Efficiency of plant-based acaricide gels compared to fluvalinate-impregnated strips for control of Varroa destructor in honey bee colonies

. 2023 Sep ; 91 (1) : 57-67. [epub] 20230821

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37603256

Grantová podpora
projects No. LM2015075, EF16_013/0001782, and 8120001-EIG CONCERT JAPAN Ministry of Education, Youth, and Sports of the Czech Republic-MEYS
Cooperatio-Environmental and Sustainability Research, project No. 270022 Charles University

Odkazy

PubMed 37603256
DOI 10.1007/s10493-023-00833-z
PII: 10.1007/s10493-023-00833-z
Knihovny.cz E-zdroje

The Varroa mite is one of the most important pests of honey bee colonies. This study compares the efficiency of thymol-based acaricides with the tau-fluvalinate-based commercial treatment to control this mite species. Two experiments were conducted: (1) in the Fall, thymol-based gel was compared with a widely used acaricide, fluvalinate-impregnated strips (Apistan®), and (2) in the Spring, gels containing thymol-only, thymol + menthol + eucalyptus essential oil, and thymol + thyme essential oil were compared with fluvalinate-impregnated strips. In the first experiment, both treatments reduced Varroa mite infestation levels significantly after 70 days of their application compared to the control treatment. The results of the second experiment showed that thymol + thyme essential oil gel, thymol + menthol + eucalyptus essential oil gel, and Apistan strips had always higher efficiency on decreasing mite infestation levels of the selected colonies compared to the control treatment and thymol-only gel during their 7-week application. The results of this study demonstrate that plant-based acaricides for controlling Varroa mites in honey bee colonies have similar efficiency compared to the chemical control methods. Therefore, it is better to use these selected acaricides to reduce mite resistance to chemical control treatments in honey bee colonies.

Zobrazit více v PubMed

Ahmadi E, Khajehali J, Jonckheere W, van Leeuwen T (2022) Biochemical and insecticidal effects of plant essential oils on insecticide resistant and susceptible populations of Musca domestica L. point to a potential cross-resistance risk. Pestic Biochem Physiol 184:105–115 DOI

Aliano N (2008) An investigation of techniques for using oxalic acid to reduce Varroa mite populations in honey bee colonies and package bees. PhD thesis. University of Nebraska, Lincoln, USA

Anderson DL, Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24:165–189 PubMed DOI

Ardestani MM (2015) Investigating the influence of post-capping period on Varroa mite infestation. J Apic Res 54:335–341 DOI

Ardestani MM (2020) A brief overview on the application, potential exposure routes, and the effects of neonicotinoid insecticides on the honeybee pest Varroa mite. Proc Zool Soc 73:118–126 DOI

Ardestani MM, Ebadi R, Tahmasbi Gh (2002) The effect of grooming behavior of some Iranian honey bee (Apis mellifera L.) populations on the resistance to Varroa mite (Varroa destructor). Iran J Anim Sci 55:74–83

Ardestani MM, Ebadi R, Tahmasbi Gh (2005) Relative measuring of the capping period in some Iranian honey bee (Apis mellifera L.) populations. Iran J Anim Sci 67:2–9

Ardestani MM, Ebadi R, Tahmasbi Gh (2011) Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera). Exp Appl Acarol 55:3–9

Arokiyaraj C, Bhattacharyya K, Reddy SGE (2022) Toxicity and synergistic activity of compounds from essential oils and their effect on detoxification enzymes against Planococcus lilacinus. Front Plant Sci 13:1016737 PubMed DOI PMC

Bajda SA, de Clercq P, van Leeuwen T (2022) Selectivity and molecular stress responses to classical and botanical acaricides in the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Pest Manag Sci 78:881–895 PubMed DOI

Bienefeld K (1996) Factors affecting duration of the post-capping period in brood of the honey bee Apis mellifera carnica. J Apic Res 35:11–17 DOI

Boecking O, Ritter W (1994) Current status of behavioral tolerance of the honey bee Apismellifera to the mite Varroajacobsoni. Am Bee J 34:689–694

Boecking O, Spivak M (1999) Behavioral defenses of honey bee against Varroajacobsoni Oud. Apidologie 30:141–158 DOI

Bogdanov S, Charriere JD, Imdorf A, Kilchenmann V, Fluri P (2002) Determination of residues in honey after treatments with formic and oxalic acid under field conditions. Apidologie 33:399–409 DOI

Boot WJ, Calis JNM, Beetsma J (1992) Differential periods of Varroa mite invasion into worker and drone cells of honeybees. Exp Appl Acarol 16:295–301 DOI

Büchler R, Drescher W (1990) Variance and heritability of the capped developmental stage in European Apis mellifera L. and its correlation with increased Varroa jacobsoni Oud. Infestation. J Apic Res 29:172–176

