Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins

. 2020 Apr 01 ; 21 (7) : . [epub] 20200401

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32244795

Grantová podpora
2017/27/B/ST3/02457 Narodowe Centrum Nauki
2016/21/B/ST3/02276 Narodowe Centrum Nauki
DZP/POLTUR-1/50/2016 Narodowe Centrum Badań i Rozwoju
UMO-2014/15/B/NZ1/00975 Narodowe Centrum Nauki
UMO-2017/27/B/ST5/00472 Narodowe Centrum Nauki

The effects of combining naturally evolved photosynthetic pigment-protein complexes with inorganic functional materials, especially plasmonically active metallic nanostructures, have been a widely studied topic in the last few decades. Besides other applications, it seems to be reasonable using such hybrid systems for designing future biomimetic solar cells. In this paper, we describe selected results that point out to various aspects of the interactions between photosynthetic complexes and plasmonic excitations in Silver Island Films (SIFs). In addition to simple light-harvesting complexes, like peridinin-chlorophyll-protein (PCP) or the Fenna-Matthews-Olson (FMO) complex, we also discuss the properties of large, photosynthetic reaction centers (RCs) and Photosystem I (PSI)-both prokaryotic PSI core complexes and eukaryotic PSI supercomplexes with attached antenna clusters (PSI-LHCI)-deposited on SIF substrates.

Zobrazit více v PubMed

Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K., Hou H.J.M., Shen J.-R., Allakhverdiev S.I. Components of Natural Photosynthetic Apparatus in Solar Cells. In: Najafpour M.M., editor. Applied Photosynthesis—New Progress. InTech; London, UK: 2016.

Stephens E., Ross I.L., Mussgnug J.H., Wagner L.D., Borowitzka M.A., Posten C., Kruse O., Hankamer B. Future prospects of microalgal biofuel production systems. Trends Plant Sci. 2010;15:554–564. doi: 10.1016/j.tplants.2010.06.003. PubMed DOI

Cogdell R. Can photosynthesis provide a “biological blueprint” for the design of novel solar cells? Trends Biotechnol. 1998;16:521–527. doi: 10.1016/S0167-7799(98)01208-6. DOI

Janna Olmos J.D., Kargul J. Oxygenic photosynthesis: Translation to solar fuel technologies. Acta Soc. Bot. Pol. 2014;83:423–440. doi: 10.5586/asbp.2014.037. DOI

Johansson T.B. Renewable Energy: Sources for Fuels and Electricity. Island Press; Washington, DC, USA: 1993.

Panwar N.L., Kaushik S.C., Kothari S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011;15:1513–1524. doi: 10.1016/j.rser.2010.11.037. DOI

Twidell J., Weir T. Renewable Energy Resources. Routledge; London, UK: 2015.

Janna Olmos J.D., Kargul J. A quest for the artificial leaf. Int. J. Biochem. Cell Biol. 2015;66:37–44. doi: 10.1016/j.biocel.2015.07.005. PubMed DOI

Mackowski S. Hybrid nanostructures for efficient light harvesting. J. Phys. Condens. Matter. 2010;22:193102. doi: 10.1088/0953-8984/22/19/193102. PubMed DOI

Blankenship R.E., Tiede D.M., Barber J., Brudvig G.W., Fleming G., Ghirardi M., Gunner M.R., Junge W., Kramer D.M., Melis A., et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science. 2011;332:805–809. doi: 10.1126/science.1200165. PubMed DOI

Green M.A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovolt. Res. Appl. 2009;17:183–189. doi: 10.1002/pip.892. DOI

Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cell efficiency tables (Version 45) Prog. Photovolt. Res. Appl. 2015;23:1–9. doi: 10.1002/pip.2573. DOI

Richards B.S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. Cells. 2006;90:2329–2337. doi: 10.1016/j.solmat.2006.03.035. DOI

Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010;9:205–213. doi: 10.1038/nmat2629. PubMed DOI

Kargul J., Janna Olmos J.D., Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. J. Plant Physiol. 2012;169:1639–1653. doi: 10.1016/j.jplph.2012.05.018. PubMed DOI

