The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells

. 2017 ; 12 (3) : e0172850. [epub] 20170302

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28253280

Oxadiazines are heterocyclic compounds containing N-N-O or N-N-C-O system within a six membered ring. These structures have been up to now exclusively prepared via organic synthesis. Here, we report the discovery of a natural oxadiazine nocuolin A (NoA) that has a unique structure based on 1,2,3-oxadiazine. We have identified this compound in three independent cyanobacterial strains of genera Nostoc, Nodularia, and Anabaena and recognized the putative gene clusters for NoA biosynthesis in their genomes. Its structure was characterized using a combination of NMR, HRMS and FTIR methods. The compound was first isolated as a positive hit during screening for apoptotic inducers in crude cyanobacterial extracts. We demonstrated that NoA-induced cell death has attributes of caspase-dependent apoptosis. Moreover, NoA exhibits a potent anti-proliferative activity (0.7-4.5 μM) against several human cancer lines, with p53-mutated cell lines being even more sensitive. Since cancers bearing p53 mutations are resistant to several conventional anti-cancer drugs, NoA may offer a new scaffold for the development of drugs that have the potential to target tumor cells independent of their p53 status. As no analogous type of compound was previously described in the nature, NoA establishes a novel class of bioactive secondary metabolites.

Zobrazit více v PubMed

Tondres ZV. Chalcogenadiazoles: Chemistry and Applications 1st edition ed. Tondres ZV, editor. New York: CRC Press; 2012. 310 p.

Bajaj S, Asati V, Singh J, Roy PP. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur J Med Chem. 2015;97:124–41. 10.1016/j.ejmech.2015.04.051 PubMed DOI

Carbone M, Li Y, Irace C, Mollo E, Castelluccio F, Di Pascale A, et al. Structure and Cytotoxicity of Phidianidines A and B: First Finding of 1,2,4-Oxadiazole System in a Marine Natural Product. Org Lett. 2011;13(10):2516–9. 10.1021/ol200234r PubMed DOI

Mohareb RM, Schatz J. Anti-tumor and anti-leishmanial evaluations of 1,3,4-oxadiazine, pyran derivatives derived from cross-coupling reactions of beta-bromo-6H-1,3,4-oxadiazine derivatives. Bioorg Med Chem. 2011;19(8):2707–13. 10.1016/j.bmc.2011.02.051 PubMed DOI

Bohle DS, Perepichka I. A New Synthetic Route to 3-Oxo-4-amino-1,2,3-oxadiazole from the Diazeniumdiolation of Benzyl Cyanide: Stable Sydnone Iminium N-Oxides. J Org Chem. 2009;74(4):1621–6. 10.1021/jo802343k PubMed DOI

Semenov SG, Makarova MV. 1,2,3-Oxadiazole rings in the aromatic compounds: A quantum-chemical investigation. Russ J Gen Chem. 2011;81(7):1555–7.

Nesmeyanov AN, Perevalova EG, Cimukova NA, Sheinker IN, Reshetova MD. The formation of 1,2,3-oxadiazine cycle during the reaction of 1,1'-diacetylferrocene with aryldiazonia. Doklad Akad Nauk Sssr. 1960;133(4):851–4.

Khalilullah H, Ahsan MJ, Hedaitullah M, Khan S, Ahmed B. 1,3,4-Oxadiazole: A Biologically Active Scaffold. Mini Rev Med Chem. 2012;12(8):789–801. PubMed

Kerr JFR, Wyllie AH, Currie AR. Apoptosis–basic biological phenomenon with wide range implication in tissue kinetics. Brit J Cancer. 1972;26(4):239-&. PubMed PMC

Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3–11. 10.1038/cdd.2008.150 PubMed DOI PMC

Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231–41. 10.1038/nrm2312 PubMed DOI

Mehlen P, Bredesen DE. Dependence Receptors: From Basic Research to Drug Development. Sci Signal. 2011;4(157). PubMed

Wajant H. The Fas signaling pathway: More than a paradigm. Science. 2002;296(5573):1635–6. 10.1126/science.1071553 PubMed DOI

Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19(1):107–20. 10.1038/cdd.2011.96 PubMed DOI PMC

Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P. Major cell death pathways at a glance. Microbes Infect. 2009;11(13):1050–62. 10.1016/j.micinf.2009.08.013 PubMed DOI

