Evaluating the Efficacy of 30 Different Essential Oils against Varroa destructor and Honey Bee Workers (Apis mellifera)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34821845
PubMed Central
PMC8623799
DOI
10.3390/insects12111045
PII: insects12111045
Knihovny.cz E-zdroje
- Klíčová slova
- Varroa mite, acaricidal effect, complete exposure bioassay, honey bee, screening,
- Publikační typ
- časopisecké články MeSH
Essential oils and their components are generally known for their acaricidal effects and are used as an alternative to control the population of the Varroa destructor instead of synthetic acaricides. However, for many essential oils, the exact acaricidal effect against Varroa mites, as well as the effect against honey bees, is not known. In this study, 30 different essential oils were screened by using a glass-vial residual bioassay. Essential oils showing varroacidal efficacy > 70% were tested by the complete exposure assay. A total of five bees and five mites were placed in the Petri dishes in five replications for each concentration of essential oil. Mite and bee mortality rates were assessed after 4, 24, 48, and 72 h. The LC50 values and selectivity ratio (SR) were calculated. For essential oils with the best selectivity ratio, their main components were detected and quantified by GC-MS/MS. The results suggest that the most suitable oils are peppermint and manuka (SR > 9), followed by oregano, litsea (SR > 5), carrot, and cinnamon (SR > 4). Additionally, these oils showed a trend of the increased value of selective ratio over time. All these oils seem to be better than thymol (SR < 3.2), which is commonly used in beekeeping practice. However, the possible use of these essential oils has yet to be verified in beekeeping practice.
Aromaterapeutická KH a s Kšice 11 349 01 Stříbro Czech Republic
Faculty of AgriSciences Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
Zobrazit více v PubMed
Rosenkranz P., Aumeier P., Ziegelmann B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010;103:S96–S119. doi: 10.1016/j.jip.2009.07.016. PubMed DOI
Sammataro D., Gerson U., Needham G. Parasitic mites of honey bees: Life history, implications, and impact. Annu. Rev. Entomol. 2000;45:519–548. doi: 10.1146/annurev.ento.45.1.519. PubMed DOI
Ramsey S.D., Ochoa R., Bauchan G., Gulbronson C., Mowery J.D., Cohen A., Lim D., Joklik J., Cicero J.M., Ellis J.D. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA. 2019;116:1792–1801. doi: 10.1073/pnas.1818371116. PubMed DOI PMC
Bowen-Walker P.L., Gunn A. The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomol. Exp. Appl. 2001;101:207–217. doi: 10.1046/j.1570-7458.2001.00905.x. DOI
Yang X., Cox-Foster D.L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. USA. 2005;102:7470–7475. doi: 10.1073/pnas.0501860102. PubMed DOI PMC
Le Conte Y., Ellis M., Ritter W. Varroa mites and honey bee health: Can varroa explain part of the colony losses? Apidologie. 2010;41:353–363. doi: 10.1051/apido/2010017. DOI
Bowen-Walker P., Martin S., Gunn A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invertebr. Pathol. 1999;73:101–106. doi: 10.1006/jipa.1998.4807. PubMed DOI
Chen Y., Zhao Y., Hammond J., Hsu H., Evans J., Feldlaufer M. Multiple virus infections in the honey bee and genome divergence of honey bee viruses. J. Invertebr. Pathol. 2004;87:84–93. doi: 10.1016/j.jip.2004.07.005. PubMed DOI
Di Prisco G., Pennacchio F., Caprio E., Boncristiani H.F., Jr., Evans J.D., Chen Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J. Gen. Virol. 2011;92:151–155. doi: 10.1099/vir.0.023853-0. PubMed DOI
