Dementia with Lewy Bodies (DLB), Parkinson's Disease (PD), and Multiple System Atrophy (MSA) Are Synucleopathies Characterized by Increased Serum Levels of Plasminogen Activator Inhibitor‑1 (PAI-1)
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40547703
PubMed Central
PMC12177638
DOI
10.1021/acsomega.4c10959
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Dementia with Lewy bodies (DLB), Parkinson's disease (PD), and multiple system atrophy (MSA) are neurodegenerative disorders characterized by abnormal accumulation of α-synuclein. Plasmin is a serine protease with a role in various physiological processes, including tissue and synaptic remodeling, inflammation regulation, and modulation of neurotrophic factors. It has also been shown that plasmin is able to cleave extracellular α-synuclein in neuronal cell cultures. The plasminogen activator inhibitor-1 (PAI-1) and the tissue plasminogen activator (tPA) regulate the synthesis and activity of plasmin in the brain. We measured the serum levels of tPA and PAI-1 in 30 DLB, 10 PD, and 12 MSA patients and compared them to 10 adults (controls). tPA and PAI-1 serum protein concentrations were quantified by ELISA and compared across the groups. The findings demonstrated that PAI-1 serum levels were increased in DLB (p < 0.05), PD (p < 0.01), and MSA (p < 0.001) patients as compared to controls. In addition, MSA patients had higher PAI-1 serum levels (p < 0.01) as compared to DLB patients, showing the highest PAI-1 levels among all groups. No differences in tPA serum levels were found among groups. Our findings suggest an involvement of plasmin system in these synucleinopathies although there are some limitations due to the heterogeneity of our cohort of participants. Thus, these data must be seen as preliminary observations and further studies in larger and more homogenous cohorts are needed before drawing definitive conclusions.
See more in PubMed
Agarwal K., Backler W., Bayram E., Bloom L., Boeve B. F., Cha J.-H., Denslow M., Ferman T. J., Galasko D., Galvin J. E., Gomperts S. N., Irizarry M. C., Kantarci K., Kaushik H., Kietlinski M., Koenig A., Leverenz J. B., McKeith I., McLean P. J., Montine T. J., Moose S. O., O’Brien J. T., Panier V., Ramanathan S., Ringel M. S., Scholz S. W., Small J., Sperling R. A., Taylor A., Taylor J.-P., Ward R. A., Witten L., Hyman B. T.. Lewy Body Dementia: Overcoming Barriers and Identifying Solutions. Alzheimer’s Dementia. 2024;20:2298–2308. doi: 10.1002/alz.13674. PubMed DOI PMC
McKeith I. G., Boeve B. F., Dickson D. W., Halliday G., Taylor J.-P., Weintraub D., Aarsland D., Galvin J., Attems J., Ballard C. G., Bayston A., Beach T. G., Blanc F., Bohnen N., Bonanni L., Bras J., Brundin P., Burn D., Chen-Plotkin A., Duda J. E., El-Agnaf O., Feldman H., Ferman T. J., Ffytche D., Fujishiro H., Galasko D., Goldman J. G., Gomperts S. N., Graff-Radford N. R., Honig L. S., Iranzo A., Kantarci K., Kaufer D., Kukull W., Lee V. M. Y., Leverenz J. B., Lewis S., Lippa C., Lunde A., Masellis M., Masliah E., McLean P., Mollenhauer B., Montine T. J., Moreno E., Mori E., Murray M., O’Brien J. T., Orimo S., Postuma R. B., Ramaswamy S., Ross O. A., Salmon D. P., Singleton A., Taylor A., Thomas A., Tiraboschi P., Toledo J. B., Trojanowski J. Q., Tsuang D., Walker Z., Yamada M., Kosaka K.. Diagnosis and Management of Dementia with Lewy Bodies: Fourth Consensus Report of the DLB Consortium. Neurology. 