Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria)

. 2017 ; 12 (10) : e0186393. [epub] 20171026

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29073157

A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria) using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%). The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%), and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.

Zobrazit více v PubMed

Daubin V, Moran NA, Ochman H. Phylogenetics and the cohesion of bacterial genomes. Science 2003; 301: 829–832. doi: 10.1126/science.1086568 PubMed DOI

Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, et al. Fine-scale phylogenetic architecture of a complex bacterial community. Nature 2004; 430: 551–554. doi: 10.1038/nature02649 PubMed DOI

Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Rev Microbiol. 2014; 12: 635–645. PubMed

Boyer S, Flechtner V, Johansen JR. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol. 2001; 18: 1057–69. PubMed

Brown MV, Fuhrman JA. Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol. 2005; 41: 15–23.

Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol. 2007; 73: 278–288. doi: 10.1128/AEM.01177-06 PubMed DOI PMC

Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe L, Kováčik L, Martin MP, et al. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Euro J Phycol. 2014; 49: 450–470.

Pietrasiak N, Mühlsteinová R, Siegesmund MA, Johansen JR. Phylogenetic placement of Symplocastrum (Phormidiaceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum. Phycologia 2014; 53: 529–541.

Bohunická M, Pietrasiak N, Johansen JR, Berrendero-Gomez E, Hauer T, Gaysina L, et al. Roholtiella, gen. nov. (Nostocales, Cyanobacteria)—a tapering and branching member of the Nostocaceae (Cyanobacteria). Phytotaxa 2015; 197(2): 84–103.

Berrendero-Gómez E, Johansen JR, Kaštovský J, Bohunická M, Čapková K. Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. J Phycol. 2016; 52: 638–655. doi: 10.1111/jpy.12425 PubMed DOI

Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010; 76: 3886–3897. doi: 10.1128/AEM.02953-09 PubMed DOI PMC

Sun D, Jiang X, Wu QL, Zhoua N. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol. 2013; 79: 5962–5969. doi: 10.1128/AEM.01282-13 PubMed DOI PMC

Liao D. Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. J Mol Evol. 2000; 51: 305–317. PubMed

Bodilis J, Nsigue-Meilo S, Besuary L, Quillet L. Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS ONE 2012; 7(4): e35647 doi: 10.1371/journal.pone.0035647 PubMed DOI PMC

Malvaganam S, Dennis PP. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 1992; 130: 339–410. PubMed PMC

Wang Y, Zhang Z, Ramanan N. The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol. 1997; 179: 3270–3276. PubMed PMC

Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol. 2004; 186: 2629–2635. doi: 10.1128/JB.186.9.2629-2635.2004 PubMed DOI PMC

Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol. 2004; 186: 3980–3990. doi: 10.1128/JB.186.12.3980-3990.2004 PubMed DOI PMC

Michon A, Aujoulat F, Roudière L, Soulier O, Zorgniotti I, Jumas-Bilak E, et al. Intragenomic and intraspecific heterogeneity in rrs may surpass interspecific variability in a natural population of Veillonella. Microbiology 2010; 156: 2080–2091. doi: 10.1099/mic.0.038224-0 PubMed DOI

Cilia V, Lafay B, Christen R. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol. 1996; 13: 451–461. PubMed

Ueda K, Seki T, Kudo T, Yoshida T, Kataoka M. Two distinct mechanisms cause heterogeneity of 16S rRNA. J Bacteriol. 1999; 181: 78–82. PubMed PMC

Moreno C, Romero J, Espejo RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 2002; 148: 1233–1239. doi: 10.1099/00221287-148-4-1233 PubMed DOI

Morandi A, Zhaxybayeva O, Gogarten JP, Graf J. Evolutionary and diagnostic implications of intragenomic heterogeneity in the 16S rRNA gene in Aeromonas strains. J Bacteriol. 2005; 187: 6561–6564. doi: 10.1128/JB.187.18.6561-6564.2005 PubMed DOI PMC

Yap WH, Zhang Z, Wang Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol. 1999; 181: 5201–5209. PubMed PMC

Kotai J. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Institute for Water Research, 1972; publication B 11/69, Oslo, Blindern, 5 pp.

