Fatty Acid Substitutions Modulate the Cytotoxicity of Puwainaphycins/Minutissamides Isolated from the Baltic Sea Cyanobacterium Nodularia harveyana UHCC-0300
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
35449984
PubMed Central
PMC9016887
DOI
10.1021/acsomega.1c07160
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Puwainaphycins (PUW) and minutissamides (MIN) are structurally homologous cyclic lipopeptides that exhibit high structural variability and possess antifungal and cytotoxic activities. While only a minor variation can be found in the amino acid composition of the peptide cycle, the fatty acid (FA) moiety varies largely. The effect of FA functionalization on the bioactivity of PUW/MIN chemical variants is poorly understood. A rapid and selective liquid chromatography-mass spectrometry-based method led us to identify 13 PUW/MIN (1-13) chemical variants from the benthic cyanobacterium Nodularia harveyana strain UHCC-0300 from the Baltic Sea. Five new variants identified were designated as PUW H (1), PUW I (2), PUW J (4), PUW K (10), and PUW L (13) and varied slightly in the peptidic core composition, but a larger variation was observed in the oxo-, chloro-, and hydroxy-substitutions on the FA moiety. To address the effect of FA substitution on the cytotoxic effect, the major variants (3 and 5-11) together with four other PUW/MIN variants (14-17) previously isolated were included in the study. The data obtained showed that hydroxylation of the FA moiety abolishes the cytotoxicity or significantly reduces it when compared with the oxo-substituted C18-FA (compounds 5-8). The oxo-substitution had only a minor effect on the cytotoxicity of the compound when compared to variants bearing no substitution. The activity of PUW/MIN variants with chlorinated FA moieties varied depending on the position of the chlorine atom on the FA chain. This study also shows that variation in the amino acids distant from the FA moiety (position 4-8 of the peptide cycle) does not play an important role in determining the cytotoxicity of the compound. These findings confirmed that the lipophilicity of FA is essential to maintain the cytotoxicity of PUW/MIN lipopeptides. Further, a 63 kb puwainaphycin biosynthetic gene cluster from a draft genome of the N. harveyana strain UHCC-0300 was identified. This pathway encoded two specific lipoinitiation mechanisms as well as enzymes needed for the modification of the FA moiety. Examination on biosynthetic gene clusters and the structural variability of the produced PUW/MIN suggested different mechanisms of fatty-acyl-AMP ligase cooperation with accessory enzymes leading to a new set of PUW/MIN variants bearing differently substituted FA.
Department of Microbiology Viikki Biocenter University of Helsinki FI 00014 Helsinki Finland
Faculty of Science University of South Bohemia Branišovská 1760 České Budějovice Czech Republic
See more in PubMed
Shah S.; Akhter N.; Auckloo B.; Khan I.; Lu Y.; Wang K.; Wu B.; Guo Y.-W. Structural Diversity, Biological Properties and Applications of Natural Products from Cyanobacteria. A Review. Mar. Drugs 2017, 15, 354.10.3390/md15110354. PubMed DOI PMC
Kust A.; Řeháková K.; Vrba J.; Maicher V.; Mareš J.; Hrouzek P.; Chiriac M.-C.; Benedová Z.; Tesařová B.; Saurav K. Insight into Unprecedented Diversity of Cyanopeptides in Eutrophic Ponds Using an MS/MS Networking Approach. Toxins 2020, 12, 561.10.3390/toxins12090561. PubMed DOI PMC
Teta R.; Sala G. D.; Esposito G.; Stornaiuolo M.; Scarpato S.; Casazza M.; Anastasio A.; Lega M.; Costantino V. Monitoring Cyanobacterial Blooms during the COVID-19 Pandemic in Campania, Italy: The Case of Lake Avernus. Toxins 2021, 13, 471.10.3390/toxins13070471. PubMed DOI PMC
Esposito G.; Teta R.; Marrone R.; De Sterlich C.; Casazza M.; Anastasio A.; Lega M.; Costantino V. A Fast Detection Strategy for Cyanobacterial blooms and associated cyanotoxins (FDSCC) reveals the occurrence of lyngbyatoxin A in campania (South Italy). Chemosphere 2019, 225, 342–351. 10.1016/j.chemosphere.2019.02.201. PubMed DOI