2017;89(1):88–100. doi: 10.1212/WNL.0000000000004058. PubMed DOI PMC
Kalia L. V., Lang A. E.. Parkinson’s Disease. Lancet. 2015;386(9996):896–912. doi: 10.1016/S0140-6736(14)61393-3. PubMed DOI
Poewe W., Stankovic I., Halliday G., Meissner W. G., Wenning G. K., Pellecchia M. T., Seppi K., Palma J.-A., Kaufmann H.. Multiple SystemAtrophy. Nat. Rev. Dis. Primers. 2022;8(1):56. doi: 10.1038/s41572-022-00382-6. PubMed DOI
Koga S., Sekiya H., Kondru N., Ross O. A., Dickson D. W.. Neuropathology and Molecular Diagnosis of Synucleinopathies. Mol. Neurodegener. 2021;16(1):83. doi: 10.1186/s13024-021-00501-z. PubMed DOI PMC
Foubert-Samier A., Traon A. P.–L., Guillet F., Le-Goff M., Helmer C., Tison F., Rascol O., Proust-Lima C., Meissner W. G.. Disease Progression and Prognostic Factors in Multiple System Atrophy: A Prospective Cohort Study. Neurobiol. Dis. 2020;139:104813. doi: 10.1016/j.nbd.2020.104813. PubMed DOI
Estaun-Panzano J., Arotcarena M.-L., Bezard E.. Monitoring α-Synuclein Aggregation. Neurobiol. Dis. 2023;176:105966. doi: 10.1016/j.nbd.2022.105966. PubMed DOI PMC
Angelucci F., Čechová K., Průša R., Hort J.. Amyloid Beta Soluble Forms and Plasminogen Activation System in Alzheimer’s Disease: Consequences on Extracellular Maturation of Brain-Derived Neurotrophic Factor and Therapeutic Implications. CNS Neurosci. Ther. 2018;25(3):303–313. doi: 10.1111/cns.13082. PubMed DOI PMC
Centonze D., Napolitano M., Saulle E., Gubellini P., Picconi B., Martorana A., Pisani A., Gulino A., Bernardi G., Calabresi P.. Tissue Plasminogen Activator Is Required for Corticostriatal Long-Term Potentiation. Eur. J. Neurosci. 2002;16(4):713–721. doi: 10.1046/j.1460-9568.2002.02106.x. PubMed DOI
Calabresi P., Napolitano M., Centonze D., Marfia G. A., Gubellini P., Teule M. A., Berretta N., Bernardi G., Frati L., Tolu M., Gulino A.. Tissue Plasminogen Activator Controls Multiple Forms of Synaptic Plasticity and Memory. Eur. J. Neurosci. 2000;12(3):1002–1012. doi: 10.1046/j.1460-9568.2000.00991.x. PubMed DOI
Nicole O., Docagne F., Ali C., Margaill I., Carmeliet P., MacKenzie E. T., Vivien D., Buisson A.. The Proteolytic Activity of Tissue-Plasminogen Activator Enhances NMDA Receptor-Mediated Signaling. Nat. Med. 2001;7(1):59–64. doi: 10.1038/83358. PubMed DOI
Wiera G., Mozrzymas J. W.. Extracellular Proteolysis in Structural and Functional Plasticity of Mossy Fiber Synapses in Hippocampus. Front. Cell. Neurosci. 2015;9:427. doi: 10.3389/fncel.2015.00427. PubMed DOI PMC