Yilmaz M, Phlips EJ & Tillett D. Improved methods for the isolation of cyanobacterial DNA from environmental samples. J Phycol. 2009; 45: 517–521. doi: 10.1111/j.1529-8817.2009.00651.x PubMed DOI

Seo PS, Yokota A. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol. 2003; 49: 191–203. PubMed

Rudi K, Skulberg OM, Jakobsen KS. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol. 1998; 180: 3453–3461. PubMed PMC

Roeselers G, Stal LJ, van Loosdrecht MCM, Muyzer G. Development of a PCR for the detection and identification of cyanobacterial nifD genes. J Microbiol Meth. 2007; 70: 550–556. PubMed

Boyer SL, Johansen JR, Flechtner VR, Howard GL. Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S its region. J Phycol. 2002; 38: 1222–1235.

Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): A morphological and molecular approach. Appl Env Microbiol. 2003; 69: 5157–5169. PubMed PMC

Lukešová A, Johansen JR, Martin MP, Casamatta DA. Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia 2009; 48: 118–129.

Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol. Biol. 2007; 7: 159 doi: 10.1186/1471-2148-7-159 PubMed DOI PMC

Voráčová K, Hájek J, Mareš J, Urajová P, Kuzma M, Cheel J, et al. The cyanobacterial metabolite nocuolin A is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS ONE 2017; 12: e0172850 doi: 10.1371/journal.pone.0172850 PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2003; 30: 1312–1313. PubMed PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61: 539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 2012; 9: 772–772. PubMed PMC

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003; 52: 696–704. PubMed

Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond; Chicago, Illinois: 2335836: 2012; ACM. p. 1–8.

Gouy M, Guindon S, Gascuel O. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010; 27: 221–224. doi: 10.1093/molbev/msp259 PubMed DOI

Gascuel O. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997; 14: 685–695. PubMed

Erwin PM, Thacker RW. Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol. 2008; 17: 2937–2947. doi: 10.1111/j.1365-294X.2008.03808.x PubMed DOI

Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002; 3: 15. PubMed PMC

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31: 3406–15. PubMed PMC

Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol. 2007; 60: 85–97. doi: 10.1111/j.1574-6941.2006.00265.x PubMed DOI

Vaccarino MA, Johansen JR. Brasilonema angustatum sp. nov. (Nostocales), a new filamentous cyanobacterium from the Hawaiian Islands. J Phycol. 2012; 48: 1178–1186. doi: 10.1111/j.1529-8817.2012.01203.x PubMed DOI

Anda M, Ohtsubo Y, Okubo T, Sugawara M, Nagata Y, Tsuda M, et al. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proc. Natl Acad. Sci. U S A. 2015; 112: 14343–14347. doi: 10.1073/pnas.1514326112 PubMed DOI PMC

Aguinaldo AMA, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 1999; 96:3801–3806. PubMed PMC

Hashimoto JG, Stevenson BS, Schmidt TM. Rates and consequences of recombination between rRNA operons. J Bacteriol. 2003; 185: 966–972. doi: 10.1128/JB.185.3.966-972.2003 PubMed DOI PMC

Van de Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996; 24: 3381–3391. PubMed PMC

Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H., Stackebrandt E. Clostridium paradoxum DSM 730aT contains multiple 16s rRNA genes with heterogeneous intervening sequences. Microbiology 1996; 142: 2087–2095. doi: 10.1099/13500872-142-8-2087 PubMed DOI

López-López A, Benlloch S, Bonfá M, Rodríguez-Valera F, Mira A. Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J Mol Evol. 2007; 65: 687–696. doi: 10.1007/s00239-007-9047-3 PubMed DOI

Condon C, Liveris D, Squires C, Schwartz I, Squires CL. rRNA Operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol. 1995; 177: 4152–4156. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...