Martin S.J., Highfield A.C., Brettell L., Villalobos E.M., Budge G.E., Powell M., Nikaido S., Schroeder D.C. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336:1304–1306. doi: 10.1126/science.1220941. PubMed DOI
Shen M., Cui L., Ostiguy N., Cox-Foster D. Intricate transmission routes and interactions between picorna-like viruses (Kashmir Bee Virus and Sacbrood Virus) with the honeybee host and the parasitic varroa mite. J. Gen. Virol. 2005;86:2281–2289. doi: 10.1099/vir.0.80824-0. PubMed DOI
Genersch E. Honey bee pathology: Current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 2010;87:87–97. doi: 10.1007/s00253-010-2573-8. PubMed DOI
Meixner M.D. A historical review of managed honey bee populations in Europe and the United States and the factors That may affect them. J. Invertebr. Pathol. 2010;103:S80–S95. PubMed
Annoscia D., Del Piccolo F., Nazzi F. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees. J. Insect Physiol. 2012;58:1548–1555. doi: 10.1016/j.jinsphys.2012.09.008. PubMed DOI
Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010;25:345–353. doi: 10.1016/j.tree.2010.01.007. PubMed DOI
Martin S.J. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Exp. Appl. Acarol. 1994;18:87–100. doi: 10.1007/BF00055033. DOI
Murilhas A.M. Varroa destructor infestation impact on Apis mellifera Carnica capped worker brood production, bee population and honey storage in a Mediterranean climate. Apidologie. 2002;33:271–281. doi: 10.1051/apido:2002013. DOI
Delaplane K.S., Hood W.M. Effects of delayed acaricide treatment in honey bee colonies parasitized by Varroa jacobsoni and a late-season treatment threshold for the South-Eastern USA. J. Apic. Res. 1997;36:125–132. doi: 10.1080/00218839.1997.11100938. DOI
Meikle W.G., Sammataro D., Neumann P., Pflugfelder J. Challenges for developing pathogen-based biopesticides against Varroa destructor (Mesostigmata: Varroidae) Apidologie. 2012;43:501–514. doi: 10.1007/s13592-012-0118-0. DOI
Calderone N.W., Shimanuki H., Allen-Wardell G. An in vitro evaluation of botanical compounds for the control of the honeybee pathogens Bacillus larvae and Ascosphaera apis, and the secondary invader B. Alvei. J. Essent. Oil Res. 1994;6:279–287. doi: 10.1080/10412905.1994.9698376. DOI
Cakmak I., Aydin L., Gulegen E., Wells H. Varroa (Varroa destructor) and tracheal mite (Acarapis woodi) incidence in the Republic of Turkey. J. Apic. Res. 2003;42:57–60. doi: 10.1080/00218839.2003.11101093. DOI
Price K.L., Lummis S.C. An atypical residue in the pore of Varroa destructor GABA-activated RDL receptors affects picrotoxin block and thymol modulation. Insect Biochem. Mol. Biol. 2014;55:19–25. doi: 10.1016/j.ibmb.2014.10.002. PubMed DOI PMC
Rinkevich F.D. Detection of amitraz resistance and reduced treatment efficacy in the varroa mite, Varroa destructor, within commercial beekeeping operations. PLoS ONE. 2020;15:e0227264. doi: 10.1371/journal.pone.0227264. PubMed DOI PMC
Wallner K. Varroacides and their residues in bee products. Apidologie. 1999;30:235–248. doi: 10.1051/apido:19990212. DOI
Kanga L.H., Jones W.A., Gracia C. Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor (Acari: Varroidae) in honey bee colonies in Texas and Florida. Exp. Appl. Acarol. 2006;40:249–258. doi: 10.1007/s10493-006-9033-2. PubMed DOI
Milani N. The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie. 1999;30:229–234. doi: 10.1051/apido:19990211. DOI
Akyol E., Özkök D. The use of organic acids for varroa (Varroa destructor) control. Uludag Bee J. 2005;5:167–174.
Aydın L. Control of honey bee diseases and pets in autumn. Uludag Bee J. 2005;5:159–161.
Isman M.B. Plant essential oils for pest and disease management. Crop Prot. 2000;19:603–608. doi: 10.1016/S0261-2194(00)00079-X. DOI
Emsen B., Dodoloğlu A., Genç F. Natural compounds for the control of Varroa destructor in honey bees (Apis mellifera L.) and an economic assessment of these products. Mellifera. 2010;10:32–36.
Bahreini R. Comparison of two methods of applying oxalic acid for control of varroa. J. Apic. Res. 2003;42:82–83. doi: 10.1080/00218839.2003.11101098. DOI
Hatjina F., Haristos L. Indirect effects of oxalic acid administered by trickling method on honey bee brood. J. Apic. Res. 2005;44:172–174. doi: 10.1080/00218839.2005.11101174. DOI
Gregorc A., Škerl M.I.S. Toxicological and immunohistochemical testing of honeybees after oxalic acid and rotenone treatments. Apidologie. 2007;38:296–305. doi: 10.1051/apido:2007014. DOI
Hernández R.M., Pascual M.H., Pérez J., del Nozal Nalda M.J., Meana A. Short term negative effect of oxalic acid in “Apis mellifera Iberiensis”. Span. J. Agric. Res. 2007;5:474–480. doi: 10.5424/sjar/2007054-270. DOI
Silva-Zacarin E.C., Gregorc A., de Moraes R.L.S. In situ localization of heat-shock proteins and cell death labelling in the salivary gland of acaricide-treated honeybee larvae. Apidologie. 2006;37:507–516. doi: 10.1051/apido:2006030. DOI
Underwood R., Currie R. Use of formic acid to control varroa and tracheal mites in indoor overwintering facilities. Am. Bee J. 2003;143:323.
Higes M., Meana A., Suárez M., Llorente J. Negative long-term effects on bee colonies treated with oxalic acid against Varroa jacobsoni Oud. Apidologie. 1999;30:289–292. doi: 10.1051/apido:19990404. DOI
Borsuk G., Olszewski K., Paleolog J., Strachecka A., Gryzińska M. The effect of different varroacides on the acidity of winter stores and honey stores. Ann. UMCS Zootech. 2012;30:11–16. doi: 10.2478/v10083-012-0002-4. DOI
Conti B., Bocchino R., Cosci F., Ascrizzi R., Flamini G., Bedini S. Essential oils against Varroa destructor: A soft way to fight the parasitic mite of Apis mellifera. J. Apic. Res. 2020;59:774–782. doi: 10.1080/00218839.2020.1790790. DOI
Carson C.F., Hammer K.A. Chemistry and bioactivity of essential oils. Lipids Essent. Oils Antimicrob. Agents. 2011;25:203–238.
Athanassiou C.G., Rani P.U., Kavallieratos N.G. Advances in Plant Biopesticides. Springer; Berlin/Heidelberg, Germany: 2014. The use of plant extracts for stored product protection; pp. 131–147.
Bedini S., Flamini G., Girardi J., Cosci F., Conti B. Not just for beer: Evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods. J. Pest Sci. 2015;88:583–592. doi: 10.1007/s10340-015-0647-1. DOI
Bedini S., Cosci F., Tani C., Pierattini E.C., Venturi F., Lucchi A., Ioriatti C., Ascrizzi R., Flamini G., Ferroni G. Essential oils as post-harvest crop protectants against the fruit fly Drosophila suzukii: Bioactivity and organoleptic profile. Insects. 2020;11:508. doi: 10.3390/insects11080508. PubMed DOI PMC
Bedini S., Flamini G., Cosci F., Ascrizzi R., Echeverria M.C., Guidi L., Landi M., Lucchi A., Conti B. Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria. Parasites Vectors. 2017;10:1–10. doi: 10.1186/s13071-017-2006-y. PubMed DOI PMC
Omar A., Zayed M. Bioactivity impact of essential oils Allium sativum L. and Citrus reticulata L. against stored product insects Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.) J. Plant Prot. Pathol. 2021;12:465–471.
Ebadollahi A., Ziaee M., Palla F. Essential oils extracted from different species of the lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules. 2020;25:1556. doi: 10.3390/molecules25071556. PubMed DOI PMC
Bedini S., Bougherra H.H., Flamini G., Cosci F., Belhamel K., Ascrizzi R., Conti B. Repellency of anethole-and estragole-type fennel essential oils against stored grain pests: The different twins. Bull. Insectol. 2016;69:149–157.
Conti B., Benelli G., Leonardi M., Afifi F.U., Cervelli C., Profeti R., Pistelli L., Canale A. Repellent effect of Salvia dorisiana, S. longifolia, and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae) Parasitol. Res. 2012;111:291–299. doi: 10.1007/s00436-012-2837-6. PubMed DOI
Lima T.C., da Silva T.K.M., Silva F.L., Barbosa-Filho J.M., Marques M.O.M., Santos R.L.C., de Holanda Cavalcanti S.C., de Sousa D.P. Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere. 2014;104:37–43. doi: 10.1016/j.chemosphere.2013.10.035. PubMed DOI
Benelli G., Bedini S., Cosci F., Toniolo C., Conti B., Nicoletti M. Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): A bioactivity survey across production sites. Parasitol. Res. 2015;114:227–236. doi: 10.1007/s00436-014-4183-3. PubMed DOI
Regnault-Roger C., Vincent C., Arnason J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Èntomol. 2012;57:405–424. doi: 10.1146/annurev-ento-120710-100554. PubMed DOI
Rajendran S., Sriranjini V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008;44:126–135. doi: 10.1016/j.jspr.2007.08.003. DOI
Eguaras M.J., Fuselli S., Gende L., Fritz R., Ruffinengo S.R., Clemente G., Gonzalez A., Bailac P.N., Ponzi M.I. An in vitro evaluation of Tagetes minuta essential oil for the control of the honeybee pathogens Paenibacillus larvae and Ascosphaera apis, and the parasitic mite Varroa destructor. J. Essent. Oil Res. 2005;17:336–340. doi: 10.1080/10412905.2005.9698924. DOI
Imdorf A., Bogdanov S., Ochoa R.I., Calderone N.W. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie. 1999;30:209–228. doi: 10.1051/apido:19990210. DOI
Gashout H.A., Guzmán-Novoa E. Acute toxicity of essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera L.) J. Apic. Res. 2009;48:263–269. doi: 10.3896/IBRA.1.48.4.06. DOI
Ramzi H., Ismaili M.R., Aberchane M., Zaanoun S. Chemical characterization and acaricidal activity of Thymus satureioides C. & B. and Origanum elongatum E. & M. (Lamiaceae) essential oils against Varroa destructor Anderson & Trueman (Acari: Varroidae) Ind. Crops Prod. 2017;108:201–207.
Lindberg C.M., Melathopoulos A.P., Winston M.L. Laboratory evaluation of miticides to csontrol Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. J. Econ. Entomol. 2000;93:189–198. doi: 10.1603/0022-0493-93.2.189. PubMed DOI
Adamczyk S., Lázaro R., Pérez-Arquillué C., Conchello P., Herrera A. Evaluation of residues of essential oil components in honey after different anti-varroa treatments. J. Agric. Food Chem. 2005;53:10085–10090. doi: 10.1021/jf051813f. PubMed DOI
Ariana A., Ebadi R., Tahmasebi G. Laboratory evaluation of some plant essences to control Varroa destructor (Acari: Varroidae) Exp. Appl. Acarol. 2002;27:319–327. doi: 10.1023/A:1023342118549. PubMed DOI
Aliano N.P., Ellis M.D., Siegfried B.D. Acute contact toxicity of oxalic acid to Varroa destructor (Acari: Varroidae) and their Apis mellifera (Hymenoptera: Apidae) hosts in laboratory bioassays. J. Econ. Entomol. 2006;99:1579–1582. doi: 10.1093/jee/99.5.1579. PubMed DOI
Ruffinengo S., Eguaras M., Floris I., Faverin C., Bailac P., Ponzi M. LD50 and repellent effects of essential oils from Argentinian wild plant species on Varroa destructor. J. Econ. Entomol. 2005;98:651–655. doi: 10.1603/0022-0493-98.3.651. PubMed DOI
Damiani N., Gende L.B., Bailac P., Marcangeli J.A., Eguaras M.J. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae) Parasitol. Res. 2009;106:145–152. doi: 10.1007/s00436-009-1639-y. PubMed DOI
Tihelka E. Effects of synthetic and organic acaricides on honey bee health: A review. Slov. Veter.-Res. 2018;55:114–140. doi: 10.26873/SVR-422-2017. DOI
Charpentier G., Vidau C., Ferdy J., Tabart J., Vetillard A. Lethal and sub-lethal effects of thymol on honeybee (Apis mellifera) larvae reared in vitro. Pest Manag. Sci. 2014;70:140–147. doi: 10.1002/ps.3539. PubMed DOI
Boncristiani H., Underwood R., Schwarz R., Evans J.D., Pettis J. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol. 2012;58:613–620. doi: 10.1016/j.jinsphys.2011.12.011. PubMed DOI
Bogdanov S., Imdorf A., Kilchenmann V. Residues in wax and honey after Apilife VAR® treatment. Apidologie. 1998;29:513–524. doi: 10.1051/apido:19980604. DOI
Floris I., Satta A., Cabras P., Garau V.L., Angioni A. Comparison between two thymol formulations in the control of Varroa destructor: Effectiveness, persistence, and residues. J. Econ. Entomol. 2004;97:187–191. doi: 10.1603/0022-0493-97.2.187. PubMed DOI
Tananaki C., Goras G., Huggett N., Karazafiris E., Dimou M., Thrasyvoulou A. Evaluation of the impact of Exomite ProTM on varroa mite (Varroa destructor) populations and honeybee (Apis mellifera) colonies: Efficacy, side effects and residues. Parasitol. Res. 2014;113:1251–1259. doi: 10.1007/s00436-013-3739-y. PubMed DOI
Ares A.M., Nozal M.J., Bernal J.L., Bernal J. Simultaneous determination of carvacrol and thymol in bee pollen by using a simple and efficient solvent extraction method and gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2020;181:113124. doi: 10.1016/j.jpba.2020.113124. PubMed DOI
Bergougnoux M., Treilhou M., Armengaud C. Exposure to thymol decreased phototactic behaviour in the honeybee (Apis mellifera) in laboratory conditions. Apidologie. 2013;44:82–89. doi: 10.1007/s13592-012-0158-5. DOI
Colin T., Lim M.Y., Quarrell S.R., Allen G.R., Barron A.B. Effects of thymol on European honey bee hygienic behaviour. Apidologie. 2019;50:141–152. doi: 10.1007/s13592-018-0625-8. DOI
Gunes N., Aydın L., Belenli D., Hranitz J.M., Mengilig S., Selova S. Stress responses of honey bees to organic acid and essential oil treatments against varroa mites. J. Apic. Res. 2017;56:175–181. doi: 10.1080/00218839.2017.1291229. DOI
Jeong E.-Y., Jeon J.-H., Kim H.-W., Kim M.-G., Lee H.-S. Antimicrobial activity of leptospermone and its derivatives against human intestinal bacteria. Food Chem. 2009;115:1401–1404. doi: 10.1016/j.foodchem.2009.01.086. DOI
Jeong E., Kim M., Lee H. Acaricidal activity of triketone analogues derived from Leptospermum scoparium oil against house-dust and stored-food mites. Pest Manag. Sci. 2009;65:327–331. doi: 10.1002/ps.1684. PubMed DOI
Mattila H., Otis G., Daley J., Schulz T. Trials of apiguard, a thymol-based miticide part 2. Non-target effects on honey bees. Am. Bee J. 2000;140:68–70.
