Molecular characterization of two cyanobacterial generitypes from their type localities in Scandinavia
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
15-11912S
Grantová Agentura České Republiky
22-06374S
Grantová Agentura České Republiky
PubMed
39739453
PubMed Central
PMC11914952
DOI
10.1111/jpy.13532
Knihovny.cz E-resources
- Keywords
- Capsosira brebissonii, Paracapsa siderophila, Stigonema mamillosum, 16S rRNA gene, 16S–23S ITS, avian vacuolar myelinopathy, cyanobacteria, generitypes, type locality,
- MeSH
- DNA, Bacterial analysis MeSH
- Phylogeny MeSH
- RNA, Ribosomal, 16S * analysis MeSH
- Sequence Analysis, DNA MeSH
- Cyanobacteria * genetics classification MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Scandinavian and Nordic Countries MeSH
- Names of Substances
- DNA, Bacterial MeSH
- RNA, Ribosomal, 16S * MeSH
Over 400 cyanobacterial genera have been described up to the present. Since the Cambridge Rules (https://www.iapt-taxon.org/historic/1935.htm: Rendle 1935), a type species (generitype) must be specified at the time of description for a new genus to be validly described. Even though we have entered a time in which sequencing has become practical and widespread, the basic molecular characterization (e.g., 16S rRNA gene sequence) of most cyanobacterial generitypes is still lacking. About 15 cyanobacterial genera were originally described from Scandinavia. Following a field excursion in which the type or syntype localities for the type species of these genera were visited and sampled, we succeeded in finding three type species from their type or syntype localities: Capsosira brebissonii, Stigonema mamillosum, and Paracapsa siderophila. Epitypes for all three generitypes are herein established. Cells or filaments of C. brebissonii and S. mamillosum were isolated and used for single-cell/filament PCR amplification of the 16S rRNA gene and subsequent cloning and sequencing of the PCR amplicons. This allows a firm establishment of reference sequences of these two genera, to which morphologically similar taxa can now be compared. Stigonema and Capsosira are shown herein to be sister to Aetokthonos hydrillicola, a cyanobacterium known to cause avian vacuolar myelinopathy in birds, including bald eagles.
Department of Biology John Carroll University University Heights Ohio USA
Faculty of Science Department of Botany University of South Bohemia České Budějovice Czech Republic
See more in PubMed
Bornet, E. , & Flahault, C. (1886). Revision des Nostocacées heterocystées. Annales Des Sciences Naturelles, Botanique, Septième Series, 3, 323–381, 4, 343–373, 5, 51–129, 7, 171–262.
Boyer, S. L. , Johansen, J. R. , Flechtner, V. R. , & Howard, G. L. (2002). Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16s rRNA gene and associated 16S‐23S ITS region. Journal of Phycology, 38, 1222–1235.
Breinlinger, S. , Phillips, T. J. , Haram, B. N. , Mareš, J. , Martínez Yerena, J. A. , Hrouzek, P. , Sobotka, R. , Henderson, W. M. , Schmieder, P. , Williams, S. M. , Lauderdale, J. D. , Wilde, H. D. , Gerrin, W. , Kust, A. , Washington, J. W. , Wagner, C. , Geier, B. , Liebeke, M. , Enke, H. , & Wilde, S. B. (2021). Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science, 371(6536), 1335–1342. PubMed PMC
Casamatta, D. A. , Gomez, S. R. , & Johansen, J. R. (2006). Rexia erecta gen. et sp. nov. and Capsosira lowei sp. nov., two newly described cyanobacterial taxa from the Great Smoky Mountains National Park (USA). Hydrobiologia, 561, 13–26.
Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. PubMed PMC
Drouet, F. (1981). Revision of the Stigonemataceae. Nova Hedwigia, Beiheft, 66, 1–221.
Drouet, F. , & Daily, W. (1952). A synopsis of coccoid myxophyceae. Butler University Botanical Studies, 10(11/23), 220–223.
Drummond, A. J. , Ho, S. Y. W. , Phillips, M. J. , & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88. 10.1371/journal.pbio.0040088 PubMed DOI PMC
Dvořák, P. , Jahodářová, E. , Casamatta, D. , Hašler, P. , & Poulíčková, A. (2018). Difference without distinction? Gaps in cyanobacterial systematics; when more is just too much. Fottea, 18, 130–136.
