Molecular characterization of two cyanobacterial generitypes from their type localities in Scandinavia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
15-11912S
Grantová Agentura České Republiky
22-06374S
Grantová Agentura České Republiky
PubMed
39739453
PubMed Central
PMC11914952
DOI
10.1111/jpy.13532
Knihovny.cz E-zdroje
- Klíčová slova
- Capsosira brebissonii, Paracapsa siderophila, Stigonema mamillosum, 16S rRNA gene, 16S–23S ITS, avian vacuolar myelinopathy, cyanobacteria, generitypes, type locality,
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- RNA ribozomální 16S genetika analýza MeSH
- sekvenční analýza DNA MeSH
- sinice * genetika klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Skandinávie a severské státy MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
Over 400 cyanobacterial genera have been described up to the present. Since the Cambridge Rules (https://www.iapt-taxon.org/historic/1935.htm: Rendle 1935), a type species (generitype) must be specified at the time of description for a new genus to be validly described. Even though we have entered a time in which sequencing has become practical and widespread, the basic molecular characterization (e.g., 16S rRNA gene sequence) of most cyanobacterial generitypes is still lacking. About 15 cyanobacterial genera were originally described from Scandinavia. Following a field excursion in which the type or syntype localities for the type species of these genera were visited and sampled, we succeeded in finding three type species from their type or syntype localities: Capsosira brebissonii, Stigonema mamillosum, and Paracapsa siderophila. Epitypes for all three generitypes are herein established. Cells or filaments of C. brebissonii and S. mamillosum were isolated and used for single-cell/filament PCR amplification of the 16S rRNA gene and subsequent cloning and sequencing of the PCR amplicons. This allows a firm establishment of reference sequences of these two genera, to which morphologically similar taxa can now be compared. Stigonema and Capsosira are shown herein to be sister to Aetokthonos hydrillicola, a cyanobacterium known to cause avian vacuolar myelinopathy in birds, including bald eagles.
Department of Biology John Carroll University University Heights Ohio USA
Faculty of Science Department of Botany University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Bornet, E. , & Flahault, C. (1886). Revision des Nostocacées heterocystées. Annales Des Sciences Naturelles, Botanique, Septième Series, 3, 323–381,
Boyer, S. L. , Johansen, J. R. , Flechtner, V. R. , & Howard, G. L. (2002). Phylogeny and genetic variance in terrestrial
Breinlinger, S. , Phillips, T. J. , Haram, B. N. , Mareš, J. , Martínez Yerena, J. A. , Hrouzek, P. , Sobotka, R. , Henderson, W. M. , Schmieder, P. , Williams, S. M. , Lauderdale, J. D. , Wilde, H. D. , Gerrin, W. , Kust, A. , Washington, J. W. , Wagner, C. , Geier, B. , Liebeke, M. , Enke, H. , & Wilde, S. B. (2021). Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science, 371(6536), 1335–1342. PubMed PMC
Casamatta, D. A. , Gomez, S. R. , & Johansen, J. R. (2006).
Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. PubMed PMC
Drouet, F. (1981). Revision of the Stigonemataceae. Nova Hedwigia, Beiheft, 66, 1–221.
Drouet, F. , & Daily, W. (1952). A synopsis of coccoid myxophyceae. Butler University Botanical Studies, 10(11/23), 220–223.
Drummond, A. J. , Ho, S. Y. W. , Phillips, M. J. , & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88. 10.1371/journal.pbio.0040088 PubMed DOI PMC
Dvořák, P. , Jahodářová, E. , Casamatta, D. , Hašler, P. , & Poulíčková, A. (2018). Difference without distinction? Gaps in cyanobacterial systematics; when more is just too much. Fottea, 18, 130–136.
Gelman, A. , & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 157–511. 10.1214/ss/1177011136 DOI
González‐Resendiz, L. , Johansen, J. R. , León‐Tejera, H. , Sánchez, L. , Segal‐Kischinevzky, C. , Escobar‐Sánchez, V. , & Morales, M. (2019). A bridge too far in naming species: A total evidence approach does not support recognition of four species in PubMed
Guiry, M. D. (2024). Nomenclatural FAQs . Notulae Algarum. https://www.notulaealgarum.com/nomenclature/index.html
Guiry, M. D. , & Guiry, G. M. (2024). AlgaeBase . World‐wide electronic publication, University of Galway. http://www.algaebase.org
Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hauerová, R. , Hauer, T. , Kaštovský, J. , Lepšová‐Skácelová, O. , & Mareš, J. (2021). PubMed
Hentschke, G. S. , Rigonato, J. , Genuário, D. B. , Laughinghouse, H. D. , & Sant'Anna, C. L. (2019). Morphological and molecular characterization of
Johansen, J. R. , Bohunická, M. , Lukešová, A. , Hrčková, K. , Vaccarino, M. A. , & Chesarino, N. M. (2014). Morphological and molecular characterization within 26 strains of the genus PubMed
Johansen, J. R. , & Casamatta, D. A. (2005). Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies, 117, 71–93.
Johansen, J. R. , Kováčik, L. , Casamatta, D. A. , Fučíková, K. , & Kaštovský, J. (2011). Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa:
Johansen, J. R. , Mareš, J. , Pietrasiak, N. , Bohunická, M. , Zima, J., Jr. , Štenclová, L. , & Hauer, T. (2017). Highly divergent 16S rRNA sequences in ribosomal operons of PubMed PMC
Jung, P. , Mikhailyuk, T. , Emrich, D. , Baumann, K. , Dultz, S. , & Büdel, B. (2020). Shifting boundaries: Ecological and geographical range extension based on three new species in the cyanobacterial genera PubMed
Katoh, K. , Rozewicki, J. , & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166. PubMed PMC
Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia, 639, 245–259.