Zambonelli A., D’Aulerio A.Z., Severi A., Benvenuti S., Maggi L., Bianchi A. Chemical composition and fungicidal activity of commercial essential oils of Thymus vulgaris L. J. Essent. Oil Res. 2004;16:69–74. doi: 10.1080/10412905.2004.9698653. DOI
Nazer I., Al-Abbadi A. Control of varroa mite (Varroa destructor) on honeybees by aromatic oils and plant materials. J. Agric. Mar. Sci. [JAMS] 2003;8:15–20. doi: 10.24200/jams.vol8iss1pp15-20. DOI
Thielmann J., Muranyi P., Kazman P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon. 2019;5:e01860. doi: 10.1016/j.heliyon.2019.e01860. PubMed DOI PMC
Ansari M.J., Al-Ghamdi A., Usmani S., Khan K.A., Alqarni A.S., Kaur M., Al-Waili N. In vitro evaluation of the effects of some plant essential oils on Ascosphaera apis, the causative agent of chalkbrood disease. Saudi J. Biol. Sci. 2017;24:1001–1006. doi: 10.1016/j.sjbs.2016.04.016. PubMed DOI PMC
Ansari M.J., Al-Ghamdi A., Usmani S., Al-Waili N., Nuru A., Sharma D., Khan K.A., Kaur M., Omer M. In vitro evaluation of the effects of some plant essential oils on Paenibacillus larvae, the causative agent of American foulbrood. Biotechnol. Biotechnol. Equip. 2016;30:49–55. doi: 10.1080/13102818.2015.1086690. DOI
Choi Y., Woo S., Hong I., Han S., Byoun G., Thapa R., Lee M. Effects of limonene composition for controlling of the Varroa destructor and Tropilaelaps clareae in Apis mellifera Hives. Korean J. Apic. 2012;27:137–142.
van Vuuren S., Viljoen A.M. Antimicrobial activity of limonene enantiomers and 1, 8-cineole alone and in combination. Flavour Fragr. J. 2007;22:540–544. doi: 10.1002/ffj.1843. DOI
Pattnaik S., Subramanyam V.R., Bapaji M., Kole C.R. Antibacterial and antifungal activity of aromatic constituents of Essential oils. Microbios. 1997;89:39–46. PubMed
Leite A.M., Lima E.D.O., De Souza E.L., Diniz M.D.F.F.M., Trajano V.N., De Medeiros I.A. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing gram-positive bacteria. Rev. Bras. Ciênc. Farm. 2007;43:121–126. doi: 10.1590/S1516-93322007000100015. DOI
Yang J., Nie Q., Ren M., Feng H., Jiang X., Zheng Y., Liu M., Zhang H., Xian M. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels. 2013;6:1–10. doi: 10.1186/1754-6834-6-60. PubMed DOI PMC
Azevedo M., Chaves F., Almeida C.A., Bizzo H.R., Duarte R.S., Campos-Takaki G.M., Alviano C.S., Alviano D.S. Antioxidant and antimicrobial activities of 7-hydroxy-calamenene-rich essential oils from Croton cajucara Benth. Molecules. 2013;18:1128–1137. doi: 10.3390/molecules18011128. PubMed DOI PMC
Liu T.-T., Yang T.-S. Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial Activity of the oil in food systems. Int. J. Food Microbiol. 2012;156:68–75. doi: 10.1016/j.ijfoodmicro.2012.03.005. PubMed DOI
Onawunmi G.O. Evaluation of the antimicrobial activity of citral. Lett. Appl. Microbiol. 1989;9:105–108. doi: 10.1111/j.1472-765X.1989.tb00301.x. DOI
Can Baser K. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008;14:3106–3119. doi: 10.2174/138161208786404227. PubMed DOI
Doyle A.A., Stephens J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia. 2019;139:104405. doi: 10.1016/j.fitote.2019.104405. PubMed DOI