Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30504214
PubMed Central
PMC6365827
DOI
10.1128/aem.02675-18
PII: AEM.02675-18
Knihovny.cz E-zdroje
- Klíčová slova
- biosynthesis, cyanobacteria, fatty acyl-AMP ligase, lipopeptides, nonribosomal peptide synthetase,
- MeSH
- Anabaena genetika MeSH
- antifungální látky MeSH
- antiinfekční látky MeSH
- bakteriální geny genetika MeSH
- bakteriální proteiny genetika MeSH
- cyklické peptidy biosyntéza chemie genetika MeSH
- lipopeptidy biosyntéza chemie genetika farmakologie MeSH
- multigenová rodina MeSH
- peptidsynthasy genetika MeSH
- polyketidsynthasy genetika MeSH
- sinice genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- antiinfekční látky MeSH
- bakteriální proteiny MeSH
- cyklické peptidy MeSH
- lipopeptidy MeSH
- non-ribosomal peptide synthase MeSH Prohlížeč
- peptidsynthasy MeSH
- polyketidsynthasy MeSH
Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes.IMPORTANCE Herein, we deciphered the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide important insight into lipopeptide biosynthesis in prokaryotes. Some of the variants identified exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.
Department of Biosciences University of Oslo Oslo Norway
Department of Chemistry University of Jyväskylä Jyväskylä Finland
Department of Microbiology Viikki Biocenter University of Helsinki Helsinki Finland
Norwegian Institute for Water Research Oslo Norway
School of Pharmacy University of Oslo Oslo Norway
The Czech Academy of Sciences Institute of Microbiology Center Algatech Třeboň Czech Republic
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Cochrane SA, Vederas JC. 2016. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31. doi:10.1002/med.21321. PubMed DOI
Taylor SD, Palmer M. 2016. The action mechanism of daptomycin. Bioorg Med Chem 24:6253–6268. doi:10.1016/j.bmc.2016.05.052. PubMed DOI
Velkov T, Roberts KD, Li J. 2017. Rediscovering the octapeptins. Nat Prod Rep 34:295–309. doi:10.1039/c6np00113k. PubMed DOI PMC
Ines M, Dhouha G. 2015. Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112. doi:10.1016/j.peptides.2015.07.006. PubMed DOI
Hrouzek P, Kuzma M, Černý J, Novák P, Fišer R, Šimek P, Lukešová A, Kopecký J. 2012. The cyanobacterial cyclic lipopeptides puwainaphycins F/G are inducing necrosis via cell membrane permeabilization and subsequent unusual actin relocalization. Chem Res Toxicol 25:1203–1211. doi:10.1021/tx300044t. PubMed DOI
Oftedal L, Myhren L, Jokela J, Gausdal G, Sivonen K, Doskeland SO, Herfindal L. 2012. The lipopeptide toxins anabaenolysin A and B target biological membranes in a cholesterol–dependent manner. Biochim Biophys Acta Biomembr 1818:3000–3009. doi:10.1016/j.bbamem.2012.07.015. PubMed DOI
Tomek P, Hrouzek P, Kuzma M, Sýkora J, Fišer R, Černý J, Novák P, Bártová S, Šimek P, Hof M, Kavan D, Kopecký J. 2015. Cytotoxic lipopeptide muscotoxin A, isolated from soil cyanobacterium Desmonostoc muscorum, permeabilizes phospholipid membranes by reducing their fluidity. Chem Res Toxicol 28:216–224. doi:10.1021/tx500382b. PubMed DOI
Vestola J, Shishido TK, Jokela J, Fewer DP, Aitio O, Permi P, Wahlsten M, Wang H, Rouhiainen L, Sivonen K. 2014. Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci U S A 111:E1909–E1917. doi:10.1073/pnas.1320913111. PubMed DOI PMC
Gregson JM, Chen JL, Patterson GML, Moore RE. 1992. Structures of puwainaphycins A-E. Tetrahedron 48:3727–3734. doi:10.1016/S0040-4020(01)92264-1. DOI
Kang HS, Krunic A, Shen Q, Swanson SM, Orjala J. 2011. Minutissamides A-D, antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena minutissima. J Nat Prod 74:1597–1605. doi:10.1021/np2002226. PubMed DOI PMC
Kang HS, Sturdy M, Krunic A, Kim H, Shen Q, Swanson SM, Orjala J. 2012. Minutissamides E-L, antiproliferative cyclic lipodecapeptides from the cultured freshwater cyanobacterium cf. Anabaena sp. Bioorg Med Chem 20:6134–6143. doi:10.1016/j.bmc.2012.08.017. PubMed DOI PMC
Mareš J, Hájek J, Urajová P, Kopecký J, Hrouzek P. 2014. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the beta-amino fatty acid lipopeptides puwainaphycins in the cyanobacterium Cylindrospermum alatosporum. PLoS One 9:e111904. doi:10.1371/journal.pone.0111904. PubMed DOI PMC