Welker M, von Dohren H. Cyanobacterial peptides—Nature's own combinatorial biosynthesis. Fems Microbiol Rev. 2006;30(4):530–63. 10.1111/j.1574-6976.2006.00022.x PubMed DOI

Dittmann E, Fewer DP, Neilan BA. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. Fems Microbiol Rev. 2013;37(1):23–43. 10.1111/j.1574-6976.2012.12000.x PubMed DOI

Van Wagoner RM, Drummond AK, Wright JLC. Biogenetic diversity of cyanobacterial metabolites. In: Laskin AI, Sariaslani S, Gadd GM, editors. Adv Appl Microbiol., Vol 61 Adv Appl Microbiol. 612007. p. 89–217. 10.1016/S0065-2164(06)61004-6 PubMed DOI

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strains histories and propertiesof pure cultures of cyanobacteria. Journal of General Microbiology. 1979;111(MAR):1–61.

Allen MB, Arnon DI. Studies in nitrogen-fixing blue-green algae. 1. Growth and nitrogen fixation by Anabaena Cylindrica LEMM. Plant Physiol. 1955;30(4):366–72. PubMed PMC

Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, et al. (Gaussian Inc., Wallingford, 2009).

Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O, Komárek J. The Primitive Thylakoid-Less Cyanobacterium Gloeobacter Is a Common Rock-Dwelling Organism. Plos One. 2013;8(6). PubMed PMC

Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): A morphological and molecular approach. Appl Environ Microbiol. 2003;69(9):5157–69. 10.1128/AEM.69.9.5157-5169.2003 PubMed DOI PMC

Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23(6):673–9. 10.1093/bioinformatics/btm009 PubMed DOI PMC

Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research. 2015;43(W1):W237–W43. 10.1093/nar/gkv437 PubMed DOI PMC

Marek R, Lycka A, Kolehmainen E, Sievanen E, Tousek J. N-15 NMR Spectroscopy in structural analysis: An update (2001–2005). Curr Org Chem. 2007;11(13):1154–205.

Simunek P, Bertolasi V, Lycka A, Machacek V. An NMR and X-ray study of the structure of the azo coupling product of 4-dimethylaminopent-3-en-2-one and benzenediazonium-tetrafluoroborate. Org Biomol Chem. 2003;1(18):3250–6. PubMed

Simunek P, Peskova M, Bertolasi V, Lycka A, Machacek V. Formation of pyridazinium salts by azo coupling of N-substituted 3-amino-1-phenylbut-2-en-1-ones and diazonium salts. Eur J Org Chem. 2004;(24):5055–63.

Nguyen MT, Hegarty AF, Elguero J. CAN 1,2,3-OXADIAZOLE BE STABLE. Angew Chem Int Edit. 1985;24(8):713–5.

Sun J, Makawana JA, Zhu HL. 1,3,4-Oxadiazole Derivatives as Potential Biological Agents. Mini Rev Med Chem. 2013;13(12):1725–43. PubMed PMID: WOS:000324576900004. PubMed

Saha R, Tanwar O, Marella A, Alam MM, Akhter M. Recent Updates on Biological Activities of Oxadiazoles. Mini Rev Med Chem. 2013;13(7):1027–46. PubMed

Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–70. 10.1038/nrc3711 PubMed DOI PMC

Scheffner M. Ubiquitin, E6-AP, and their role in p53 inactivation. Pharmacol Ther. 1998;78(3):129–39. PubMed

Qiao Q, Huang YY, Qi J, Qu MZ, Jiang C, Lin PC, et al.The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau. Sci Rep. 2016;6. PubMed PMC

Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R. Molecular Basis of the Functional Divergence of Fatty Acyl-AMP Ligase Biosynthetic Enzymes of Mycobacterium tuberculosis. J Mol Biol. 2012;416(2):221–38. 10.1016/j.jmb.2011.12.031 PubMed DOI

Kukor JJ, Olsen RH. Genetic organization and regularion of meta-cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas picketii PKO1. J Bacteriol. 1991;173(15):4587–94. PubMed PMC

Irie S, Doi S, Yorifuji T, Takagi M, Yano K. Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida. J Bacteriol. 1987;169(11):5174–9. PubMed PMC

Mareš J, Hájek J, Urajová P, Kopecký J, Hrouzek P. A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the beta-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum. Plos One. 2014;9(11). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace