Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2017/27/B/ST3/02457
Narodowe Centrum Nauki
2016/21/B/ST3/02276
Narodowe Centrum Nauki
DZP/POLTUR-1/50/2016
Narodowe Centrum Badań i Rozwoju
UMO-2014/15/B/NZ1/00975
Narodowe Centrum Nauki
UMO-2017/27/B/ST5/00472
Narodowe Centrum Nauki
PubMed
32244795
PubMed Central
PMC7177865
DOI
10.3390/ijms21072451
PII: ijms21072451
Knihovny.cz E-zdroje
- Klíčová slova
- MEF, SIF, biohybrid structures, photosynthetic complexes,
- MeSH
- chlorofyl a metabolismus MeSH
- fluorescenční spektrometrie metody MeSH
- formaldehyd chemie MeSH
- fotosyntéza * MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- glukosa chemie MeSH
- karotenoidy metabolismus MeSH
- nanostruktury chemie ultrastruktura MeSH
- stříbro chemie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl a MeSH
- formaldehyd MeSH
- fotosystém I - proteinový komplex MeSH
- glukosa MeSH
- karotenoidy MeSH
- peridinin MeSH Prohlížeč
- stříbro MeSH
- světlosběrné proteinové komplexy MeSH
The effects of combining naturally evolved photosynthetic pigment-protein complexes with inorganic functional materials, especially plasmonically active metallic nanostructures, have been a widely studied topic in the last few decades. Besides other applications, it seems to be reasonable using such hybrid systems for designing future biomimetic solar cells. In this paper, we describe selected results that point out to various aspects of the interactions between photosynthetic complexes and plasmonic excitations in Silver Island Films (SIFs). In addition to simple light-harvesting complexes, like peridinin-chlorophyll-protein (PCP) or the Fenna-Matthews-Olson (FMO) complex, we also discuss the properties of large, photosynthetic reaction centers (RCs) and Photosystem I (PSI)-both prokaryotic PSI core complexes and eukaryotic PSI supercomplexes with attached antenna clusters (PSI-LHCI)-deposited on SIF substrates.
Zobrazit více v PubMed
Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K., Hou H.J.M., Shen J.-R., Allakhverdiev S.I. Components of Natural Photosynthetic Apparatus in Solar Cells. In: Najafpour M.M., editor. Applied Photosynthesis—New Progress. InTech; London, UK: 2016.
Stephens E., Ross I.L., Mussgnug J.H., Wagner L.D., Borowitzka M.A., Posten C., Kruse O., Hankamer B. Future prospects of microalgal biofuel production systems. Trends Plant Sci. 2010;15:554–564. doi: 10.1016/j.tplants.2010.06.003. PubMed DOI
Cogdell R. Can photosynthesis provide a “biological blueprint” for the design of novel solar cells? Trends Biotechnol. 1998;16:521–527. doi: 10.1016/S0167-7799(98)01208-6. DOI
Janna Olmos J.D., Kargul J. Oxygenic photosynthesis: Translation to solar fuel technologies. Acta Soc. Bot. Pol. 2014;83:423–440. doi: 10.5586/asbp.2014.037. DOI
Johansson T.B. Renewable Energy: Sources for Fuels and Electricity. Island Press; Washington, DC, USA: 1993.
Panwar N.L., Kaushik S.C., Kothari S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011;15:1513–1524. doi: 10.1016/j.rser.2010.11.037. DOI
Twidell J., Weir T. Renewable Energy Resources. Routledge; London, UK: 2015.