Ocakoglu K., Krupnik T., van den Bosch B., Harputlu E., Gullo M.P., Olmos J.D.J., Yildirimcan S., Gupta R.K., Yakuphanoglu F., Barbieri A., et al. Photosystem I-based Biophotovoltaics on Nanostructured Hematite. Adv. Funct. Mater. 2014;24:7467–7477. doi: 10.1002/adfm.201401399. DOI

Lakowicz J.R. Radiative Decay Engineering: Biophysical and Biomedical Applications. Anal. Biochem. 2001;298:1–24. doi: 10.1006/abio.2001.5377. PubMed DOI PMC

Sugiyama M., Fujii K., Nakamura S. Solar to Chemical Energy Conversion: Theory and Application. Springer International Publishing; Basel, Switzerland: 2016.

Zhao F., Ruff A., Rögner M., Schuhmann W., Conzuelo F. Extended Operational Lifetime of a Photosystem-Based Bioelectrode. J. Am. Chem. Soc. 2019;141:5102–5106. doi: 10.1021/jacs.8b13869. PubMed DOI

Mackowski S., Wörmke S., Maier A.J., Brotosudarmo T.H.P., Harutyunyan H., Hartschuh A., Govorov A.O., Scheer H., Bräuchle C. Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. Nano Lett. 2008;8:558–564. doi: 10.1021/nl072854o. PubMed DOI

Schmidt M., Mackowski S. Theoretical studies of excitation dynamics in a peridinin-chlorophyll-protein coupled to a metallic nanoparticle. Open Phys. 2011;9:47–51. doi: 10.2478/s11534-011-0003-x. DOI

Czechowski N., Lokstein H., Kowalska D., Ashraf K., Cogdell R.J., Mackowski S. Large plasmonic fluorescence enhancement of cyanobacterial photosystem I coupled to silver island films. Appl. Phys. Lett. 2014;105:043701. doi: 10.1063/1.4891856. DOI

Szalkowski M., Ashraf K.U., Lokstein H., Mackowski S., Cogdell R.J., Kowalska D. Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules. Photosynth. Res. 2016;127:103–108. doi: 10.1007/s11120-015-0178-x. PubMed DOI

Bharadwaj P., Novotny L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express. 2007;15:14266–14274. doi: 10.1364/OE.15.014266. PubMed DOI

Lakowicz J.R., Shen Y., D’Auria S., Malicka J., Fang J., Gryczynski Z., Gryczynski I. Radiative Decay Engineering: 2. Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer. Anal. Biochem. 2002;301:261–277. doi: 10.1006/abio.2001.5503. PubMed DOI PMC

Ashraf I., Konrad A., Lokstein H., Skandary S., Metzger M., Djouda J.M., Maurer T., Adam P.M., Meixner A.J., Brecht M. Temperature dependence of metal-enhanced fluorescence of photosystem I from Thermosynechococcus elongatus. Nanoscale. 2017;9:4196–4204. doi: 10.1039/C6NR08762K. PubMed DOI

Badura A., Kothe T., Schuhmann W., Rögner M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 2011;4:3263–3274. doi: 10.1039/c1ee01285a. DOI

Ciesielski P.N., Faulkner C.J., Irwin M.T., Gregory J.M., Tolk N.H., Cliffel D.E., Jennings G.K. Enhanced Photocurrent Production by Photosystem I Multilayer Assemblies. Adv. Funct. Mater. 2010;20:4048–4054. doi: 10.1002/adfm.201001193. DOI

LeBlanc G., Gizzie E., Yang S., Cliffel D.E., Jennings G.K. Photosystem I Protein Films at Electrode Surfaces for Solar Energy Conversion. Langmuir. 2014;30:10990–11001. doi: 10.1021/la500129q. PubMed DOI

Frolov L., Wilner O., Carmeli C., Carmeli I. Fabrication of Oriented Multilayers of Photosystem I Proteins on Solid Surfaces by Auto-Metallization. Adv. Mater. 2008;20:263–266. doi: 10.1002/adma.200701474. DOI