Conti B, Bocchino R, Cosci F, Ascrizzi R, Flamini G, Bedini S (2020) Essential oils against Varroa destructor: A soft way to fight the parasitic mite of Apis mellifera. J Apic Res 59:774–782

Czirják TZs, Dodu M (2013) Treatment options for control of Varroa mite in Romania. Ecotoxicol Anim Food Sci Technol 12B:57–62

Ellis JDJr, Delaplane KS, Hood WM (2001) Efficacy of a bottom screen device, Apistan, and Apilife-Var, in controlling Varroa destructor. Am Bee J 141:813–816

Faucon JP, Drajnudel P, Fleche C (1995) Decrease in Apistan efficacy used against Varroasis in the honey bee (Apis mellifera). Apidologie 26:291–296

Gregorc A (2005) Efficacy of oxalic acid and Apiguard against Varroa mites in honeybee (Apis mellifera) colonies. Acta Vet Brno 74:441–447

Gregorc A, Jelenc J (1996) Control of Varroa Jacobsoni Oud. in honeybee colonies using Apilife-Var. Zb Vet Fak Univ Ljubljana 33:231–235

Gregorc A, Smodi MI (2007) Combating Varroa destructor in honeybee colonies using flumethrin or fluvalinate. Acta Vet Brno 76:309–314

Huang Y, Lin M, Jia M, Hu J, Zhu L (2020) Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaemafargesii. Pest Manag Sci 76:534–542 PubMed DOI

Hýbl M, Bohatá A, Rádsetoulalová I, Kopecký M, Hoštičková I, Vaníčková A, Mráz P (2021) Evaluating the efficacy of 30 different essential oils against Varroadestructor and honey bee workers (Apismellifera). Insects 12:1045 PubMed DOI PMC

Ifantidis MD (1983) Ontogenesis of the mite Varroa jacobsoni in worker and drone honey bee brood cells. J Apic Res 22:200–206 DOI

Ifantidis MD (1988) Some aspects of process of Varroa jacobsoni mite entrance into honey bee (Apis mellifera) brood cells. Apidologie 19:387–396 DOI

Imdorf A, Bogdanov S, Kilchenmann V, Maquelin C (1995) Apilife-Var: A new varroacide with thymol as the main ingredient. Bee World 76:77–83 DOI

Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145 PubMed DOI

Mahmood R, Wagchoure ES, Raja S, Sarwar G, Aslam M (2011) Effect of thymol and formic acid against ectoparasitic brood mite Tropilaelaps clareae in Apis mellifera colonies. Pak J Zool 43:91–95

McCreadie W (2001) Field tests of the Varroa treatment device using formic acid to control Varroa destructor and Acarapis woodi. J Agri Urban Entomol 18: 87–96

Mozes-Koch R, Slabezki Y, Efrat H, Kalev H, Kamer Y, Yakobson BA, Dag A (2000) First detection in Israel of fluvalinate resistance in the Varroa mite using bioassay and biochemical methods. Exp Appl Acarol 24:35–43 DOI

Oladipupo S, Hu X, Appel A (2020) Topical toxicity profiles of some aliphatic and aromatic essential oil components against insecticide-susceptible and resistant strains of german cockroach (Blattodea: Ectobiidae). J Econ Entomol 113:896–904 PubMed DOI

Peng Y-S, Fang Y, Xu S, Ge L (1987) The resistance mechanism of the asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J Invertebr Pathol 49:54–60 DOI

Pettis JS, Shimanuki H (1999) A hive modification to reduce Varroa populations. Am Bee J 139:471–473

Pilecka V, Klimas R (2011) The evaluation of efficiency of some preparations needed to decimate Varroa destructor parasites. Acta Biol Univ Daugavpiliensis 11:101–105

Rosenkranz P, Fries I, Boecking O, Stürmer M (1997) Damaged Varroa mites in the debris of honey bee (Apis mellifera L) colonies with and without hatching brood. Apidologie 28:427–437 DOI

Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119 PubMed DOI

Spivak M (1996) Honey bee hygienic behavior and defense against Varroa jacobsoni. Apidologie 27:245–260 DOI

Stara J, Pekar S, Nesvorna M, Erban T, Vinsova H, Kopecky J, Doskocil I, Kamler M, Hubert J (2019) Detection of tau-fluvalinate resistance in the mite Varroa destructor based on the comparison of vial test and PCR-RFLP of kdr mutation in sodium channel gene. Exp Appl Acarol 77:161–171 PubMed DOI

Vlogiannitis S, Jonckheere W, Laget D, de Graaf DC, Vontas J, van Leeuwen T (2021) Pyrethroid target-site resistance mutations in populations of the honey bee parasite Varroa destructor (Acari: Varroidae) from Flanders, Belgium. Exp Appl Acarol 85:205–221

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...