Janna Olmos J.D., Kargul J. A quest for the artificial leaf. Int. J. Biochem. Cell Biol. 2015;66:37–44. doi: 10.1016/j.biocel.2015.07.005. PubMed DOI
Mackowski S. Hybrid nanostructures for efficient light harvesting. J. Phys. Condens. Matter. 2010;22:193102. doi: 10.1088/0953-8984/22/19/193102. PubMed DOI
Blankenship R.E., Tiede D.M., Barber J., Brudvig G.W., Fleming G., Ghirardi M., Gunner M.R., Junge W., Kramer D.M., Melis A., et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science. 2011;332:805–809. doi: 10.1126/science.1200165. PubMed DOI
Green M.A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovolt. Res. Appl. 2009;17:183–189. doi: 10.1002/pip.892. DOI
Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cell efficiency tables (Version 45) Prog. Photovolt. Res. Appl. 2015;23:1–9. doi: 10.1002/pip.2573. DOI
Richards B.S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. Cells. 2006;90:2329–2337. doi: 10.1016/j.solmat.2006.03.035. DOI
Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010;9:205–213. doi: 10.1038/nmat2629. PubMed DOI
Kargul J., Janna Olmos J.D., Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. J. Plant Physiol. 2012;169:1639–1653. doi: 10.1016/j.jplph.2012.05.018. PubMed DOI
Ocakoglu K., Krupnik T., van den Bosch B., Harputlu E., Gullo M.P., Olmos J.D.J., Yildirimcan S., Gupta R.K., Yakuphanoglu F., Barbieri A., et al. Photosystem I-based Biophotovoltaics on Nanostructured Hematite. Adv. Funct. Mater. 2014;24:7467–7477. doi: 10.1002/adfm.201401399. DOI
Lakowicz J.R. Radiative Decay Engineering: Biophysical and Biomedical Applications. Anal. Biochem. 2001;298:1–24. doi: 10.1006/abio.2001.5377. PubMed DOI PMC
Sugiyama M., Fujii K., Nakamura S. Solar to Chemical Energy Conversion: Theory and Application. Springer International Publishing; Basel, Switzerland: 2016.
Zhao F., Ruff A., Rögner M., Schuhmann W., Conzuelo F. Extended Operational Lifetime of a Photosystem-Based Bioelectrode. J. Am. Chem. Soc. 2019;141:5102–5106. doi: 10.1021/jacs.8b13869. PubMed DOI
Mackowski S., Wörmke S., Maier A.J., Brotosudarmo T.H.P., Harutyunyan H., Hartschuh A., Govorov A.O., Scheer H., Bräuchle C. Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. Nano Lett. 2008;8:558–564. doi: 10.1021/nl072854o. PubMed DOI
Schmidt M., Mackowski S. Theoretical studies of excitation dynamics in a peridinin-chlorophyll-protein coupled to a metallic nanoparticle. Open Phys. 2011;9:47–51. doi: 10.2478/s11534-011-0003-x. DOI
Czechowski N., Lokstein H., Kowalska D., Ashraf K., Cogdell R.J., Mackowski S. Large plasmonic fluorescence enhancement of cyanobacterial photosystem I coupled to silver island films. Appl. Phys. Lett. 2014;105:043701. doi: 10.1063/1.4891856. DOI
Szalkowski M., Ashraf K.U., Lokstein H., Mackowski S., Cogdell R.J., Kowalska D. Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules. Photosynth. Res. 2016;127:103–108. doi: 10.1007/s11120-015-0178-x. PubMed DOI
Bharadwaj P., Novotny L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express. 2007;15:14266–14274. doi: 10.1364/OE.15.014266. PubMed DOI
Lakowicz J.R., Shen Y., D’Auria S., Malicka J., Fang J., Gryczynski Z., Gryczynski I. Radiative Decay Engineering: 2. Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer. Anal. Biochem. 2002;301:261–277. doi: 10.1006/abio.2001.5503. PubMed DOI PMC
Ashraf I., Konrad A., Lokstein H., Skandary S., Metzger M., Djouda J.M., Maurer T., Adam P.M., Meixner A.J., Brecht M. Temperature dependence of metal-enhanced fluorescence of photosystem I from Thermosynechococcus elongatus. Nanoscale. 2017;9:4196–4204. doi: 10.1039/C6NR08762K. PubMed DOI
Badura A., Kothe T., Schuhmann W., Rögner M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 2011;4:3263–3274. doi: 10.1039/c1ee01285a. DOI
Ciesielski P.N., Faulkner C.J., Irwin M.T., Gregory J.M., Tolk N.H., Cliffel D.E., Jennings G.K. Enhanced Photocurrent Production by Photosystem I Multilayer Assemblies. Adv. Funct. Mater. 2010;20:4048–4054. doi: 10.1002/adfm.201001193. DOI
LeBlanc G., Gizzie E., Yang S., Cliffel D.E., Jennings G.K. Photosystem I Protein Films at Electrode Surfaces for Solar Energy Conversion. Langmuir. 2014;30:10990–11001. doi: 10.1021/la500129q. PubMed DOI
Frolov L., Wilner O., Carmeli C., Carmeli I. Fabrication of Oriented Multilayers of Photosystem I Proteins on Solid Surfaces by Auto-Metallization. Adv. Mater. 2008;20:263–266. doi: 10.1002/adma.200701474. DOI
Carmeli I., Lieberman I., Kraversky L., Fan Z., Govorov A.O., Markovich G., Richter S. Broad Band Enhancement of Light Absorption in Photosystem I by Metal Nanoparticle Antennas. Nano Lett. 2010;10:2069–2074. doi: 10.1021/nl100254j. PubMed DOI
Polívka T., Hofmann E. Structure-Function Relationship in Peridinin-Chlorophyll Proteins. In: Hohmann-Marriott M.F., editor. The Structural Basis of Biological Energy Generation. Volume 39. Springer; Dordrecht, The Netherlands: 2014. pp. 39–58.