Carmeli I., Lieberman I., Kraversky L., Fan Z., Govorov A.O., Markovich G., Richter S. Broad Band Enhancement of Light Absorption in Photosystem I by Metal Nanoparticle Antennas. Nano Lett. 2010;10:2069–2074. doi: 10.1021/nl100254j. PubMed DOI

Polívka T., Hofmann E. Structure-Function Relationship in Peridinin-Chlorophyll Proteins. In: Hohmann-Marriott M.F., editor. The Structural Basis of Biological Energy Generation. Volume 39. Springer; Dordrecht, The Netherlands: 2014. pp. 39–58.

Carbonera D., Valentin M., Spezia R., Mezzetti A. The Unique Photophysical Properties of the Peridinin-Chlorophyll-a-Protein. Curr. Protein Pept. Sci. 2014;15:332–350. doi: 10.2174/1389203715666140327111139. PubMed DOI PMC

Schulte T., Johanning S., Hofmann E. Structure and function of native and refolded peridinin-chlorophyll-proteins from dinoflagellates. Eur. J. Cell Biol. 2010;89:990–997. doi: 10.1016/j.ejcb.2010.08.004. PubMed DOI

Takaichi S., Nippon M.S., Ohoka H. Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: Carotenoid glucoside esters, menaquinone [Vitamine K] and chlorophylls. Plant Cell Physiol. Jpn. 1999;40:691–694. doi: 10.1093/oxfordjournals.pcp.a029594. DOI

Tsukatani Y., Miyamoto R., Itoh S., Oh-Oka H. Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation. Regulation of energy transfer and ferredoxin-mediated NADP+ reduction on the cytoplasmic side. J. Biol. Chem. 2004;279:51122–51130. PubMed

Frigaard N.-U., Chew A.G.M., Li H., Maresca J.A., Bryant D.A. Chlorobium tepidum: Insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth. Res. 2003;78:93–117. doi: 10.1023/B:PRES.0000004310.96189.b4. PubMed DOI

Azai C., Kim K., Kondo T., Harada J., Itoh S., Oh-oka H. A heterogeneous tag-attachment to the homodimeric type 1 photosynthetic reaction center core protein in the green sulfur bacterium Chlorobaculum tepidum. Biochim. Biophys. Acta. 2011;1807:803–812. doi: 10.1016/j.bbabio.2011.03.007. PubMed DOI

He G., Niedzwiedzki D.M., Orf G.S., Zhang H., Blankenship R.E. Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum. J. Phys. Chem. B. 2015;119:8321–8329. doi: 10.1021/acs.jpcb.5b04170. PubMed DOI

Rémigy H.W., Stahlberg H., Fotiadis D., Müller S.A., Wolpensinger B., Engel A., Hauska G., Tsiotis G. The reaction center complex from the green sulfur bacterium Chlorobium tepidum: A structural analysis by scanning transmission electron microscopy. J. Mol. Biol. 1999;290:851–858. doi: 10.1006/jmbi.1999.2925. PubMed DOI

Maćkowski S., Czechowski N., Ashraf K.U., Szalkowski M., Lokstein H., Cogdell R.J., Kowalska D. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films. FEBS Lett. 2016;590:2558–2565. doi: 10.1002/1873-3468.12292. PubMed DOI

Olson J.M. The FMO protein. In: Govindjee B.J.T., Gest H., Allen J.F., editors. Discoveries in Photosynthesis. Springer; Dordrecht, The Netherlands: 2005. pp. 421–427. Advances in Photosynthesis and Respiration.

Olson J.M. Chlorophyll Organization and Function in Green Photosynthetic Bacteria*. Photochem. Photobiol. 1998;67:61–75. doi: 10.1111/j.1751-1097.1998.tb05166.x. DOI

Blankenship R.E., Olson J.M., Miller M. Antenna Complexes from Green Photosynthetic Bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., editors. Anoxygenic Photosynthetic Bacteria. Springer; Dordrecht, The Netherlands: 1995. pp. 399–435. Advances in Photosynthesis and Respiration.

Matthews B.W., Fenna R.E. Structure of a green bacteriochlorophyll protein. Acc. Chem. Res. 1980;13:309–317. doi: 10.1021/ar50153a003. DOI

Blankenship R.E. Molecular Mechanisms of Photosynthesis. Wiley-Blackwell; Hoboken, NJ, USA: 2014.

Haniewicz P., Abram M., Nosek L., Kirkpatrick J., El-Mohsnawy E., Olmos J.D.J., Kouřil R., Kargul J.M. Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate. Plant Physiol. 2018;176:1433–1451. doi: 10.1104/pp.17.01022. PubMed DOI PMC

Antoshvili M., Caspy I., Hippler M., Nelson N. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth. Res. 2018;139:499–508. doi: 10.1007/s11120-018-0501-4. PubMed DOI

Pi X., Tian L., Dai H.-E., Qin X., Cheng L., Kuang T., Sui S.-F., Shen J.-R. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl. Acad. Sci. USA. 2018;115:4423–4428. doi: 10.1073/pnas.1722482115. PubMed DOI PMC

Jordan P., Fromme P., Witt H.T., Klukas O., Saenger W., Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001;411:909–917. doi: 10.1038/35082000. PubMed DOI

Fromme P., Melkozernov A., Jordan P., Krauss N. Structure and function of photosystem I: Interaction with its soluble electron carriers and external antenna systems. FEBS Lett. 2003;555:40–44. doi: 10.1016/S0014-5793(03)01124-4. PubMed DOI

Grotjohann I., Fromme P. Structure of cyanobacterial photosystem I. Photosynth. Res. 2005;85:51–72. doi: 10.1007/s11120-005-1440-4. PubMed DOI

Aslan K., Leonenko Z., Lakowicz J.R., Geddes C.D. Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons. J. Fluoresc. 2005;15:643–654. doi: 10.1007/s10895-005-2970-z. PubMed DOI PMC

Chang G., Zhang J., Oyama M., Hirao K. Silver-Nanoparticle-Attached Indium Tin Oxide Surfaces Fabricated by a Seed-Mediated Growth Approach. J. Phys. Chem. B. 2005;109:1204–1209. doi: 10.1021/jp046652h. PubMed DOI

Jana N.R., Gearheart L., Murphy C.J. Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio. Chem. Commun. 2001:617–618. doi: 10.1039/b100521i. DOI

Lakowicz J.R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 2005;337:171–194. doi: 10.1016/j.ab.2004.11.026. PubMed DOI PMC

Chowdhury M.H., Ray K., Aslan K., Lakowicz J.R., Geddes C.D. Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. J. Phys. Chem. C Nanomater. Interfaces. 2007;111:18856–18863. doi: 10.1021/jp0731250. PubMed DOI PMC

Mackowski S., Wörmke S., Brotosudarmo T.H.P., Jung C., Hiller R.G., Scheer H., Bräuchle C. Energy Transfer in Reconstituted Peridinin-Chlorophyll-Protein Complexes: Ensemble and Single-Molecule Spectroscopy Studies. Biophys. J. 2007;93:3249–3258. doi: 10.1529/biophysj.107.112094. PubMed DOI PMC

Ray K., Badugu R., Lakowicz J.R. Metal-Enhanced Fluorescence from CdTe Nanocrystals: A Single-Molecule Fluorescence Study. J. Am. Chem. Soc. 2006;128:8998–8999. doi: 10.1021/ja061762i. PubMed DOI PMC

Qin X., Suga M., Kuang T., Shen J.-R. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 2015;348:989–995. doi: 10.1126/science.aab0214. PubMed DOI

Brecht M., Hussels M., Nieder J.B., Fang H., Elsässer C. Plasmonic interactions of photosystem I with Fischer patterns made of Gold and Silver. Chem. Phys. 2012;406:15–20. doi: 10.1016/j.chemphys.2012.05.005. DOI

