Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: Consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
30403004
PubMed Central
PMC6488905
DOI
10.1111/cns.13082
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, amyloid beta, brain-derived neurotrophic factor, plasminogen activator inhibitor-1, tissue-type plasminogen activator,
- MeSH
- Alzheimerova nemoc diagnóza farmakoterapie metabolismus MeSH
- amyloidní beta-protein metabolismus MeSH
- extracelulární prostor účinky léků metabolismus MeSH
- lidé MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- plazminogen metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- mozkový neurotrofický faktor MeSH
- plazminogen MeSH
Soluble oligomeric forms of amyloid beta (Aβ) play an important role in causing the cognitive deficits in Alzheimer's disease (AD) by targeting and disrupting synaptic pathways. Thus, the present research is directed toward identifying the neuronal pathways targeted by soluble forms and, accordingly, develops alternative therapeutic strategies. The neurotrophin brain-derived neurotrophic factor (BDNF) is synthesized as a precursor (pro-BDNF) which is cleaved extracellularly by plasmin to release the mature form. The conversion from pro-BDNF to BDNF is an important process that regulates neuronal activity and memory processes. Plasmin-dependent maturation of BDNF in the brain is regulated by plasminogen activator inhibitor-1 (PAI-1), the natural inhibitor of tissue-type plasminogen activator (tPA). Therefore, tPA/PAI-1 system represents an important regulator of extracellular BDNF/pro-BDNF ratio. In this review, we summarize the data on the components of the plasminogen activation system and on BDNF in AD. Moreover, we will hypothesize a possible pathogenic mechanism caused by soluble Aβ forms based on the effects on tPA/PAI-1 system and on the consequence of an altered conversion from pro-BDNF to the mature BDNF in the brain of AD patients. Translation into clinic may include a better characterization of the disease stage and future direction on therapeutic targets.
Zobrazit více v PubMed
Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med. 2011;3:77sr1. PubMed PMC
Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010;362:329‐344. PubMed
Cavallucci V, D'Amelio M, Cecconi F. Aβ toxicity in Alzheimer's disease. Mol. Neurobiol. 2012;45:366‐378. PubMed
Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol. 1999;45:358‐368. PubMed
Aizenstein HJ, Nebes D, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol. 2008;65:1509‐1517. PubMed PMC
Lesné S, Koh MT, Kotilinek L, et al. A specific amyloid‐beta protein assembly in the brain impairs memory. Nature. 2006;440:352‐357. PubMed
Shankar GM, Li S, Mehta TH, et al. Amyloid‐beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008;14:837‐842. PubMed PMC
Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ. Soluble amyloid beta‐protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA. 2011;108:5819‐5824. PubMed PMC
Koffie RM, Meyer‐Luehmann M, Hashimoto T, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106:4012‐4017. PubMed PMC
Tu S, Okamoto S, Lipton SA, Xu H. Oligomeric Aβ‐induced synaptic dysfunction in Alzheimer's disease. Mol Neurodegener. 2014;9:48. PubMed PMC
Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long‐term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B‐containing NMDA receptors. J Neurosci. 2011;31:6627‐6638. PubMed PMC
Brody DL, Jiang H, Wildburger N, Esparza TJ. Non‐canonical soluble amyloid‐beta aggregates and plaque buffering: controversies and future directions for target discovery in Alzheimer's disease. Alzheimers Res Ther. 2017;9:62. PubMed PMC
Smith LM, Strittmatter SM. Binding sites for amyloid‐β oligomers and synaptic toxicity. Cold Spring Harb Perspect Med. 2017;7:a024075. PubMed PMC