Gelman, A. , & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 157–511. 10.1214/ss/1177011136 DOI
González‐Resendiz, L. , Johansen, J. R. , León‐Tejera, H. , Sánchez, L. , Segal‐Kischinevzky, C. , Escobar‐Sánchez, V. , & Morales, M. (2019). A bridge too far in naming species: A total evidence approach does not support recognition of four species in Desertifilum (cyanobacteria). Journal of Phycology, 55, 898–911. PubMed
Guiry, M. D. (2024). Nomenclatural FAQs . Notulae Algarum. https://www.notulaealgarum.com/nomenclature/index.html
Guiry, M. D. , & Guiry, G. M. (2024). AlgaeBase . World‐wide electronic publication, University of Galway. http://www.algaebase.org
Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hauerová, R. , Hauer, T. , Kaštovský, J. , Lepšová‐Skácelová, O. , & Mareš, J. (2021). Tenebriella gen. nov. – The dark twin of Oscillatoria . Molecular Pylogenetics and Evolution, 165, 107293. PubMed
Hentschke, G. S. , Rigonato, J. , Genuário, D. B. , Laughinghouse, H. D. , & Sant'Anna, C. L. (2019). Morphological and molecular characterization of Stigonema jureiensis sp. nov. (Nostocales, Cyanobacteria) from the Atlantic Rainforest, São Paulo, Brazil. Fottea, 19, 185–190.
Johansen, J. R. , Bohunická, M. , Lukešová, A. , Hrčková, K. , Vaccarino, M. A. , & Chesarino, N. M. (2014). Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nosstocaceae, Cyanobacteria), with descriptions of three new species. Journal of Phycology, 50, 187–202. PubMed
Johansen, J. R. , & Casamatta, D. A. (2005). Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies, 117, 71–93.
Johansen, J. R. , Kováčik, L. , Casamatta, D. A. , Fučíková, K. , & Kaštovský, J. (2011). Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia, 92, 283–302.
Johansen, J. R. , Mareš, J. , Pietrasiak, N. , Bohunická, M. , Zima, J., Jr. , Štenclová, L. , & Hauer, T. (2017). Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (cyanobacteria). PLoS ONE, 12(10), e0186393. PubMed PMC
Jung, P. , Mikhailyuk, T. , Emrich, D. , Baumann, K. , Dultz, S. , & Büdel, B. (2020). Shifting boundaries: Ecological and geographical range extension based on three new species in the cyanobacterial genera Cyanocohniella, Oculatella, and Aliterella . Journal of Phycology, 56, 1216–1231. PubMed
Katoh, K. , Rozewicki, J. , & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166. PubMed PMC
Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia, 639, 245–259.
Komárek, J. (2013). Cyanoprokaryota: Part 3. Heterocytous genera . (pp. 1–1130) Gustav Fischer.
Komárek, J. (2016). Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: State as of 2014. Hydrobiologia, 764, 259–270.
Komárek, J. , & Anagnostidis, K. (1988). Cyanoprokaryota: Part 1. Chroococcales. D. Mollenha (Eds.), Süsswasserflora v. Springer Verlag.
Komárek, J. , Kaštovský, J. , Mareš, J. , & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86, 295–335.
Lasken, R. S. (2009). Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochemical Society Transactions, 37, 450–453. PubMed
Lundquist, G. (1924). Utvecklingshistoriska insjöstudier i sydsverige. Sveriges Geologiska Undersökning, Årsbok, 18, 129 pp + 3 plates.
Malone, C. F. d. S. , Rigonato, J. , Laughinghouse, H. D. , Schmidt, E. C. , Bouzon, Z. L. , Wilmotte, A. , Fiore, M. F. , & Sant'Anna, C. L. (2015). Cephalothrix gen. nov. (Cyanobacteria): Towards an intraspecific phylogenetic evaluation by multilocus analyses. International Journal of Systematic and Evolutionary Microbiology, 65, 2993–3007. PubMed
Mareš, J. , Lara, Y. , Dadakova, I. , Hauer, T. , Uher, B. , Wilmotte, A. , & Kaštovský, J. (2015). Phylogenetic analysis of cultivation‐resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single‐cell and filament sequencing of environmental samples. Journal of Phycology, 51, 288–297. PubMed
Miller, M. A. , Pfeiffer, W. , & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In 2010 gateway computing environments workshop (GCE), 2010 Nov. 14 (pp. 1–8). LEEE. doi: 10.1109/GCE.2010.5676129. DOI
Mühlsteinová, R. , Hauer, T. , De Lay, P. , & Petrasiak, N. (2018). Seeking the true Oscillatoria: A quest for a reliable phylogenetic and taxonomic reference point. Preslia, 90, 151–169.
Naumann, E. (1924). Über Paracapsa siderophila n. g., n. sp. als Ursache einer auffälligen limnischen Eiseninkrustation. Notizen Zur Biologie der Süsswasseralgen, II, 18(21), 1–9.
Nowruzi, B. , & Shalygin, S. (2021). Multiple phylogenies reveal a true taxonomic position of Dulcicalothrix alborzica sp. nov. (Nostocales, cyanobacteria). Fottea, 21, 235–246.
Osorio‐Santos, K. , Pietrasiak, N. , Bohunická, M. , Miscoe, L. H. , Kováčik, L. , Martin, M. P. , & Johansen, J. R. (2014). Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. European Journal of Phycology, 49, 450–470.
Palińska, K. , & Surosz, W. (2014). Taxonomy of cyanobacteria: A contribution to consensus approach. Hydrobiologia, 740, 1–11.