Urajová P, Hájek J, Wahlsten M, Jokela J, Galica T, Fewer DP, Kust A, Zapomělová-Kozlíková E, Delawská K, Sivonen K, Kopecký J, Hrouzek P. 2016. A liquid chromatography-mass spectrometric method for the detection of cyclic beta-amino fatty acid lipopeptides. J Chromatogr A 1438:76–83. doi:10.1016/j.chroma.2016.02.013. PubMed DOI
Cheel J, Urajová P, Hajek J, Hrouzek P, Kuzma M, Bouju E, Faure K, Kopecký J. 2017. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC. Anal Bioanal Chem 409:917–930. doi:10.1007/s00216-016-0066-z. PubMed DOI
Moore RE, Bornemann V, Niemczura WP, Gregson JM, Chen JL, Norton TR, Patterson GML, Helms GL. 1989. Puwainaphycin C, a cardioactive cyclic peptide from the blue-green alga Anabaena BQ-16-1. Use of two dimensional carbon-13-carbon-13 and carbon-13-nitrogen-15 correlation spectroscopy in sequencing the amino acid units. J Am Chem Soc 111:6128–6132. doi:10.1021/ja00198a021. DOI
Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96:13294–13299. doi:10.1073/pnas.96.23.13294. PubMed DOI PMC
Tsuge K, Akiyama T, Shoda M. 2001. Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273. doi:10.1128/JB.183.21.6265-6273.2001. PubMed DOI PMC
Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. doi:10.1128/JB.186.4.1084-1096.2004. PubMed DOI PMC
Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, von der Ohe W, Steinert M, Daniel R, Müller R. 2014. Paenilarvins: iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae. Chembiochem 15:1947–1955. doi:10.1002/cbic.201402139. PubMed DOI
Ramaswamy AV, Sorrels CM, Gerwick WH. 2007. Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:1977–1986. doi:10.1021/np0704250. PubMed DOI
Micallef ML, D'Agostino PM, Sharma D, Viswanathan R, Moffitt MC. 2015. Genome mining for natural product biosynthetic gene clusters in the subsection V cyanobacteria. BMC Genomics 16:669. doi:10.1186/s12864-015-1855-z. PubMed DOI PMC
Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH. 2004. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833. doi:10.1016/j.chembiol.2004.03.030. PubMed DOI
Galica T, Hrouzek P, Mareš J. 2017. Genome mining reveals high incidence of putative lipopeptide biosynthesis NRPS/PKS clusters containing fatty acyl-AMP ligase genes in biofilm-forming cyanobacteria. J Phycol 53:985–998. doi:10.1111/jpy.12555. PubMed DOI
Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M, Trivedi OA, Mohanty D, Tyagi A, Sankaranarayanan R, Gokhale RS. 2009. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nat Chem Biol 5:166–173. doi:10.1038/nchembio.143. PubMed DOI PMC
Liu Z, Ioerger TR, Wang F, Sacchettini JC. 2013. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. J Biol Chem 288:18473–18483. doi:10.1074/jbc.M113.466912. PubMed DOI PMC
Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH. 2014. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:e85140. doi:10.1371/journal.pone.0085140. PubMed DOI PMC
Mohanty D, Sankaranarayanan R, Gokhale RS. 2011. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis. Tuberculosis (Edinb) 91:448–455. doi:10.1016/j.tube.2011.04.006. PubMed DOI
Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R. 2012. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. J Mol Biol 416:221–238. doi:10.1016/j.jmb.2011.12.031. PubMed DOI
Villiers BRM, Hollfelder F. 2009. Mapping the limits of substrate specificity of the adenylation domain of TycA. Chembiochem 10:671–682. doi:10.1002/cbic.200800553. PubMed DOI
Christiansen G, Philmus B, Hemscheidt T, Kurmayer R. 2011. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J Bacteriol 193:3822–3831. doi:10.1128/JB.00360-11. PubMed DOI PMC
Brandenburger E, Braga D, Kombrink A, Lackner G, Gressler J, Künzler M, Hoffmeister D. 2018. Multi-genome analysis identifies functional and phylogenetic diversity of basidiomycete adenylate-forming reductases. Fungal Genet Biol 112:55–63. doi:10.1016/j.fgb.2016.07.008. PubMed DOI
Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. 2010. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). Chem Biol 17:265–273. doi:10.1016/j.chembiol.2010.01.017. PubMed DOI
Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH. 2015. Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J Nat Prod 78:1671–1682. doi:10.1021/acs.jnatprod.5b00301. PubMed DOI PMC
Voráčová K, Hájek J, Mareš J, Urajová P, Kuzma M, Cheel J, Villunger A, Kapuscik A, Bally M, Novák P, Kabeláč M, Krumschnabel G, Lukeš M, Voloshko L, Kopecký J, Hrouzek P. 2017. The cyanobacterial metabolite nocuolin A is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS One 12:e0172850. doi:10.1371/journal.pone.0172850. PubMed DOI PMC