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 2016;8:595‐608. PubMed PMC
Yang T, Li S, Xu H, Walsh DM, Selkoe DJ. Large soluble oligomers of amyloid β‐protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci. 2017;37:152‐163. PubMed PMC
Dietrich K, Bouter Y, Müller M, Bayer TA. Synaptic alterations in mouse models for Alzheimer disease‐a special focus on N‐truncated Abeta 4–42. Molecules. 2018;23:E718. PubMed PMC
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204‐1222. PubMed PMC
Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647‐654. PubMed
Bugge TH, Flick MJ, Danton MJ, et al. Urokinase‐type plasminogen activator is effective in fibrin clearance in the absence of its receptor or tissue‐type plasminogen activator. Proc Natl Acad Sci USA. 1996;93:5899‐5904. PubMed PMC
Samson AL, Medcalf RL. Tissue‐type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50:673‐678. PubMed
Yepes M, Roussel BD, Ali C, Vivien D. Tissue‐type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32:48‐55. PubMed
Huang YY, Bach ME, Lipp HP, et al. Mice lacking the gene encoding tissue‐type plasminogen activator show a selective interference with late‐phase long‐term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci USA. 1996;93:8699‐8704. PubMed PMC
Madani R, Hulo S, Toni N, et al. Enhanced hippocampal long‐term potentiation and learning by increased neuronal expression of tissue‐type plasminogen activator in transgenic mice. EMBO J. 1999;18:3007‐3012. PubMed PMC
Zhuo M, Holtzman DM, Li Y, et al. Role of tissue plasminogen activator receptor LRP in hippocampal long‐term potentiation. J Neurosci. 2000;20:542‐549. PubMed PMC
Gualandris A, Jones TE, Strickland S, Tsirka SE. Membrane depolarization induces calcium‐dependent secretion of tissue plasminogen activator. J Neurosci. 1996;16:2220‐2225. PubMed PMC
Parmer RJ, Mahata M, Mahata S, et al. Tissue plasminogen activator (t‐PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t‐PA. J Biol Chem. 1997;272:1976‐1982. PubMed
Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D. Tissue plasminogen activator is induced as an immediate‐early gene during seizure, kindling, and long‐term potentiation. Nature. 1993;361:453‐457. PubMed
Carroll PM, Tsirka SE, Richards WG, Frohman MA, Strickland S. The mouse tissue plasminogen activator gene 5_ flanking region directs appropriate expression in development and a seizure‐enhanced response in the CNS. Development. 1994;120:3173‐3183. PubMed
Centonze D, Napolitano M, Saulle E, et al. Tissue plasminogen activator is required for corticostriatal long‐term potentiation. Eur J Neurosci. 2002;16:713‐721. PubMed
Calabresi P, Napolitano M, Centonze D, et al. Tissue plasminogen activator controls multiple forms of synaptic plasticity and memory. Eur J Neurosci. 2000;12:1002‐1012. PubMed
Nicole O, Docagne F, Ali C, et al. The proteolytic activity of tissue‐plasminogen activator enhances NMDA receptor‐mediated signaling. Nat Med. 2001;7:59‐64. PubMed
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci. 2015;9:427. PubMed PMC
Tucker HM, Kihiko M, Caldwell JN, et al. The plasmin system is induced by and degrades amyloid‐beta aggregates. J Neurosci. 2000;20:3937‐3946. PubMed PMC
Tucker HM, Kihiko‐Ehmann M, Wright S, et al. Tissue plasminogen activator requires plasminogen to modulate amyloid‐beta neurotoxicity and deposition. J Neurochem. 2000;75:2172‐2177. PubMed
Barker R, Love S, Kehoe PG. Plasminogen and plasmin in Alzheimer’s disease. Brain Res. 2010;1355:7‐15. PubMed
Jacobsen JS, Comery TA, Martone RL, et al. Enhanced clearance of A beta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci USA. 2008;105:8754‐8759. PubMed PMC
Ledesma MD, Abad‐Rodriguez J, Galvan C, et al. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep. 2003;4:1190‐1196. PubMed PMC
Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG. Brain plasmin enhances APP alpha‐cleavage and Abeta degradation and is reduced in Alzheimer's disease brains. EMBO Rep. 2000;1:530‐535. PubMed PMC
Oh SB, Byun CJ, Yun JH. Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging. 2014;35:511‐519. PubMed
Bi Oh S, Suh N, Kim I, Lee J‐Y. Impacts of aging and amyloid‐β deposition on plasminogen activators and plasminogen activator inhibitor‐1 in the Tg2576 mouse model of Alzheimer’s disease. Brain Res. 2015;1597:159‐167. PubMed
Fabbro S, Seeds NW. Plasminogen activator activity is inhibited while neuroserpin is up‐regulated in the Alzheimer disease brain. J Neurochem. 2009;109:303‐315. PubMed
Cacquevel M, Launay S, Castel H, et al. Ageing and amyloid‐beta peptide deposition contribute to an impaired brain tissue plasminogen activator activity by different mechanisms. Neurobiol Dis. 2007;27:164‐173. PubMed
Medina MG, Ledesma MD, Domínguez JE, et al. Tissue plasminogen activator mediates amyloid‐induced neurotoxicity via Erk1/2 activation. EMBO J. 2005;24:1706‐1716. PubMed PMC
Barker R, Kehoe PG, Love S. Activators and inhibitors of the plasminogen system in Alzheimer's disease. J Cell Mol Med. 2012;16:865‐876. PubMed PMC
Wang J, Yuan Y, Cai R, et al. Association between plasma levels of PAI‐1, tPA/PAI‐1 molar ratio, and mild cognitive impairment in Chinese patients with Type 2 diabetes mellitus. J Alzheimers Dis. 2018;63:835‐845. PubMed
Liu RM, van Groen T, Katre A. Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2011;32:1079‐1089. PubMed PMC
Oh J, Lee HJ, Song JH, Park SI, Kim H. Plasminogen activator inhibitor‐1 as an early potential diagnostic marker for Alzheimer's disease. Exp Gerontol. 2014;60:87‐91. PubMed
Melchor JP, Pawlak R, Strickland S. The tissue plasminogen activator‐plasminogen proteolytic cascade accelerates amyloid‐beta (Abeta) degradation and inhibits Abeta‐induced neurodegeneration. J Neurosci. 2003;23:8867‐8871. PubMed PMC
Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D. Up‐regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor beta1. FASEB J. 1998;12:1683‐1691. PubMed
Sawdey MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor‐alpha, and transforming growth factor‐beta. J Clin Invest. 1991;88:1346‐1353. PubMed PMC
Hino H, Akiyama H, Iseki E, et al. Immunohistochemical localization of plasminogen activator inhibitor‐1 in rat and human brain tissues. Neurosci Lett. 2001;297:105‐108. PubMed
Podor TJ, Joshua P, Butcher M, Seiffert D, Loskutoff D, Gauldie J. Accumulation of type 1 plasminogen activator inhibitor and vitronectin at sites of cellular necrosis and inflammation. Ann N Y Acad Sci. 1992;667:173‐177. PubMed
Holmes C. Review: systemic inflammation and Alzheimer's disease. Neuropathol Appl Neurobiol. 2013;39:51‐68. PubMed
Gerenu G, Martisova E, Ferrero H, et al. Modulation of BDNF cleavage by plasminogen‐activator inhibitor‐1 contributes to Alzheimer's neuropathology and cognitive deficits. Biochim Biophys Acta. 2017;1863:991‐1001. PubMed
Morishima Y, Gotoh Y, Zieg J, et al. Beta‐amyloid induces neuronal apoptosis via a mechanism that involves the c‐Jun N‐terminal kinase pathway and the induction of Fas ligand. J Neurosci. 2001;21:7551‐7560. PubMed PMC
Descheemaeker KA, Wyns S, Nelles L, Auwerx J, Ny T, Collen D. Interaction of AP‐1‐, AP‐2‐, and Sp1‐like proteins with two distinct sites in the upstream regulatory region of the plasminogen activator inhibitor‐1 gene mediates the phorbol 12‐myristate 13‐acetate response. J Biol Chem. 1992;267:15086‐15091. PubMed
Gray K, Ellis V. Activation of pro‐BDNF by the pericellular serine protease plasmin. FEBS Lett. 2008;582:907‐910. PubMed
Mou X, Peterson CB, Prosser RA. Tissue‐type plasminogen activator‐plasmin‐BDNF modulate glutamate‐induced phase‐shifts of the mouse suprachiasmatic circadian clock in vitro. Eur J Neurosci. 2009;30:1451‐1460. PubMed
Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost. 2005;93:655‐660. PubMed PMC
Sakuragi S, Tominaga‐Yoshino K, Ogura A. Involvement of TrkB‐ and p75(NTR)‐signaling pathways in two contrasting forms of long‐lasting synaptic plasticity. Sci Rep. 2013;3:3185. PubMed PMC
Rodier M, Prigent‐Tessier A, Béjot Y, et al. Exogenous t‐PA administration increases hippocampal mature BDNF levels. plasmin‐ or NMDA‐dependent mechanism? PLoS One 2014;9:e92416. PubMed PMC
Pang PT, Lu B. Regulation of late‐phase LTP and long‐term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res Rev. 2004;3:407‐430. PubMed
Pang PT, Teng HK, Zaitsev E, et al. Cleavage of proBDNF by tPA/plasmin is essential for long‐term hippocampal plasticity. Science. 2004;306:487‐491. PubMed
Hsu CD, Tsai SJ. The tissue plasminogen activator/plasmin system may act through cleavage of pro‐BDNF to increase risk of substance abuse. CNS Spectr. 2010;15:350. PubMed
Bachis A, Campbell LA, Jenkins K, Wenzel E, Mocchetti I. Morphine withdrawal increases brain‐derived neurotrophic factor precursor. Neurotox Res. 2017;32:509‐517. PubMed PMC
Jiang H, Chen S, Li C, et al. The serum protein levels of the tPA‐BDNF pathway are implicated in depression and antidepressant treatment. Transl Psychiatry. 2017;7:e1079. PubMed PMC
Tsai SJ. Role of tissue‐type plasminogen activator and plasminogen activator inhibitor‐1 in psychological stress and depression. Oncotarget. 2017;8:113258‐113268. PubMed PMC
Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677‐736. PubMed PMC
Hong EJ, McCord AE, Greenberg ME. A biological function for the neuronal activity‐dependent component of Bdnf transcription in the development of cortical inhibition. Neuron. 2008;60:610‐624. PubMed PMC
Mowla SJ, Pareek S, Farhadi HF, et al. Differential sorting of nerve growth factor and brain‐derived neurotrophic factor in hippocampal neurons. J Neurosci. 1999;19:2069‐2080. PubMed PMC
Wetsel WC, Rodriguiz RM, Guillemot J, et al. Disruption of the expression of the proproteinconvertasePC7reducesBDNFproduction and affects learning and memory in mice. Proc Natl Acad Sci USA. 2013;110:17362‐17367. PubMed PMC
Nagahara AH, Merrill DA, Coppola G, et al. Neuroprotective effects of brain‐derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med. 2009;15:331‐337. PubMed PMC
Teng HK, Teng KK, Lee R, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 2005;25:5455‐5463. PubMed PMC
Lee R, Kermani P, Teng KK, et al. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945‐1948. PubMed
Anastasia A, Deinhardt K, Chao MV, et al. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun. 2013;4:2490. PubMed PMC
Lehof AM, Ip NY, Poo MM. Potentiation of developing neuromuscular synapses by the neurotrophins NT‐3 and BDNF. Nature. 1993;363:350‐353. PubMed
Leal G, Bramham CR, Duarte CB. BDNF and Hippocampal Synaptic Plasticity. Vitam Horm. 2017;104:153‐195. PubMed
Yang J, Harte‐Hargrove LC, Siao CJ, et al. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014;7:796‐806. PubMed PMC
Sun Y, Lim Y, Li F, et al. ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One. 2012;7:e35883. PubMed PMC
Woo NH, Teng HK, Siao CJ, et al. Activation of p75NTR by proBDNF facilitates hippocampal long‐term depression. Nat Neurosci. 2005;8:1069‐1077. PubMed
Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis‐dependent LTP and long‐term memory? Neurobiol Learn Mem. 2008;89:312‐323. PubMed PMC
Je HS, Yang F, Ji Y, et al. Role of pro‐brain‐derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity‐dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci USA. 2012;109:15924‐15929. PubMed PMC
Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 2005;6:603‐614. PubMed
Zuccato C, Cattaneo E. Brain‐derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5:311‐322. PubMed
Turana Y, Ranakusuma T, Purba JS, et al. Enhancing diagnostic accuracy of aMCI in the elderly: combination of olfactory test, pupillary response test, BDNF plasma level, and APOE genotype. Int J Alzheimers Dis. 2014;2014:912586. PubMed PMC
Chen J, Zhang T, Jiao S, et al. proBDNF accelerates brain amyloid‐β deposition and learning and memory impairment in APPswePS1dE9 transgenic mice. J Alzheimers Dis. 2017;59:941‐949. PubMed
Forlenza OV, Miranda AS, Guimar I, et al. Decreased neurotrophic support is associated with cognitive decline in non‐demented subjects. J Alzheimers Dis. 2015;46:423‐429. PubMed
Angelucci F, Spalletta G, di Iulio F, et al. Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res. 2010;7:15‐20. PubMed
Laske C, Stransky E, Leyhe T, et al. Stage‐dependent BDNF serum concentrations in Alzheimer's disease. J. Neural Transm. 2006;113:1217‐1224. PubMed
Passaro A, Dalla Nora E, Morieri ML, et al. Brain‐derived neurotrophic factor plasma levels: relationship with dementia and diabetes in the elderly population. J Gerontol A Biol Sci Med Sci. 2015;70:294‐302. PubMed
Psotta L, Rockahr C, Gruss M, et al. Impact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model. Front Behav Neurosci. 2015;9:58. PubMed PMC
Borba EM, Duarte JA, Bristot G, Scotton E, Camozzato AL, Chaves ML. Brain‐derived neurotrophic factor serum levels and hippocampal volume in mild cognitive impairment and dementia due to Alzheimer disease. Dement Geriatr Cogn Dis Extra. 2016;6:559‐567. PubMed PMC
Gezen‐Ak D, Dursun E, Hanağası H, et al. BDNF, TNFα, HSP90, CFH, and IL‐10 serum levels in patients with early or late onset Alzheimer's disease or mild cognitive impairment. J Alzheimers Dis. 2013;37:185‐195. PubMed
Laske C, Stransky E, Leyhe T, et al. BDNF serum and CSF concentrations in Alzheimer's disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res. 2007;41:387‐394. PubMed
Forlenza OV, Diniz BS, Teixeira AL, et al. Effect of brain‐derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World J Biol Psychiatry. 2010;11:774‐780. PubMed
Shimada H, Makizako H, Doi T, et al. A large, cross‐sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly. Front Aging Neurosci. 2014;6:69. PubMed PMC
O’Bryant SE, Hobson V, Hall JR, et al. Brain‐derived neurotrophic factor levels in Alzheimer’s disease. J Alzheimers Dis. 2009;17:337‐341. PubMed PMC
Forlenza OV, Diniz BS, Teixeira AL, et al. Lower cerebrospinal fluid concentration of brain‐derived neurotrophic factor predicts progression from mild cognitive impairment to Alzheimer's disease. Neuromolecular Med. 2015;17:326‐332. PubMed
Blasko I, Lederer W, Oberbauer H, et al. Measurement of thirteen biological markers in CSF of patients with Alzheimer's disease and other dementias. Dement Geriatr Cogn Disord. 2006;21:9‐15. PubMed
Li G, Peskind ER, Millard SP, et al. Cerebrospinal fluid concentration of brain‐derived neurotrophic factor and cognitive function in non‐demented subjects. PLoS One. 2009;4:e5424. PubMed PMC
Connor B, Young D, Yan Q, Faull RL, SynekB DM. Brain‐derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res. Mol Brain Res. 1997;9:71‐81. PubMed
Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron. 1991;7:695‐702. PubMed
Hock C, Heese K, Hulette C, Rosenberg C, Otten U. Region‐specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain‐derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol. 2000;57:846‐851. PubMed
Michalski B, Fahnestock M. Pro‐brain‐derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain Res Mol Brain Res. 2003;111:148‐154. PubMed
Fahnestock M, Garzon D, Holsinger RM, Michalski B. Neurotrophic factors and Alzheimer's disease: are we focusing on the wrong molecule? J Neural Transm Suppl. 2002;62:241‐252. PubMed
Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain‐derived neurotrophic factor and mature brain‐derived neurotrophic factor are decreased in the pre‐clinical stages of Alzheimer's disease. J Neurochem. 2005;93:1412‐1421. PubMed
Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF. Co‐localization of high‐affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer’s disease. Neuroscience. 1996;75:373‐387. PubMed
Hock C, Heese K, Muller‐Spahn F, Hulette C, Rosenberg C, Otten U. Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neurosci Lett. 1998;241:151‐154. PubMed
Savaskan E, Muller‐Spahn F, Olivieri G, et al. Alterations in trk A, trk B and trk C receptor immunoreactivities in parietal cortex and cerebellum in Alzheimer’s disease. Eur Neurol. 2000;44:172‐180. PubMed
Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx. 2004;1:213‐225. PubMed PMC
Chen S, Jiang H, Liu Y, et al. Combined serum levels of multiple proteins in tPA‐BDNF pathway may aid the diagnosis of five mental disorders. Sci Rep. 2017;7:6871. PubMed PMC
Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci (Lond). 2006;110:175‐191. PubMed
Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov. 2011;10:209‐219. PubMed
Jeong BY, Uddin MJ, Park JH, et al. Novel plasminogen activator inhibitor‐1 inhibitors prevent diabetic kidney injury in a mouse model. PLoS One. 2016;11:e0157012. PubMed PMC
Huang WT, Vayalil PK, Miyata T, Hagood J, Liu RM. Therapeutic value of small molecule inhibitor to plasminogen activator inhibitor‐1 for lung fibrosis. Am J Respir Cell Mol Biol. 2012;46:87‐95. PubMed PMC
Akhter H, Huang WT, van Groen T, Kuo HC, Miyata T, Liu RM. A small molecule inhibitor of plasminogen activator inhibitor‐1 reduces brain amyloid‐β load and improves memory in an animal model of Alzheimer's disease. J Alzheimers Dis. 2018;64:447‐457. PubMed
Pelisch N, Dan T, Ichimura A, et al. Plasminogen activator inhibitor‐1 antagonist TM5484 attenuates demyelination and axonal degeneration in a mice model of multiple sclerosis. PLoS One. 2015;10:e0124510. PubMed PMC
Thomas AX, Cruz Del Angel Y, Gonzalez MI, et al. Rapid increases in proBDNF after pilocarpine‐induced status epilepticus in mice are associated with reduced proBDNF cleavage machinery. eNeuro 2016;3:ENEURO.0020‐15.2016. PubMed PMC
Zussy C, Brureau A, Keller E, et al. Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid‐beta peptide injection in rats. PLoS One. 2013;8:e53117. PubMed PMC
Garzon DJ, Fahnestock M. Oligomeric amyloid decreases basal levels of brain‐derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci Off J Soc Neurosci. 2007;27:2628‐2635. PubMed PMC
Ciaramella A, Salani F, Bizzoni F, et al. The stimulation of dendritic cells by amyloid beta 1–42 reduces BDNF production in Alzheimer’s disease patients. Brain Behav Immun. 2013;32:29‐32. PubMed
Liu R, Zhang TT, Zhou D, et al. Quercetin protects against the Abeta(25–35)‐induced amnesic injury: involvement of inactivation of rage‐mediated pathway and conservation of the NVU. Neuropharmacology. 2013;67:419‐431. PubMed
Poon WW, Blurton‐Jones M, Tu CH, et al. beta‐Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging. 2011;32:821‐833. PubMed PMC
Ye X, Tai W, Zhang D. The early events of Alzheimer’s disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol Aging. 2012;33(1122):pp. e1121‐1122. e1110. PubMed
Rohe M, Synowitz M, Glass R, Paul SM, Nykjaer A, Willnow TE. Brain‐derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression. J Neurosci Off J Soc Neurosci. 2009;29:15472‐15478. PubMed PMC
Zhou JP, Feng ZG, Yuan BL, et al. Transduced PTD‐BDNF fusion protein protects against beta amyloid peptide‐induced learning and memory deficits in mice. Brain Res. 2008;1191:12‐19. PubMed
Plasminogen activator inhibitor-1 serum levels in frontotemporal lobar degeneration
Serum PAI-1/BDNF Ratio Is Increased in Alzheimer's Disease and Correlates with Disease Severity