Gerenu G., Martisova E., Ferrero H., Carracedo M., Rantamäki T., Ramirez M. J., Gil-Bea F. J.. Modulation of BDNF Cleavage by Plasminogen-Activator Inhibitor-1 Contributes to Alzheimer’s Neuropathology and Cognitive Deficits. Biochim. Biophys. Acta, Mol. Basis Dis. 2017;1863(4):991–1001. doi: 10.1016/j.bbadis.2017.01.023. PubMed DOI
Mossiat C., Prigent-Tessier A., Garnier P., Marie C., Jacquin A., Rodier M., Béjot Y., Prigent-Tessier A., Béjot Y., Jacquin A., Mossiat C., Marie C., Garnier P.. Exogenous T-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism? PLoS One. 2014;9(3):e92416. doi: 10.1371/journal.pone.0092416. PubMed DOI PMC
Castellino F. J., Castellino F.. Structure and Function of the Plasminogen/Plasmin System. Thromb. Haemostasis. 2005;93(04):647–654. doi: 10.1160/TH04-12-0842. PubMed DOI
Samson A. L., Medcalf R. L.. Tissue-Type Plasminogen Activator: A Multifaceted Modulator of Neurotransmission and Synaptic Plasticity. Neuron. 2006;50(5):673–678. doi: 10.1016/j.neuron.2006.04.013. PubMed DOI
Sallés F. J., Strickland S.. Localization and Regulation of the Tissue Plasminogen Activator-Plasmin System in the Hippocampus. J. Neurosci. 2002;22(6):2125–2134. doi: 10.1523/JNEUROSCI.22-06-02125.2002. PubMed DOI PMC
Yepes M., Roussel B. D., Ali C., Vivien D.. Tissue-Type Plasminogen Activator in the Ischemic Brain: More than a Thrombolytic. Trends Neurosci. 2009;32(1):48–55. doi: 10.1016/j.tins.2008.09.006. PubMed DOI
Kim K. S., Choi Y. R., Park J.-Y., Lee J.-H., Kim D. K., Lee S.-J., Paik S. R., Jou I., Park S. M.. Proteolytic Cleavage of Extracellular α-Synuclein by Plasmin. J. Biol. Chem. 2012;287(30):24862–24872. doi: 10.1074/jbc.M112.348128. PubMed DOI PMC
Park S. M., Kim K. S.. Proteolytic Clearance of Extracellular α-Synuclein as a New Therapeutic Approach against Parkinson Disease. Prion. 2013;7(2):121–126. doi: 10.4161/pri.22850. PubMed DOI PMC
Reuland C. J., Church F. C.. Synergy between Plasminogen Activator Inhibitor-1, α-Synuclein, and Neuroinflammation in Parkinson’s Disease. Med. Hypotheses. 2020;138:109602. doi: 10.1016/j.mehy.2020.109602. PubMed DOI
Speelman T., Dale L., Louw A., Verhoog N. J. D.. The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells. 2022;11(14):2163. doi: 10.3390/cells11142163. PubMed DOI PMC
Badran M., Gozal D.. PAI-1: A Major Player in the Vascular Dysfunction in Obstructive Sleep Apnea? Int. J. Mol. Sci. 2022;23(10):5516. doi: 10.3390/ijms23105516. PubMed DOI PMC
Dimova E. Y., Samoylenko A., Kietzmann T.. Oxidative Stress and Hypoxia: Implications for Plasminogen Activator Inhibitor-1 Expression. Antioxid. Redox Signaling. 2004;6(4):777–791. doi: 10.1089/1523086041361596. PubMed DOI
Hajer G. R., van Haeften T. W., Visseren F. L. J.. Adipose Tissue Dysfunction in Obesity, Diabetes, and Vascular Diseases. Eur. Heart J. 2008;29(24):2959–2971. doi: 10.1093/eurheartj/ehn387. PubMed DOI
Kim K. S., Choi Y. R., Park J.-Y., Lee J.-H., Kim D. K., Lee S.-J., Paik S. R., Jou I., Park S. M.. Proteolytic Cleavage of Extracellular α-Synuclein by Plasmin: Implications for Parkinson Disease. J. Biol. Chem. 2012;287(30):24862–24872. doi: 10.1074/jbc.M112.348128. PubMed DOI PMC