Komárek, J. (2013).
Komárek, J. (2016). Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: State as of 2014. Hydrobiologia, 764, 259–270.
Komárek, J. , & Anagnostidis, K. (1988). Cyanoprokaryota: Part 1. Chroococcales. D. Mollenha (Eds.), Süsswasserflora v. Springer Verlag.
Komárek, J. , Kaštovský, J. , Mareš, J. , & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86, 295–335.
Lasken, R. S. (2009). Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochemical Society Transactions, 37, 450–453. PubMed
Lundquist, G. (1924). Utvecklingshistoriska insjöstudier i sydsverige. Sveriges Geologiska Undersökning, Årsbok, 18, 129 pp + 3 plates.
Malone, C. F. d. S. , Rigonato, J. , Laughinghouse, H. D. , Schmidt, E. C. , Bouzon, Z. L. , Wilmotte, A. , Fiore, M. F. , & Sant'Anna, C. L. (2015). PubMed
Mareš, J. , Lara, Y. , Dadakova, I. , Hauer, T. , Uher, B. , Wilmotte, A. , & Kaštovský, J. (2015). Phylogenetic analysis of cultivation‐resistant terrestrial cyanobacteria with massive sheaths ( PubMed
Miller, M. A. , Pfeiffer, W. , & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In DOI
Mühlsteinová, R. , Hauer, T. , De Lay, P. , & Petrasiak, N. (2018). Seeking the true
Naumann, E. (1924). Über
Nowruzi, B. , & Shalygin, S. (2021). Multiple phylogenies reveal a true taxonomic position of
Osorio‐Santos, K. , Pietrasiak, N. , Bohunická, M. , Miscoe, L. H. , Kováčik, L. , Martin, M. P. , & Johansen, J. R. (2014). Seven new species of
Palińska, K. , & Surosz, W. (2014). Taxonomy of cyanobacteria: A contribution to consensus approach. Hydrobiologia, 740, 1–11.
Patova, E. N. , Shadrin, D. M. , Shalygin, S. S. , & Novakovskaya, I. V. (2023).
Perkerson, R. B., III , Johansen, J. R. , Kováčik, L. , Brand, J. , Kaštovský, J. , & Casamatta, D. A. (2011). A unique Pseudanabaenalean (Cyanobacteria) genus PubMed
Pietrasiak, N. , Osorio‐Santos, K. , Shalygin, S. , Martin, M. P. , & Johansen, J. R. (2019). When is a lineage a species? A case study in PubMed
Pokorný, J. , Štenclová, L. , & Kaštovský, J. (2023). Unsuspected findings about the phylogeny and ultrastructure of the enigmatic cyanobacterium
Rendle, A. B. (1935). International rules of botanical nomenclature – Cambridge rules . Paul Van Rijckevorsel. https://www.iapt‐taxon.org/historic/1935.htm
Ronquist, F. , Teslenko, M. , van der Mark, P. , Ayres, D. L. , Darling, A. , Hohna, S. , Larget, B. , Liu, L. , Suchard, M. A. , & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. PubMed PMC
Rudi, K. , Skulberg, O. M. , & Jakobsen, K. S. (1998). Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. Journal of Bacteriology, 180(13), 3453–3461. PubMed PMC
Seo, P. S. , & Yokota, A. (2003). The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, PubMed
Shalygin, S. , Kavulic, K. J. , Pietrasiak, N. , Bohunická, M. , Vaccarino, M. A. , Chesarino, N. M. , & Johansen, J. R. (2019). Neotypification of
Song, G. , Xiang, X. , Wang, Z. , & Li, R. (2015). Polyphasic characterization of
Stamatakis, A. (2006). RAxML‐VI‐HPC: Maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. PubMed
Strunecký, O. , Ivanova, A. P. , & Mareš, J. (2022). An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59, 12–51. PubMed
Turland, N. J. , Wiersma, J. H. , Barrie, F. R. , Greuter, W. , Hawksworth, D. L. , Herendeen, P. S. , Knapp, S. , Kusber, W.‐H. , Li, D.‐Z. , Marhold, K. , May, T. W. , McNeill, J. , Monro, A. M. , Prado, J. , Price, M. J. , & Smith, G. F. (Eds.). (2018). DOI
Vázquez‐Martínez, J. , Gutierrez‐Villagomez, J. M. , Fonesca‐García, C. , Ramírez‐Chávez, E. , Mondragón‐Sánchez, M. L. , Partida‐Martínez, L. , Johansen, J. R. , & Molina‐Torres, J. (2018).
Vinogradova, O. , Mikhailyuk, T. , Glaser, K. , Holzinger, A. , & Karsten, U. (2017). New species of
Wilde, S. B. , Johansen, J. R. , Wilde, H. D. , Jiang, P. , Bartelme, B. A. , & Haynie, R. S. (2014).
Zhang, J. , Kapli, P. , Pavlidis, P. , & Stamakatis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. PubMed PMC
Zapomělová, E. , Hisem, D. , Řeháková, K. , Hrouzek, P. , Jezberová, J. , Komarková, J. , Korelusová, J. , & Znachor, P. (2008). Experimental comparison of phenotypical plasticity and growth demands of two strains from the
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. PubMed PMC