Patova, E. N. , Shadrin, D. M. , Shalygin, S. S. , & Novakovskaya, I. V. (2023). Stigonema lichenoides sp. nov. (Nostocales, Cyanobacteria): A new species isolated from the lichen Ephebe lanata . Novosti Sistematiki Nizshikh Rastenii, 57(2), A15–A31, 4 figs, 3 tables. [in Russian].
Perkerson, R. B., III , Johansen, J. R. , Kováčik, L. , Brand, J. , Kaštovský, J. , & Casamatta, D. A. (2011). A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. Journal of Phycology, 47, 1397–1412. PubMed
Pietrasiak, N. , Osorio‐Santos, K. , Shalygin, S. , Martin, M. P. , & Johansen, J. R. (2019). When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. Journal of Phycology, 55, 976–996. PubMed
Pokorný, J. , Štenclová, L. , & Kaštovský, J. (2023). Unsuspected findings about the phylogeny and ultrastructure of the enigmatic cyanobacterium Microcrocis geminata resulted in its epitypification and novel placement in Geminocystaceae. Fottea, 23(1), 110–121.
Rendle, A. B. (1935). International rules of botanical nomenclature – Cambridge rules . Paul Van Rijckevorsel. https://www.iapt‐taxon.org/historic/1935.htm
Ronquist, F. , Teslenko, M. , van der Mark, P. , Ayres, D. L. , Darling, A. , Hohna, S. , Larget, B. , Liu, L. , Suchard, M. A. , & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. PubMed PMC
Rudi, K. , Skulberg, O. M. , & Jakobsen, K. S. (1998). Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. Journal of Bacteriology, 180(13), 3453–3461. PubMed PMC
Seo, P. S. , & Yokota, A. (2003). The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. Journal of General and Applied Microbiology, 49(3), 191–203. PubMed
Shalygin, S. , Kavulic, K. J. , Pietrasiak, N. , Bohunická, M. , Vaccarino, M. A. , Chesarino, N. M. , & Johansen, J. R. (2019). Neotypification of Pleurocapsa fuliginosa and epityupification of P. minor (Pleurocapsales): Resolving a cyanobacterial genus. Phytotaxa, 392(4), 245–263.
Song, G. , Xiang, X. , Wang, Z. , & Li, R. (2015). Polyphasic characterization of Stigonema dinghuense, sp. nov. (Cyanophyceae, Nostocophycidae, Stigonemaceae), from Dinghu Mountain, south China. Phytotaxa, 213(3), 212–224.
Stamatakis, A. (2006). RAxML‐VI‐HPC: Maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. PubMed
Strunecký, O. , Ivanova, A. P. , & Mareš, J. (2022). An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59, 12–51. PubMed
Turland, N. J. , Wiersma, J. H. , Barrie, F. R. , Greuter, W. , Hawksworth, D. L. , Herendeen, P. S. , Knapp, S. , Kusber, W.‐H. , Li, D.‐Z. , Marhold, K. , May, T. W. , McNeill, J. , Monro, A. M. , Prado, J. , Price, M. J. , & Smith, G. F. (Eds.). (2018). International code of nomenclature for algae, fungi, and plants (Shenzhen code) adopted by the nineteenth international botanical congress Shenzhen, China, July 2017 . Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. 10.12705/Code.2018 DOI
Vázquez‐Martínez, J. , Gutierrez‐Villagomez, J. M. , Fonesca‐García, C. , Ramírez‐Chávez, E. , Mondragón‐Sánchez, M. L. , Partida‐Martínez, L. , Johansen, J. R. , & Molina‐Torres, J. (2018). Nodosilinea chupicuarensis sp. nov. (Leptolyngbyaceae, Synechococcales) a subaerial cyanobacterium isolated from a stone monument in central Mexico. Phytotaxa, 334(2), 167–182.
Vinogradova, O. , Mikhailyuk, T. , Glaser, K. , Holzinger, A. , & Karsten, U. (2017). New species of Ocullatella (Synechococcales, cyanobacteria) from terrestrial habitats of Ukraine. Ukrainian Botanical Journal, 74, 509–520.
Wilde, S. B. , Johansen, J. R. , Wilde, H. D. , Jiang, P. , Bartelme, B. A. , & Haynie, R. S. (2014). Aetokthonos hydrillicola gen. Et sp. nov.: Epiphytic cyanobacteria on invasive aquatic plants implicated in avian vacuolar Myelinopathy. Phytotaxa, 181(5), 243–260.
Zhang, J. , Kapli, P. , Pavlidis, P. , & Stamakatis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. PubMed PMC
Zapomělová, E. , Hisem, D. , Řeháková, K. , Hrouzek, P. , Jezberová, J. , Komarková, J. , Korelusová, J. , & Znachor, P. (2008). Experimental comparison of phenotypical plasticity and growth demands of two strains from the Anabaena circinalis/a. crassa complex (Cyanobacteria). Journal of Plankton Research, 30, 1257–1269.
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. PubMed PMC