Minagawa S.; Kondoh Y.; Sueoka K.; Osada H.; Nakamoto H. Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity. Biochem. J. 2011, 435, 237–246. 10.1042/BJ20100743. PubMed DOI
Shishido T.; Humisto A.; Jokela J.; Liu L.; Wahlsten M.; Tamrakar A.; Fewer D.; Permi P.; Andreote A.; Fiore M.; Sivonen K. Antifungal Compounds from Cyanobacteria. Mar. Drugs 2015, 13, 2124.10.3390/md13042124. PubMed DOI PMC
Tang J. S.; Gao H.; Dai Y.; Hong K.; Yao X. S. [Progress on the studies of cyclic lipopeptides]. Yao Xue Xue Bao 2008, 43, 873. PubMed
Hamley I. W. Lipopeptides: from self-assembly to bioactivity. Chem. Commun. 2015, 51, 8574–8583. 10.1039/C5CC01535A. PubMed DOI
Götze S.; Stallforth P. Structure elucidation of bacterial nonribosomal lipopeptides. Org. Biomol. Chem. 2020, 18, 1710–1727. 10.1039/C9OB02539A. PubMed DOI
Fiedler S.; Heerklotz H. Vesicle Leakage Reflects the Target Selectivity of Antimicrobial Lipopeptides from Bacillus subtilis. Biophys. J. 2015, 109, 2079–2089. 10.1016/j.bpj.2015.09.021. PubMed DOI PMC
Fewer D. P.; Jokela J.; Heinilä L.; Aesoy R.; Sivonen K.; Galica T.; Hrouzek P.; Herfindal L. Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria. Physiol. Plant. 2021, 173, 639–650. 10.1111/ppl.13484. PubMed DOI
Oftedal L.; Myhren L.; Jokela J.; Gausdal G.; Sivonen K.; Døskeland S. O.; Herfindal L. The lipopeptide toxins anabaenolysin A and B target biological membranes in a cholesterol-dependent manner. Biochim. Biophys. Acta 2012, 1818, 3000–3009. 10.1016/j.bbamem.2012.07.015. PubMed DOI
Zhou H.; He Y.; Tian Y.; Cong B.; Yang H. Bacilohydrin A, a New Cytotoxic Cyclic Lipopeptide of Surfactins Class Produced by Bacillus sp. SY27F from the Indian Ocean Hydrothermal Vent. Nat. Prod. Commun. 2019, 14, 1934578X1901400.10.1177/1934578X1901400137. DOI
Vašíček O.; Hájek J.; Bláhová L.; Hrouzek P.; Babica P.; Kubala L.; Šindlerová L. Cyanobacterial lipopeptides puwainaphycins and minutissamides induce disruptive and pro-inflammatory processes in Caco-2 human intestinal barrier model. Harmful Algae 2020, 96, 101849.10.1016/j.hal.2020.101849. PubMed DOI
Malviya D.; Sahu P. K.; Singh U. B.; Paul S.; Gupta A.; Gupta A. R.; Singh S.; Kumar M.; Paul D.; Rai J. P.; Singh H. V.; Brahmaprakash G. P. Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. Int. J. Environ. Res. Publ. Health 2020, 17, 1434.10.3390/ijerph17041434. PubMed DOI PMC
Ongena M.; Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. 10.1016/j.tim.2007.12.009. PubMed DOI
Gutiérrez-Chávez C.; Benaud N.; Ferrari B. C. The ecological roles of microbial lipopeptides: Where are we going?. Comput. Struct. Biotechnol. J. 2021, 19, 1400–1413. 10.1016/j.csbj.2021.02.017. PubMed DOI PMC
Gregson J. M.; Chen J.-L.; Patterson G. M. L.; Moore R. E. Structures of puwainaphycins A–E. Tetrahedron 1992, 48, 3727–3734. 10.1016/S0040-4020(01)92264-1. DOI
Kang H.-S.; Krunic A.; Shen Q.; Swanson S. M.; Orjala J. Minutissamides A-D, antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena minutissima. J. Nat. Prod. 2011, 74, 1597–1605. 10.1021/np2002226. PubMed DOI PMC
Kang H.-S.; Sturdy M.; Krunic A.; Kim H.; Shen Q.; Swanson S. M.; Orjala J. Minutissamides E-L, antiproliferative cyclic lipodecapeptides from the cultured freshwater cyanobacterium cf. Anabaena sp. Bioorg. Med. Chem. 2012, 20, 6134–6143. 10.1016/j.bmc.2012.08.017. PubMed DOI PMC
Tomek P.; Hrouzek P.; Kuzma M.; Sýkora J.; Fišer R.; Černý J.; Novák P.; Bártová S.; Šimek P.; Hof M.; Kavan D.; Kopecký J. Cytotoxic Lipopeptide Muscotoxin A, Isolated from Soil Cyanobacterium Desmonostoc muscorum, Permeabilizes Phospholipid Membranes by Reducing Their Fluidity. Chem. Res. Toxicol. 2015, 28, 216–224. 10.1021/tx500382b. PubMed DOI
Bonnard I.; Rolland M.; Francisco C.; Banaigs B. Total structure and biological properties of laxaphycins A and B, cyclic lipopeptides from the marine cyanobacterium Lyngbya majuscula. Lett. Pept. Sci. 1997, 4, 289–292. 10.1023/A:1008884402484. DOI
