Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29073157
PubMed Central
PMC5658200
DOI
10.1371/journal.pone.0186393
PII: PONE-D-17-09873
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA chemie genetika MeSH
- DNA bakterií genetika izolace a purifikace MeSH
- fylogeneze MeSH
- konformace nukleové kyseliny MeSH
- operon * MeSH
- promotorové oblasti (genetika) MeSH
- ribozomy metabolismus MeSH
- RNA ribozomální 16S chemie genetika MeSH
- sinice klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální RNA MeSH
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria) using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%). The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%), and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.
Centre for Phycology Institute of Botany of the CAS v v i Třeboň Czech Republic
Department of Biology John Carroll University University Heights Ohio United States of America
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Hydrobiology Biology Centre of the CAS v v i České Budějovice Czech Republic
Zobrazit více v PubMed
Daubin V, Moran NA, Ochman H. Phylogenetics and the cohesion of bacterial genomes. Science 2003; 301: 829–832. doi: 10.1126/science.1086568 PubMed DOI
Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, et al. Fine-scale phylogenetic architecture of a complex bacterial community. Nature 2004; 430: 551–554. doi: 10.1038/nature02649 PubMed DOI
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Rev Microbiol. 2014; 12: 635–645. PubMed
Boyer S, Flechtner V, Johansen JR. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol. 2001; 18: 1057–69. PubMed
Brown MV, Fuhrman JA. Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol. 2005; 41: 15–23.
Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. Use of 16S rRNA and PubMed DOI PMC
Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe L, Kováčik L, Martin MP, et al. Seven new species of
Pietrasiak N, Mühlsteinová R, Siegesmund MA, Johansen JR. Phylogenetic placement of
Bohunická M, Pietrasiak N, Johansen JR, Berrendero-Gomez E, Hauer T, Gaysina L, et al.
Berrendero-Gómez E, Johansen JR, Kaštovský J, Bohunická M, Čapková K. PubMed DOI
Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010; 76: 3886–3897. doi: 10.1128/AEM.02953-09 PubMed DOI PMC
Sun D, Jiang X, Wu QL, Zhoua N. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol. 2013; 79: 5962–5969. doi: 10.1128/AEM.01282-13 PubMed DOI PMC
Liao D. Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. J Mol Evol. 2000; 51: 305–317. PubMed
Bodilis J, Nsigue-Meilo S, Besuary L, Quillet L. Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in PubMed DOI PMC
Malvaganam S, Dennis PP. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium PubMed PMC
Wang Y, Zhang Z, Ramanan N. The actinomycete PubMed PMC
Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol. 2004; 186: 2629–2635. doi: 10.1128/JB.186.9.2629-2635.2004 PubMed DOI PMC
Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol. 2004; 186: 3980–3990. doi: 10.1128/JB.186.12.3980-3990.2004 PubMed DOI PMC
Michon A, Aujoulat F, Roudière L, Soulier O, Zorgniotti I, Jumas-Bilak E, et al. Intragenomic and intraspecific heterogeneity in rrs may surpass interspecific variability in a natural population of PubMed DOI
Cilia V, Lafay B, Christen R. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol. 1996; 13: 451–461. PubMed
Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M. Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol. 1999; 181: 78–82. PubMed PMC
Moreno C, Romero J, Espejo RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus PubMed DOI
Morandi A, Zhaxybayeva O, Gogarten JP, Graf J. Evolutionary and diagnostic implications of intragenomic heterogeneity in the 16S rRNA gene in PubMed DOI PMC
Yap WH, Zhang Z, Wang Y. Distinct types of rRNA operons exist in the genome of the actinomycete PubMed PMC
Kotai J. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Institute for Water Research, 1972; publication B 11/69, Oslo, Blindern, 5 pp.
Yilmaz M, Phlips EJ & Tillett D. Improved methods for the isolation of cyanobacterial DNA from environmental samples. J Phycol. 2009; 45: 517–521. doi: 10.1111/j.1529-8817.2009.00651.x PubMed DOI
Seo PS, Yokota A. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, PubMed
Rudi K, Skulberg OM, Jakobsen KS. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol. 1998; 180: 3453–3461. PubMed PMC
Roeselers G, Stal LJ, van Loosdrecht MCM, Muyzer G. Development of a PCR for the detection and identification of cyanobacterial PubMed
Boyer SL, Johansen JR, Flechtner VR, Howard GL. Phylogeny and genetic variance in terrestrial
Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): A morphological and molecular approach. Appl Env Microbiol. 2003; 69: 5157–5169. PubMed PMC
Lukešová A, Johansen JR, Martin MP, Casamatta DA.
Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol. Biol. 2007; 7: 159 doi: 10.1186/1471-2148-7-159 PubMed DOI PMC
Voráčová K, Hájek J, Mareš J, Urajová P, Kuzma M, Cheel J, et al. The cyanobacterial metabolite nocuolin A is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS ONE 2017; 12: e0172850 doi: 10.1371/journal.pone.0172850 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2003; 30: 1312–1313. PubMed PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61: 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 2012; 9: 772–772. PubMed PMC
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003; 52: 696–704. PubMed
Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond; Chicago, Illinois: 2335836: 2012; ACM. p. 1–8.
Gouy M, Guindon S, Gascuel O. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010; 27: 221–224. doi: 10.1093/molbev/msp259 PubMed DOI
Gascuel O. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997; 14: 685–695. PubMed
Erwin PM, Thacker RW. Cryptic diversity of the symbiotic cyanobacterium PubMed DOI
Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002; 3: 15. PubMed PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31: 3406–15. PubMed PMC
Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol. 2007; 60: 85–97. doi: 10.1111/j.1574-6941.2006.00265.x PubMed DOI
Vaccarino MA, Johansen JR. PubMed DOI
Anda M, Ohtsubo Y, Okubo T, Sugawara M, Nagata Y, Tsuda M, et al. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proc. Natl Acad. Sci. U S A. 2015; 112: 14343–14347. doi: 10.1073/pnas.1514326112 PubMed DOI PMC
Aguinaldo AMA, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 1999; 96:3801–3806. PubMed PMC
Hashimoto JG, Stevenson BS, Schmidt TM. Rates and consequences of recombination between rRNA operons. J Bacteriol. 2003; 185: 966–972. doi: 10.1128/JB.185.3.966-972.2003 PubMed DOI PMC
Van de Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996; 24: 3381–3391. PubMed PMC
Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H., Stackebrandt E. PubMed DOI
López-López A, Benlloch S, Bonfá M, Rodríguez-Valera F, Mira A. Intragenomic 16S rDNA divergence in PubMed DOI
Condon C, Liveris D, Squires C, Schwartz I, Squires CL. rRNA Operon multiplicity in PubMed PMC
A hitchhiker's guide to modern, practical cyanobacterial taxonomy
Four novel taxa of cyanobacteria from a unique thermal cave habitat in Vromoner Canyon, Albania
Occurrence of aetokthonotoxin producer in natural samples - A PCR protocol for easy detection