Carbonera D., Valentin M., Spezia R., Mezzetti A. The Unique Photophysical Properties of the Peridinin-Chlorophyll-a-Protein. Curr. Protein Pept. Sci. 2014;15:332–350. doi: 10.2174/1389203715666140327111139. PubMed DOI PMC
Schulte T., Johanning S., Hofmann E. Structure and function of native and refolded peridinin-chlorophyll-proteins from dinoflagellates. Eur. J. Cell Biol. 2010;89:990–997. doi: 10.1016/j.ejcb.2010.08.004. PubMed DOI
Takaichi S., Nippon M.S., Ohoka H. Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: Carotenoid glucoside esters, menaquinone [Vitamine K] and chlorophylls. Plant Cell Physiol. Jpn. 1999;40:691–694. doi: 10.1093/oxfordjournals.pcp.a029594. DOI
Tsukatani Y., Miyamoto R., Itoh S., Oh-Oka H. Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation. Regulation of energy transfer and ferredoxin-mediated NADP+ reduction on the cytoplasmic side. J. Biol. Chem. 2004;279:51122–51130. PubMed
Frigaard N.-U., Chew A.G.M., Li H., Maresca J.A., Bryant D.A. Chlorobium tepidum: Insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth. Res. 2003;78:93–117. doi: 10.1023/B:PRES.0000004310.96189.b4. PubMed DOI
Azai C., Kim K., Kondo T., Harada J., Itoh S., Oh-oka H. A heterogeneous tag-attachment to the homodimeric type 1 photosynthetic reaction center core protein in the green sulfur bacterium Chlorobaculum tepidum. Biochim. Biophys. Acta. 2011;1807:803–812. doi: 10.1016/j.bbabio.2011.03.007. PubMed DOI
He G., Niedzwiedzki D.M., Orf G.S., Zhang H., Blankenship R.E. Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum. J. Phys. Chem. B. 2015;119:8321–8329. doi: 10.1021/acs.jpcb.5b04170. PubMed DOI
Rémigy H.W., Stahlberg H., Fotiadis D., Müller S.A., Wolpensinger B., Engel A., Hauska G., Tsiotis G. The reaction center complex from the green sulfur bacterium Chlorobium tepidum: A structural analysis by scanning transmission electron microscopy. J. Mol. Biol. 1999;290:851–858. doi: 10.1006/jmbi.1999.2925. PubMed DOI
Maćkowski S., Czechowski N., Ashraf K.U., Szalkowski M., Lokstein H., Cogdell R.J., Kowalska D. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films. FEBS Lett. 2016;590:2558–2565. doi: 10.1002/1873-3468.12292. PubMed DOI
Olson J.M. The FMO protein. In: Govindjee B.J.T., Gest H., Allen J.F., editors. Discoveries in Photosynthesis. Springer; Dordrecht, The Netherlands: 2005. pp. 421–427. Advances in Photosynthesis and Respiration.
Olson J.M. Chlorophyll Organization and Function in Green Photosynthetic Bacteria*. Photochem. Photobiol. 1998;67:61–75. doi: 10.1111/j.1751-1097.1998.tb05166.x. DOI
Blankenship R.E., Olson J.M., Miller M. Antenna Complexes from Green Photosynthetic Bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., editors. Anoxygenic Photosynthetic Bacteria. Springer; Dordrecht, The Netherlands: 1995. pp. 399–435. Advances in Photosynthesis and Respiration.
Matthews B.W., Fenna R.E. Structure of a green bacteriochlorophyll protein. Acc. Chem. Res. 1980;13:309–317. doi: 10.1021/ar50153a003. DOI
Blankenship R.E. Molecular Mechanisms of Photosynthesis. Wiley-Blackwell; Hoboken, NJ, USA: 2014.
Haniewicz P., Abram M., Nosek L., Kirkpatrick J., El-Mohsnawy E., Olmos J.D.J., Kouřil R., Kargul J.M. Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate. Plant Physiol. 2018;176:1433–1451. doi: 10.1104/pp.17.01022. PubMed DOI PMC
Antoshvili M., Caspy I., Hippler M., Nelson N. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth. Res. 2018;139:499–508. doi: 10.1007/s11120-018-0501-4. PubMed DOI
Pi X., Tian L., Dai H.-E., Qin X., Cheng L., Kuang T., Sui S.-F., Shen J.-R. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl. Acad. Sci. USA. 2018;115:4423–4428. doi: 10.1073/pnas.1722482115. PubMed DOI PMC
Jordan P., Fromme P., Witt H.T., Klukas O., Saenger W., Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001;411:909–917. doi: 10.1038/35082000. PubMed DOI
Fromme P., Melkozernov A., Jordan P., Krauss N. Structure and function of photosystem I: Interaction with its soluble electron carriers and external antenna systems. FEBS Lett. 2003;555:40–44. doi: 10.1016/S0014-5793(03)01124-4. PubMed DOI
Grotjohann I., Fromme P. Structure of cyanobacterial photosystem I. Photosynth. Res. 2005;85:51–72. doi: 10.1007/s11120-005-1440-4. PubMed DOI
Aslan K., Leonenko Z., Lakowicz J.R., Geddes C.D. Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons. J. Fluoresc. 2005;15:643–654. doi: 10.1007/s10895-005-2970-z. PubMed DOI PMC
Chang G., Zhang J., Oyama M., Hirao K. Silver-Nanoparticle-Attached Indium Tin Oxide Surfaces Fabricated by a Seed-Mediated Growth Approach. J. Phys. Chem. B. 2005;109:1204–1209. doi: 10.1021/jp046652h. PubMed DOI
Jana N.R., Gearheart L., Murphy C.J. Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio. Chem. Commun. 2001:617–618. doi: 10.1039/b100521i. DOI
Lakowicz J.R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 2005;337:171–194. doi: 10.1016/j.ab.2004.11.026. PubMed DOI PMC
Chowdhury M.H., Ray K., Aslan K., Lakowicz J.R., Geddes C.D. Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. J. Phys. Chem. C Nanomater. Interfaces. 2007;111:18856–18863. doi: 10.1021/jp0731250. PubMed DOI PMC
Mackowski S., Wörmke S., Brotosudarmo T.H.P., Jung C., Hiller R.G., Scheer H., Bräuchle C. Energy Transfer in Reconstituted Peridinin-Chlorophyll-Protein Complexes: Ensemble and Single-Molecule Spectroscopy Studies. Biophys. J. 2007;93:3249–3258. doi: 10.1529/biophysj.107.112094. PubMed DOI PMC
Ray K., Badugu R., Lakowicz J.R. Metal-Enhanced Fluorescence from CdTe Nanocrystals: A Single-Molecule Fluorescence Study. J. Am. Chem. Soc. 2006;128:8998–8999. doi: 10.1021/ja061762i. PubMed DOI PMC
Qin X., Suga M., Kuang T., Shen J.-R. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 2015;348:989–995. doi: 10.1126/science.aab0214. PubMed DOI