Moore R. E.; Bornemann V.; Niemczura W. P.; Gregson J. M.; Chen J. L.; Norton T. R.; Patterson G. M. L.; Helms G. L.; Puwainaphycin C. a cardioactive cyclic peptide from the blue-green alga Anabaena BQ-16-1. Use of two-dimensional 13C-13C and 13C-15N correlation spectroscopy in sequencing the amino acid units. J. Am. Chem. Soc. 1989, 111, 6128–6132. 10.1021/ja00198a021. DOI
Mareš J.; Hájek J.; Urajová P.; Kust A.; Jokela J.; Saurav K.; Galica T.; Čapková K.; Mattila A.; Haapaniemi E.; Permi P.; Mysterud I.; Skulberg O. M.; Karlsen J.; Fewer D. P.; Sivonen K.; Tønnesen H. H.; Hrouzek P. Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides. Appl. Environ. Microbiol. 2019, 85, e0267510.1128/aem.02675-18. PubMed DOI PMC
Hrouzek P.; Kuzma M.; Černý J.; Novák P.; Fišer R.; Šimek P.; Lukešová A.; Kopecký J. The Cyanobacterial Cyclic Lipopeptides Puwainaphycins F/G Are Inducing Necrosis via Cell Membrane Permeabilization and Subsequent Unusual Actin Relocalization. Chem. Res. Toxicol. 2012, 25, 1203–1211. 10.1021/tx300044t. PubMed DOI
Hájek J.; Bieringer S.; Voráčová K.; Macho M.; Saurav K.; Delawská K.; Divoká P.; Fišer R.; Mikušová G.; Cheel J.; Fewer D. P.; Vu D. L.; Paichlová J.; Riepl H.; Hrouzek P. Semi-synthetic puwainaphycin/minutissamide cyclic lipopeptides with improved antifungal activity and limited cytotoxicity. RSC Adv 2021, 11, 30873.10.1039/d1ra04882a. PubMed DOI PMC
Urajová P.; Hájek J.; Wahlsten M.; Jokela J.; Galica T.; Fewer D. P.; Kust A.; Zapomělová-Kozlíková E.; Delawská K.; Sivonen K.; Kopecký J.; Hrouzek P. A liquid chromatography–mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides. J. Chromatogr. A 2016, 1438, 76–83. 10.1016/j.chroma.2016.02.013. PubMed DOI
Lyra C.; Laamanen M.; Lehtimäki J. M.; Surakka A.; Sivonen K. Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. Int. J. Syst. Evol. Microbiol. 2005, 55, 555–568. 10.1099/ijs.0.63288-0. PubMed DOI
Teikari J. E.; Fewer D. P.; Shrestha R.; Hou S.; Leikoski N.; Mäkelä M.; Simojoki A.; Hess W. R.; Sivonen K. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane. ISME J 2018, 12, 1619.10.1038/s41396-018-0056-6. PubMed DOI PMC
Mareš J.; Hájek J.; Urajová P.; Kopecký J.; Hrouzek P. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the beta-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum. PLoS One 2014, 9, e11190410.1371/journal.pone.0111904. PubMed DOI PMC
Cheel J.; Urajová P.; Hájek J.; Hrouzek P.; Kuzma M.; Bouju E.; Faure K.; Kopecký J. Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC. Anal. Bioanal. Chem. 2017, 409, 917–930. 10.1007/s00216-016-0066-z. PubMed DOI
Saurav K.; Macho M.; Kust A.; Delawská K.; Hájek J.; Hrouzek P. Antimicrobial activity and bioactive profiling of heterocytous cyanobacterial strains using MS/MS-based molecular networking. Folia Microbiol. 2019, 64, 645–654. 10.1007/s12223-019-00737-9. PubMed DOI
Saha S.; Esposito G.; Urajová P.; Mareš J.; Ewe D.; Caso A.; Macho M.; Delawská K.; Kust A.; Hrouzek P.; Juráň J.; Costantino V.; Saurav K. Discovery of Unusual Cyanobacterial Tryptophan-Containing Anabaenopeptins by MS/MS-Based Molecular Networking. Molecules 2020, 25, 3786.10.3390/molecules25173786. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10.10.14806/ej.17.1.200. DOI
Bankevich A.; Nurk S.; Antipov D.; Gurevich A. A.; Dvorkin M.; Kulikov A. S.; Lesin V. M.; Nikolenko S. I.; Pham S.; Prjibelski A. D.; Pyshkin A. V.; Sirotkin A. V.; Vyahhi N.; Tesler G.; Alekseyev M. A.; Pevzner P. A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. 10.1089/cmb.2012.0021. PubMed DOI PMC
Wood D. E.; Salzberg S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46.10.1186/gb-2014-15-3-r46. PubMed DOI PMC
Alvarenga D. O.; Fiore M. F.; Varani A. M. A Metagenomic Approach to Cyanobacterial Genomics. Front. Microbiol. 2017, 8, 809.10.3389/fmicb.2017.00809. PubMed DOI PMC
Cheel J.; Urajová P.; Hájek J.; Hrouzek P.; Kuzma M.; Bouju E.; Faure K.; Kopecký J., Separation of cyclic lipopeptides puwainaphycins from cyanobacteria by CCC combined with polymeric resins and HPLC. Anal. Bioanal. Chem. 2017, 409, DOI: 10.1007/s00216-016-0066-z PubMed DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. 10.1016/0022-1759(83)90303-4. PubMed DOI