Zuccato C., Cattaneo E.. Brain-Derived Neurotrophic Factor in Neurodegenerative Diseases. Nat. Rev. Neurol. 2009;5(6):311–322. doi: 10.1038/nrneurol.2009.54. PubMed DOI
Scalzo P., Kümmer A., Bretas T. L., Cardoso F., Teixeira A. L.. Serum Levels of Brain-Derived Neurotrophic Factor Correlate with Motor Impairment in Parkinson’s Disease. J. Neurol. 2010;257(4):540–545. doi: 10.1007/s00415-009-5357-2. PubMed DOI
Wang J., Yuan Y., Cai R., Huang R., Tian S., Lin H., Guo D., Wang S.. Association between Plasma Levels of PAI-1, TPA/PAI-1 Molar Ratio, and Mild Cognitive Impairment in Chinese Patients with Type 2 Diabetes Mellitus. J. Alzheimers Dis. 2018;63(2):835–845. doi: 10.3233/JAD-171038. PubMed DOI
Guo C., Wang T., Zhang D., Ge X., Li J.. Plasminogen Decreases Aβ42 and Tau Deposition, and Shows Multi-Beneficial Effects on Alzheimer’s Disease in Mice and Humans. Biochem. Biophys. Res. Commun. 2023;654:102–111. doi: 10.1016/j.bbrc.2023.02.078. PubMed DOI
Guo C., Wang T., Huang H., Wang X., Jiang Y., Li J.. Plasminogen Degrades α-Synuclein, Tau and TDP-43 and Decreases Dopaminergic Neurodegeneration in Mouse Models of Parkinson’s Disease. Sci. Rep. 2024;14(1):8581. doi: 10.1038/s41598-024-59090-8. PubMed DOI PMC
Tanrikulu A. M., Ozdilek B., Agirbasli M.. Serum Levels of Plasminogen Activator Inhibitor-1 in Patients with Parkinson’s Disease. Med. Princ. Pract. 2024;33(6):562–568. doi: 10.1159/000540854. PubMed DOI PMC
Altalhi R., Pechlivani N., Ajjan R. A.. PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int. J. Mol. Sci. 2021;22(6):3170. doi: 10.3390/ijms22063170. PubMed DOI PMC
Reuland C. J., Church F. C.. Synergy between Plasminogen Activator Inhibitor-1, α-Synuclein, and Neuroinflammation in Parkinson’s Disease. Med. Hypotheses. 2020;138:109602. doi: 10.1016/j.mehy.2020.109602. PubMed DOI
Poewe W., Stankovic I., Halliday G., Meissner W. G., Wenning G. K., Pellecchia M. T., Seppi K., Palma J.-A., Kaufmann H.. MultipleSystem Atrophy. Nat. Rev. Dis. Primers. 2022;8(1):56. doi: 10.1038/s41572-022-00382-6. PubMed DOI
Freuchet A., Pinçon A., Sette A., Arlehamn C. S. L.. Inflammation and Heterogeneity in Synucleinopathies. Front. Immunol. 2024;15:1432342. doi: 10.3389/fimmu.2024.1432342. PubMed DOI PMC
Rydbirk R., Østergaard O., Folke J., Hempel C., DellaValle B., Andresen T. L., Løkkegaard A., Hejl A.-M., Bode M., Blaabjerg M., Møller M., Danielsen E. H., Salvesen L., Starhof C. C., Bech S., Winge K., Rungby J., Pakkenberg B., Brudek T., Olsen J. V., Aznar S.. Brain Proteome Profiling Implicates the Complement and Coagulation Cascade in Multiple System Atrophy Brain Pathology. Cell. Mol. Life Sci. 2022;79(6):336. doi: 10.1007/s00018-022-04378-z. PubMed DOI PMC
Asi Y. T., Simpson J. E., Heath P. R., Wharton S. B., Lees A. J., Revesz T., Houlden H., Holton J. L.. Alpha-Synuclein MRNA Expression in Oligodendrocytes in MSA. Glia. 2014;62(6):964–970. doi: 10.1002/glia.22653. PubMed DOI PMC
Lin H., Tang R., Fan L., Wang E.. Exogenous Tetranectin Alleviates Pre-Formed-Fibrils-Induced Synucleinopathies in SH-SY5Y Cells by Activating the Plasminogen Activation System. Neurochem. Res. 2022;47(10):3192–3201. doi: 10.1007/s11064-022-03673-2. PubMed DOI
Rai S. N., Birla H., Singh S. S., Zahra W., Patil R. R., Jadhav J. P., Gedda M. R., Singh S. P.. Mucuna Pruriens Protects against MPTP Intoxicated Neuroinflammation in Parkinson’s Disease through NF-KB/PAKT Signaling Pathways. Front. Aging Neurosci. 2017;9:314845. doi: 10.3389/fnagi.2017.00421. PubMed DOI PMC
Rai S. N., Chaturvedi V. K., Singh P., Singh B. K., Singh M. P.. Mucuna Pruriens in Parkinson’s and in Some Other Diseases: Recent Advancement and Future Prospective. 3 Biotech. 2020;10(12):522. doi: 10.1007/s13205-020-02532-7. PubMed DOI PMC
Rai S. N., Yadav S. K., Singh D., Singh S. P.. Ursolic Acid Attenuates Oxidative Stress in Nigrostriatal Tissue and Improves Neurobehavioral Activity in MPTP-Induced Parkinsonian Mouse Model. J. Chem. Neuroanat. 2016;71:41–49. doi: 10.1016/j.jchemneu.2015.12.002. PubMed DOI
Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., Cerman J., Lerch O H. J., Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., Cerman J., Lerch O., Hort J.. Czech Brain Aging Study (CBAS): Prospective Multicentre Cohort Study on Risk and Protective Factors for Dementia in the Czech Republic. BMJ. Open. 2019;9(12):e030379. doi: 10.1136/bmjopen-2019-030379. PubMed DOI PMC
Yesavage J. A.. Geriatric Depression Scale. Psychopharmacol. Bull. 1988;24(4):709–711. PubMed
Wenning G. K., Stankovic I., Vignatelli L., Fanciulli A., Calandra-Buonaura G., Seppi K., Palma J., Meissner W. G., Krismer F., Berg D., Cortelli P., Freeman R., Halliday G., Höglinger G., Lang A., Ling H., Litvan I., Low P., Miki Y., Panicker J., Pellecchia M. T., Quinn N., Sakakibara R., Stamelou M., Tolosa E., Tsuji S., Warner T., Poewe W., Kaufmann H.. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Mov. Disord. 2022;37(6):1131–1148. doi: 10.1002/mds.29005. PubMed DOI PMC
Postuma R. B., Berg D., Stern M., Poewe W., Olanow C. W., Oertel W., Obeso J., Marek K., Litvan I., Lang A. E., Halliday G., Goetz C. G., Gasser T., Dubois B., Chan P., Bloem B. R., Adler C. H., Deuschl G.. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015;30(12):1591–1601. doi: 10.1002/mds.26424. PubMed DOI
Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and Recommendations. Mov. Disord. 2003;18(7):738–750. doi: 10.1002/mds.10473. PubMed DOI
Vassar S. D., Bordelon Y. M., Hays R. D., Diaz N., Rausch R., Mao C., Vickrey B. G.. Confirmatory Factor Analysis of the Motor Unified Parkinson’s Disease Rating Scale. Parkinson’s Dis. 2012;2012:719167. doi: 10.1155/2012/719167. PubMed DOI PMC
Angelucci F., Veverova K., Katonová A., Piendel L., Vyhnalek M., Hort J.. Alzheimer’s Disease Severity Is Associated with an Imbalance in Serum Levels of Enzymes Regulating Plasmin Synthesis. Pharmaceuticals. 2022;15(9):1074. doi: 10.3390/ph15091074. PubMed DOI PMC