He J, Hertweck C. 2004. Biosynthetic origin of the rare nitroaryl moiety of the polyketide antibiotic aureothin: involvement of an unprecedented N-oxygenase. J Am Chem Soc 126:3694–3695. doi:10.1021/ja039328t. PubMed DOI
Choi YS, Zhang HJ, Brunzelle JS, Nair SK, Zhao HM. 2008. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc Natl Acad Sci U S A 105:6858–6863. doi:10.1073/pnas.0712073105. PubMed DOI PMC
Fewer DP, Wahlsten M, Osterholm J, Jokela J, Rouhiainen L, Kaasalainen U, Rikkinen J, Sivonen K. 2013. The genetic basis for O-acetylation of the microcystin toxin in cyanobacteria. Chem Biol 20:861–869. doi:10.1016/j.chembiol.2013.04.020. PubMed DOI
Murray IA, Shaw WV. 1997. O-acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 41:1–6. PubMed PMC
Zapomělová E, Jezberová J, Hrouzek P, Hisem D, Řeháková K, Komárková J. 2009. Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). J Phycol 45:1363–1373. doi:10.1111/j.1529-8817.2009.00758.x. PubMed DOI
Skulberg OM, Mysterud I, Karlsen J, Tønnesen HH, Laane CMM, Schumacher T. 2012. Alveld research per annum 2012: searchlight on cyanobacteria we have minor knowledge of. Biolog 30:32–41. (In Norwegian.)
Tønnesen HH, Mysterud I, Karlsen J, Skulberg OM, Laane CMM, Schumacher T. 2013. Identification of singlet oxygen photosensitizers in lambs drinking water in an alveld risk area in West Norway. J Photochem Photobiol B 119:37–45. doi:10.1016/j.jphotobiol.2012.12.003. PubMed DOI
Hegge AB, Mysterud I, Karlsen J, Skulberg OM, Laane CMM, Schumacher T, Tønnesen HH. 2013. Impaired secondary oxidant deactivation capacity and enhanced oxidative stress in serum from alveld affected lambs. J Photochem Photobiol B 126:126–134. doi:10.1016/j.jphotobiol.2013.07.005. PubMed DOI
Heinze R. 1996. A biotest for hepatotoxins using primary rat hepatocytes. Phycologia 35:89–93. doi:10.2216/i0031-8884-35-6S-89.1. DOI
Skulberg OM. 1996. Toxins produced by cyanophytes in Norwegian inland waters—health and environment, p 197–216. In Låg J. (ed), Chemical data as a basis of geomedical investigations. The Norwegian Academy of Science and Letters, Oslo, Norway.
Jones CG, Firn RD. 1991. On the evolution of plant secondary chemical diversity. Philos Trans R Soc Lond B 333:273–280. doi:10.1098/rstb.1991.0077. DOI
Firn RD, Jones CG. 2000. The evolution of secondary metabolism: a unifying model. Mol Microbiol 37:989–994. PubMed
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61. doi:10.1099/00221287-111-1-1. DOI
Skulberg R, Skulberg OM. 1990. Research with algal cultures—NIVA’s Culture Collection of Algae. NIVA report. Norwegian Institute for Water Research, Oslo, Norway.
Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169. doi:10.1128/AEM.69.9.5157-5169.2003. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, Lesin V, Nikolenko S, Pham S, Prjibelski A, Pyshkin A, Sirotkin A, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–497. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679. doi:10.1093/bioinformatics/btm009. PubMed DOI PMC
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH. 2015. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. doi:10.1093/nar/gkv437. PubMed DOI PMC
Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, Duran HGS, Santos E, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH. 2017. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:W36–W41. doi:10.1093/nar/gkx319. PubMed DOI PMC
Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U, Maansson M, Keyzers RA, Sims AC, et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837. doi:10.1038/nbt.3597. PubMed DOI PMC
Johansen JR, Bohunická M, Lukešová A, Hrčková K, Vaccarino MA, Chesarino NM. 2014. Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nostocaceae, Cyanobacteria) with descriptions of three new species. J Phycol 50:187–202. doi:10.1111/jpy.12150. PubMed DOI
Tamrakar A. 2016. Isolation of benthic cyanobacteria and screening of bioactivities and natural products from culture collection strains. Master’s Thesis. University of Helsinki, Helsinki, Finland.
Kantz T, Bold HC. 1969. Phycological studies IX Morphological and taxonomic investigations of Nostoc and Anabaena in culture. Publication no. 6924 University of Texas, Austin, TX.