Brecht M., Hussels M., Nieder J.B., Fang H., Elsässer C. Plasmonic interactions of photosystem I with Fischer patterns made of Gold and Silver. Chem. Phys. 2012;406:15–20. doi: 10.1016/j.chemphys.2012.05.005. DOI
Nabiev I., Rakovich A., Sukhanova A., Lukashev E., Zagidullin V., Pachenko V., Rakovich Y.P., Donegan J.F., Rubin A.B., Govorov A.O. Fluorescent Quantum Dots as Artificial Antennas for Enhanced Light Harvesting and Energy Transfer to Photosynthetic Reaction Centers. Angew. Chem. Int. Ed. 2010;49:7217–7221. doi: 10.1002/anie.201003067. PubMed DOI
Feifel S.C., Stieger K.R., Lokstein H., Lux H., Lisdat F. High photocurrent generation by photosystem I on artificial interfaces composed of π-system-modified graphene. J. Mater. Chem. A. 2015;3:12188–12196. doi: 10.1039/C5TA00656B. DOI
Stieger K.R., Feifel S.C., Lokstein H., Lisdat F. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys. Chem. Chem. Phys. 2014;16:15667. doi: 10.1039/C4CP00935E. PubMed DOI
Carmeli I., Mangold M., Frolov L., Zebli B., Carmeli C., Richter S., Holleitner A.W. A Photosynthetic Reaction Center Covalently Bound to Carbon Nanotubes. Adv. Mater. 2007;19:3901–3905. doi: 10.1002/adma.200700536. DOI
Hatazaki S., Sharma D.K., Hirata S., Nose K., Iyoda T., Kölsch A., Lokstein H., Vacha M. Identification of Short- and Long-Wavelength Emitting Chlorophylls in Cyanobacterial Photosystem I by Plasmon-Enhanced Single-Particle Spectroscopy at Room Temperature. J. Phys. Chem. Lett. 2018;9:6669–6675. doi: 10.1021/acs.jpclett.8b03064. PubMed DOI
Anger P., Bharadwaj P., Novotny L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006;96:113002. doi: 10.1103/PhysRevLett.96.113002. PubMed DOI
Szalkowski M., Olmos J.D.J., Buczyńska D., Maćkowski S., Kowalska D., Kargul J. Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires. Nanoscale. 2017;9:10475–10486. doi: 10.1039/C7NR03866F. PubMed DOI
LeBlanc G., Winter K.M., Crosby W.B., Jennings G.K., Cliffel D.E. Integration of Photosystem I with Graphene Oxide for Photocurrent Enhancement. Adv. Energy Mater. 2014;4:1301953. doi: 10.1002/aenm.201301953. DOI
Mershin A., Matsumoto K., Kaiser L., Yu D., Vaughn M., Nazeeruddin M.K., Bruce B.D., Graetzel M., Zhang S. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci. Rep. 2012;2:234. doi: 10.1038/srep00234. PubMed DOI PMC
Ciornii D., Riedel M., Stieger K.R., Feifel S.C., Hejazi M., Lokstein H., Zouni A., Lisdat F. Bioelectronic Circuit on a 3D Electrode Architecture: Enzymatic Catalysis Interconnected with Photosystem I. J. Am. Chem. Soc. 2017;139:16478–16481. doi: 10.1021/jacs.7b10161. PubMed DOI
Stieger K.R., Feifel S.C., Lokstein H., Hejazi M., Zouni A., Lisdat F. Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes. J. Mater. Chem. A. 2016;4:17009–17017. doi: 10.1039/C6TA07141D. DOI
Kondo M., Iida K., Dewa T., Tanaka H., Ogawa T., Nagashima S., Nagashima K.V.P., Shimada K., Hashimoto H., Gardiner A.T., et al. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules. 2012;13:432–438. doi: 10.1021/bm201457s. PubMed DOI
Friebe V.M., Delgado J.D., Swainsbury D.J.K., Gruber J.M., Chanaewa A., van Grondelle R., von Hauff E., Millo D., Jones M.R., Frese R.N. Plasmon-Enhanced Photocurrent of Photosynthetic Pigment Proteins on Nanoporous Silver. Adv. Funct. Mater. 2016;26:285–292. doi: 10.1002/adfm.201504020. DOI