berndt M, Brandenburg K, Evaluation of Crystallographic Data with the Program DIAMOND. J. Res. Natl. Inst. Stand. Technol 101, 221–225 (1996). doi:10.6028/jres.101.023 PubMed DOI PMC
U.S. Geological Survey, Specimen observation data for Hydrilla verticillata (L.f.) Royle, Nonindigenous Aquatic Species Database (2020); https://nas.er.usgs.gov/viewer/omap.aspx?SpeciesID=6.
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY, Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol 111, 1–61 (1979). doi:10.1099/00221287-111-1-1 DOI
Leopold J, Popkova Y, Engel KM, Schiller J, Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules 8, 173 (2018). doi:10.3390/biom8040173 PubMed DOI PMC
Race AM, Palmer AD, Dexter A, Steven RT, Styles IB, Bunch J, SpectralAnalysis: Software for the Masses. Anal. Chem 88, 9451–9458 (2016). doi:10.1021/acs.analchem.6b01643 PubMed DOI
Lorenz CK, OnTopReplica, version 3.5.1, Github; (2019); https://github.com/LorenzCK/OnTopReplica.
Niedermeyer THJ, Strohalm M, mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLOS ONE 7, e44913 (2012). doi:10.1371/journal.pone.0044913 PubMed DOI PMC
Pashkova GV, Aisueva TS, Finkelshtein AL, Ivanov EV, Shchetnikov AA, Analytical approaches for determination of bromine in sediment core samples by X-ray fluorescence spectrometry. Talanta 160, 375–380 (2016). doi:10.1016/j.talanta.2016.07.059 PubMed DOI
Pfaff JD, “Determination of Inorganic Anions by Ion Chromatography” (Method 300.0, Rev. 2.1, U.S. Environmental Protection Agency, 1993).
Nyiredy S, Erdelmeier CAJ, Meier B, Sticher O, „PRISMA”: Ein Modell zur Optimierung der mobilen Phase für die Dünnschichtchromatographie, vorgestellt anhand verschiedener Naturstofftrennungen. Planta Med. 51, 241–246 (1985). doi:10.1055/s-2007-969468 DOI
Piantini U, Sorensen OW, Ernst RR, Multiple quantum filters for elucidating NMR coupling networks. J. Am. Chem. Soc 104, 6800–6801 (1982). doi:10.1021/ja00388a062 DOI
Bax A, Griffey RH, Hawkins BL, Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson 55, 301–315 (1983). doi:10.1016/0022-2364(83)90241-X DOI
Lerner L, Bax A, Sensitivity-enhanced two-dimensional heteronuclear relayed coherence transfer NMR spectroscopy. J. Magn. Reson 69, 375–380 (1986). doi:10.1016/0022-2364(86)90091-0 DOI
Bax A, Subramanian S, Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy. J. Magn. Reson 67, 565–569 (1986). doi:10.1016/0022-2364(86)90395-1 DOI
Bax A, Summers MF, Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc 108, 2093–2094 (1986). doi:10.1021/ja00268a061 DOI
Cicero DO, Barbato G, Bazzo R, Sensitivity enhancement of a two-dimensional experiment for the measurement of heteronuclear long-range coupling constants, by a new scheme of coherence selection by gradients. J. Magn. Reson 148, 209–213 (2001). doi:10.1006/jmre.2000.2234 PubMed DOI
Bax A, Freeman R, Kempsell SP, Natural abundance carbon-13-carbon-13 coupling observed via double-quantum coherence. J. Am. Chem. Soc 102, 4849–4851 (1980). doi:10.1021/ja00534a056 DOI
Jeener J, Meier BH, Bachmann P, Ernst RR, Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys 71, 4546–4553 (1979). doi:10.1063/1.438208 DOI
Zapomělová E, Řeháková K, Znachor P, Komárková J, Morphological diversity of coiled planktonic types of the genus Anabaena (cyanobacteria) in natural populations – Taxonomic consequences. Cryptogamie Algol. 28, 353–371 (2007).
Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A, Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): A morphological and molecular approach. Appl. Environ. Microbiol 69, 5157–5169 (2003). doi:10.1128/AEM.69.9.5157-5169.2003 PubMed DOI PMC
Bushnell B, BBTools, 38.79 (2014); https://sourceforge.net/projects/bbmap.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA, SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol 19, 455–477 (2012). doi:10.1089/cmb.2012.0021 PubMed DOI PMC
Seemann T, Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014). doi:10.1093/bioinformatics/btu153 PubMed DOI
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM, BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). doi:10.1093/bioinformatics/btv351 PubMed DOI
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y, The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 12, 7–8 (2015). doi:10.1038/nmeth.3213 PubMed DOI PMC
Ku S-Y, Yip P, Howell PL, Structure of Escherichia coli tryptophanase. Acta Cryst. D62, 814–823 (2006). doi:10.1107/S0907444906019895 PubMed DOI
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem 25, 1605–1612 (2004). doi:10.1002/jcc.20084 PubMed DOI
Bučinská L, Kiss É, Koník P, Knoppová J, Komenda J, Sobotka R, The Ribosome-Bound Protein Pam68 Promotes Insertion of Chlorophyll into the CP47 Subunit of Photosystem II. Plant Physiol. 176, 2931–2942 (2018). doi:10.1104/pp.18.00061 PubMed DOI PMC
Moritzer A-C, Minges H, Prior T, Frese M, Sewald N, Niemann HH, Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. J. Biol. Chem 294, 2529–2542 (2019). doi:10.1074/jbc.RA118.005393 PubMed DOI PMC
Westerfield M, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (Univ. of Oregon Press, ed. 5, 2007).
The AVMA Panel on Euthanasia, “AVMA Guidelines for the Euthanasia of Animals: 2020 Edition” (American Veterinary Medical Association, 2020).
Brenner S, The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974). doi:10.1093/genetics/77.1.71 PubMed DOI PMC
Stiernagle T, Maintenance of C. elegans. WormBook 2006, 1–11 (2006). doi:10.1895/wormbook.1.101.1 PubMed DOI PMC
Hunt PR, The C. elegans model in toxicity testing. J. Appl. Toxicol 37, 50–59 (2017). doi:10.1002/jat.3357 PubMed DOI PMC
Xiong H, Pears C, Woollard A, An enhanced C. elegans based platform for toxicity assessment. Sci. Rep 7, 9839 (2017). doi:10.1038/s41598-017-10454-3 PubMed DOI PMC
Peixoto H, Roxo M, Krstin S, Röhrig T, Richling E, Wink M, An Anthocyanin-Rich Extract of Acai (Euterpe precatoria Mart.) Increases Stress Resistance and Retards Aging-Related Markers in Caenorhabditis elegans. J. Agric. Food Chem 64, 1283–1290 (2016). doi:10.1021/acs.jafc.5b05812 PubMed DOI
U.S. Environmental Protection Agency (EPA), “Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms” (Document EPA-821-R-02-012, EPA, 2002).
Berger S, Braun S, Kalinowski H-O, Becconsall J, NMR Spectroscopy of the Non-Metallic Elements (Wiley, 1997).
Ramiro A-M, Hernán P-M, Boris W-L, Very Long-Range Correlations (nJC,H n > 3) in HMBC Spectra. Nat. Prod. Commun 3, 1934578X0800300321 (2008). doi:10.1177/1934578X0800300321 DOI
Bain AD, Hughes DW, Anand CK, Nie Z, Robertson VJ, Problems, artifacts and solutions in the INADEQUATE NMR experiment. Magn. Reson. Chem 48, 630–641 (2010). doi:10.1002/mrc.2639 PubMed DOI
Phillips T, thesis, University of Georgia; (2018).
Haram BN, thesis, University of Georgia; (2016).
Occurrence of aetokthonotoxin producer in natural samples - A PCR protocol for easy detection
figshare
10.6084/m9.figshare.12098304.v1