Nabiev I., Rakovich A., Sukhanova A., Lukashev E., Zagidullin V., Pachenko V., Rakovich Y.P., Donegan J.F., Rubin A.B., Govorov A.O. Fluorescent Quantum Dots as Artificial Antennas for Enhanced Light Harvesting and Energy Transfer to Photosynthetic Reaction Centers. Angew. Chem. Int. Ed. 2010;49:7217–7221. doi: 10.1002/anie.201003067. PubMed DOI

Feifel S.C., Stieger K.R., Lokstein H., Lux H., Lisdat F. High photocurrent generation by photosystem I on artificial interfaces composed of π-system-modified graphene. J. Mater. Chem. A. 2015;3:12188–12196. doi: 10.1039/C5TA00656B. DOI

Stieger K.R., Feifel S.C., Lokstein H., Lisdat F. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys. Chem. Chem. Phys. 2014;16:15667. doi: 10.1039/C4CP00935E. PubMed DOI

Carmeli I., Mangold M., Frolov L., Zebli B., Carmeli C., Richter S., Holleitner A.W. A Photosynthetic Reaction Center Covalently Bound to Carbon Nanotubes. Adv. Mater. 2007;19:3901–3905. doi: 10.1002/adma.200700536. DOI

Hatazaki S., Sharma D.K., Hirata S., Nose K., Iyoda T., Kölsch A., Lokstein H., Vacha M. Identification of Short- and Long-Wavelength Emitting Chlorophylls in Cyanobacterial Photosystem I by Plasmon-Enhanced Single-Particle Spectroscopy at Room Temperature. J. Phys. Chem. Lett. 2018;9:6669–6675. doi: 10.1021/acs.jpclett.8b03064. PubMed DOI

Anger P., Bharadwaj P., Novotny L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006;96:113002. doi: 10.1103/PhysRevLett.96.113002. PubMed DOI

Szalkowski M., Olmos J.D.J., Buczyńska D., Maćkowski S., Kowalska D., Kargul J. Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires. Nanoscale. 2017;9:10475–10486. doi: 10.1039/C7NR03866F. PubMed DOI

LeBlanc G., Winter K.M., Crosby W.B., Jennings G.K., Cliffel D.E. Integration of Photosystem I with Graphene Oxide for Photocurrent Enhancement. Adv. Energy Mater. 2014;4:1301953. doi: 10.1002/aenm.201301953. DOI

Mershin A., Matsumoto K., Kaiser L., Yu D., Vaughn M., Nazeeruddin M.K., Bruce B.D., Graetzel M., Zhang S. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci. Rep. 2012;2:234. doi: 10.1038/srep00234. PubMed DOI PMC

Ciornii D., Riedel M., Stieger K.R., Feifel S.C., Hejazi M., Lokstein H., Zouni A., Lisdat F. Bioelectronic Circuit on a 3D Electrode Architecture: Enzymatic Catalysis Interconnected with Photosystem I. J. Am. Chem. Soc. 2017;139:16478–16481. doi: 10.1021/jacs.7b10161. PubMed DOI

Stieger K.R., Feifel S.C., Lokstein H., Hejazi M., Zouni A., Lisdat F. Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes. J. Mater. Chem. A. 2016;4:17009–17017. doi: 10.1039/C6TA07141D. DOI

Kondo M., Iida K., Dewa T., Tanaka H., Ogawa T., Nagashima S., Nagashima K.V.P., Shimada K., Hashimoto H., Gardiner A.T., et al. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules. 2012;13:432–438. doi: 10.1021/bm201457s. PubMed DOI

Friebe V.M., Delgado J.D., Swainsbury D.J.K., Gruber J.M., Chanaewa A., van Grondelle R., von Hauff E., Millo D., Jones M.R., Frese R.N. Plasmon-Enhanced Photocurrent of Photosynthetic Pigment Proteins on Nanoporous Silver. Adv. Funct. Mater. 2016;26:285–292. doi: 10.1002/adfm.201504020. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace