Serum PAI-1/BDNF Ratio Is Increased in Alzheimer's Disease and Correlates with Disease Severity
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
37810633
PubMed Central
PMC10552510
DOI
10.1021/acsomega.3c04076
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We previously demonstrated that serum levels of plasminogen activator inhibitor-1 (PAI-1), which inhibits both the tissue plasminogen activator (tPA) and plasmin activity, are increased in patients with Alzheimer's disease. tPA/plasmin not only prevents the accumulation of β-amyloid in the brain but also is involved in the synthesis of the brain-derived neurotrophic factor (BDNF), a neurotrophin whose levels are reduced in Alzheimer. In the present study, we compared BDNF serum levels in Alzheimer patients with dementia to those in Alzheimer patients with amnestic mild cognitive impairment and to cognitively healthy controls. Moreover, we examined whether the PAI-1/BDNF ratio correlates with disease severity, as measured by Mini-Mental State Examination. Our results showed that BDNF serum levels are lower (13.7% less) and PAI-1 levels are higher in Alzheimer patients with dementia than in Alzheimer patients with amnestic mild cognitive impairment patients (23% more) or controls (36% more). Furthermore, the PAI-1/BDNF ratio was significantly increased in Alzheimer patients as compared to amnestic mild cognitive impairment (36.4% more) and controls (40% more). Lastly, the PAI-1/BDNF ratio negatively correlated with the Mini-Mental score. Our results suggest that increased PAI-1 levels in Alzheimer, by impairing the production of the BDNF, are implicated in disease progression. They also indicate that the PAI-1/BDNF ratio could be used as a marker of Alzheimer. In support of this hypothesis, a strong negative correlation between the PAI-1/BDNF ratio and the Mini-Mental score was observed.
See more in PubMed
Lane C. A.; Hardy J.; Schott J. M. Alzheimer’s Disease. Eur. J. Neurol. 2018, 25 (1), 59–70. 10.1111/ene.13439. PubMed DOI
Šerý O.; Povová J.; Míšek I.; Pešák L.; Janout V. Molecular Mechanisms of Neuropathological Changes in Alzheimer’s Disease: A Review. Folia Neuropathol. 2013, 1, 1–9. 10.5114/fn.2013.34190. PubMed DOI
Panja D.; Bramham C. R. BDNF Mechanisms in Late LTP Formation: A Synthesis and Breakdown. Neuropharmacology 2014, 76, 664–676. 10.1016/j.neuropharm.2013.06.024. PubMed DOI
Leal G.; Bramham C. R.; Duarte C. B.. BDNF and Hippocampal Synaptic Plasticity. Vitamins and Hormones. Elsevier; 2017; pp 153–19510.1016/bs.vh.2016.10.004. PubMed DOI
Zuccato C.; Cattaneo E. Brain-Derived Neurotrophic Factor in Neurodegenerative Diseases. Nat. Rev. Neurol. 2009, 5 (6), 311–322. 10.1038/nrneurol.2009.54. PubMed DOI
Phillips H. S.; Hains J. M.; Armanini M.; Laramee G. R.; Johnson S. A.; Winslow J. W. BDNF MRNA Is Decreased in the Hippocampus of Individuals with Alzheimer’s Disease. Neuron 1991, 7 (5), 695–702. 10.1016/0896-6273(91)90273-3. PubMed DOI
Song J. H.; Yu J. T.; Tan L. Brain-Derived Neurotrophic Factor in Alzheimer’s Disease: Risk, Mechanisms, and Therapy. Mol. Neurobiol. 2015, 52 (3), 1477–1493. 10.1007/s12035-014-8958-4. PubMed DOI
Poon W. W.; Blurton-Jones M.; Tu C. H.; Feinberg L. M.; Chabrier M. A.; Harris J. W.; Jeon N. L.; Cotman C. W. β-Amyloid Impairs Axonal BDNF Retrograde Trafficking. Neurobiol. Aging 2011, 32 (5), 821–833. 10.1016/j.neurobiolaging.2009.05.012. PubMed DOI PMC
Hsu C.-D.; Tsai S.-J. The Tissue Plasminogen Activator/Plasmin System May Act Through Cleavage of Pro-BDNF to Increase Risk of Substance Abuse. CNS Spectr. 2010, 15 (6), 350.10.1017/S1092852900000328. PubMed DOI
Gray K.; Ellis V. Activation of Pro-BDNF by the Pericellular Serine Protease Plasmin. FEBS Lett. 2008, 582 (6), 907–910. 10.1016/j.febslet.2008.02.026. PubMed DOI
Angelucci F.; Čechová K.; Průša R.; Hort J. Amyloid Beta Soluble Forms and Plasminogen Activation System in Alzheimer’s Disease: Consequences on Extracellular Maturation of Brain-Derived Neurotrophic Factor and Therapeutic Implications. CNS Neurosci. Ther. 2018, 25, 303–313. 10.1111/cns.13082. PubMed DOI PMC
Medcalf R. L. Fibrinolysis: From Blood to the Brain. J. Thromb. Haemost. 2017, 15 (11), 2089–2098. 10.1111/jth.13849. PubMed DOI
Idell R. D.; Florova G.; Komissarov A. A.; Shetty S.; Girard R. B. S.; Idell S. The Fibrinolytic System: A New Target for Treatment of Depression with Psychedelics. Med. Hypotheses 2017, 100, 46–53. 10.1016/j.mehy.2017.01.013. PubMed DOI
Salles F. J.; Strickland S. Localization and Regulation of the Tissue Plasminogen Activator-Plasmin System in the Hippocampus. J. Neurosci. 2002, 22 (6), 2125–2134. 10.1523/JNEUROSCI.22-06-02125.2002. PubMed DOI PMC
Sachdev P. S.; Brodaty H.; Valenzuela M. J.; Lorentz L.; Looi J. C. L.; Berman K.; Ross A.; Wen W.; Zagami A. S. Clinical Determinants of Dementia and Mild Cognitive Impairment Following Ischaemic Stroke: The Sydney Stroke Study. Dement. Geriatr. Cogn. Disord. 2006, 21 (5–6), 275–283. 10.1159/000091434. PubMed DOI
Yan F.-J.; Chen X.-H.; Quan X.-Q.; Wang L.-L.; Wei X.-Y.; Zhu J.-L. Development and Validation of an Interpretable Machine Learning Model—Predicting Mild Cognitive Impairment in a High-Risk Stroke Population. Front. Aging Neurosci. 2023, 15, 118035110.3389/fnagi.2023.1180351. PubMed DOI PMC
Hagberg G.; Fure B.; Thommessen B.; Ihle-Hansen H.; Øksengård A.-R.; Nygård S.; Pendlebury S. T.; Beyer M. K.; Wyller T. B.; Ihle-Hansen H. Predictors for Favorable Cognitive Outcome Post-Stroke: A-Seven-Year Follow-Up Study. Dement. Geriatr. Cogn. Disord. 2019, 48 (1–2), 45–55. 10.1159/000501850. PubMed DOI
Ihle-Hansen H.; Thommessen B.; Wyller T. B.; Engedal K.; Øksengård A. R.; Stenset V.; Løken K.; Aaberg M.; Fure B. Incidence and Subtypes of MCI and Dementia 1 Year after First-Ever Stroke in Patients without Pre-Existing Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2011, 32 (6), 401–407. 10.1159/000335361. PubMed DOI
Gerenu G.; Martisova E.; Ferrero H.; Carracedo M.; Rantamäki T.; Ramirez M. J.; Gil-Bea F. J. Modulation of BDNF Cleavage by Plasminogen-Activator Inhibitor-1 Contributes to Alzheimer’s Neuropathology and Cognitive Deficits.. Biochim. Biophys. Acta - Mol. Basis Dis. 2017, 1863 (4), 991–1001. 10.1016/j.bbadis.2017.01.023. PubMed DOI
Chen J.; Zhang T.; Jiao S.; Zhou X.; Zhong J.; Wang Y.; Liu J.; Deng J.; Wang S.; Xu Z. ProBDNF Accelerates Brain Amyloid-β Deposition and Learning and Memory Impairment in APPswePS1dE9 Transgenic Mice. J. Alzheimer’s Dis. 2017, 59 (3), 941–949. 10.3233/jad-161191. PubMed DOI
Budni J.; Bellettini-Santos T.; Mina F.; Garcez M. L.; Zugno A. I. The Involvement of BDNF, NGF and GDNF in Aging and Alzheimer’s Disease. Aging Dis. 2015, 6 (5), 331–341. 10.14336/AD.2015.0825. PubMed DOI PMC
Mossiat C.; Prigent-Tessier A.; Garnier P.; Marie C.; Jacquin A.; Rodier M.; Béjot Y.; Prigent-Tessier A.; Béjot Y.; Jacquin A.; Mossiat C.; Marie C.; Garnier P. Exogenous T-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism?. PLoS One 2014, 9 (3), e9241610.1371/journal.pone.0092416. PubMed DOI PMC
Burysek L.; Syrovets T.; Simmet T. The Serine Protease Plasmin Triggers Expression of MCP-1 and CD40 in Human Primary Monocytes via Activation of P38 MAPK and Janus Kinase (JAK)/STAT Signaling Pathways. J. Biol. Chem. 2002, 277 (36), 33509–33517. 10.1074/jbc.M201941200. PubMed DOI
Barker R.; Love S.; Kehoe P. G. Plasminogen and Plasmin in Alzheimer’s Disease. Brain Res. 2010, 1355, 7–15. 10.1016/j.brainres.2010.08.025. PubMed DOI
Hino H.; Akiyama H.; Iseki E.; Kato M.; Kondo H.; Ikeda K.; Kosaka K.; Iseki E.; Hino H.; Akiyama H.; Kondo H.; Kato M.; Ikeda K. Immunohistochemical Localization of Plasminogen Activator Inhibitor-1 in Rat and Human Brain Tissues. Neurosci. Lett. 2001, 297 (2), 105–108. 10.1016/s0304-3940(00)01679–7. PubMed DOI
Wang J.; Yuan Y.; Cai R.; Huang R.; Tian S.; Lin H.; Guo D.; Wang S. Association between Plasma Levels of PAI-1, TPA/PAI-1 Molar Ratio, and Mild Cognitive Impairment in Chinese Patients with Type 2 Diabetes Mellitus. J. Alzheimers. Dis. 2018, 63 (2), 835–845. 10.3233/JAD-171038. PubMed DOI
Angelucci F.; Veverova K.; Katonová A.; Piendel L.; Vyhnalek M.; Hort J. Alzheimer’s Disease Severity Is Associated with an Imbalance in Serum Levels of Enzymes Regulating Plasmin Synthesis. Pharmaceuticals (Basel) 2022, 15 (9), 1074.10.3390/ph15091074. PubMed DOI PMC
Bi Oh S.; Suh N.; Kim I.; Lee J.-Y. Y. Impacts of Aging and Amyloid-β Deposition on Plasminogen Activators and Plasminogen Activator Inhibitor-1 in the Tg2576 Mouse Model of Alzheimer′s Disease. Brain Res. 2015, 1597, 159–167. 10.1016/j.brainres.2014.11.042. PubMed DOI
Barker R.; Kehoe P. G.; Love S. Activators and Inhibitors of the Plasminogen System in Alzheimer’s Disease. J. Cell. Mol. Med. 2012, 16 (4), 865–876. 10.1111/j.1582-4934.2011.01394.x. PubMed DOI PMC
Cacquevel M.; Launay S.; Castel H.; Benchenane K.; Chéenne S.; Buée L.; Moons L.; Delacourte A.; Carmeliet P.; Vivien D.; Launay S.; Vivien D.; Delacourte A.; Castel H.; Cacquevel M.; Chéenne S.; Benchenane K.; Carmeliet P. Ageing and Amyloid-Beta Peptide Deposition Contribute to an Impaired Brain Tissue Plasminogen Activator Activity by Different Mechanisms. Neurobiol. Dis. 2007, 27 (2), 164–173. 10.1016/j.nbd.2007.04.004. PubMed DOI
Sheardova K.; Vyhnalek M.; Nedelska Z.; Laczo J.; Andel R.; Marciniak R.; Cerman J.; Lerch O. H. J.; Sheardova K.; Vyhnalek M.; Nedelska Z.; Laczo J.; Andel R.; Marciniak R.; Cerman J.; Lerch O.; Hort J. Czech Brain Aging Study (CBAS): Prospective Multicentre Cohort Study on Risk and Protective Factors for Dementia in the Czech Republic. BMJ. Open 2019, 9 (12), e03037910.1136/bmjopen-2019-030379. PubMed DOI PMC
Albert M. S.; DeKosky S. T.; Dickson D.; Dubois B.; Feldman H. H.; Fox N. C.; Gamst A.; Holtzman D. M.; Jagust W. J.; Petersen R. C.; Snyder P. J.; Carrillo M. C.; Thies B.; Phelps C. H. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers. Dement. 2011, 7 (3), 270–279. 10.1016/j.jalz.2011.03.008. PubMed DOI PMC
McKhann G. M.; Knopman D. S.; Chertkow H.; Hyman B. T.; Jack C. R.; Kawas C. H.; Klunk W. E.; Koroshetz W. J.; Manly J. J.; Mayeux R.; Mohs R. C.; Morris J. C.; Rossor M. N.; Scheltens P.; Carrillo M. C.; Thies B.; Weintraub S.; Phelps C. H. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers. Dement. 2011, 7 (3), 263–269. 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Yesavage J. A. Geriatric Depression Scale. Psychopharmacol. Bull. 1988, 24 (4), 709–711. PubMed
Fazekas F.; Chawluk J.; Alavi A.; Hurtig H.; Zimmerman R. MR Signal Abnormalities at 1.5 T in Alzheimer’s Dementia and Normal Aging. Am. J. Roentgenol. 1987, 149 (2), 351–356. 10.2214/ajr.149.2.351. PubMed DOI
Psotta L.; Rockahr C.; Gruss M.; Kirches E.; Braun K.; Lessmann V.; Bock J.; Endres T.. Impact of an Additional Chronic BDNF Reduction on Learning Performance in an Alzheimer Mouse Model. Front. Behav. Neurosci. 2015, 910.3389/fnbeh.2015.00058. PubMed DOI PMC
Siglienti I.; Linker R. A.; Kruse N.; Neumann H.; Demir S.; Wiese S.; Gold R.; Gerhardt E.; Sendtner M.; Lee D.-H.; Luhder F. Functional Role of Brain-Derived Neurotrophic Factor in Neuroprotective Autoimmunity: Therapeutic Implications in a Model of Multiple Sclerosis. Brain 2010, 133 (8), 2248–2263. 10.1093/brain/awq179. PubMed DOI
Monteggia L. M.; Barrot M.; Powell C. M.; Berton O.; Galanis V.; Gemelli T.; Meuth S.; Nagy A.; Greene R. W.; Nestler E. J. Essential Role of Brain-Derived Neurotrophic Factor in Adult Hippocampal Function. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (29), 10827–10832. 10.1073/pnas.0402141101. PubMed DOI PMC
Binder D. K.; Scharfman H. E. Brain-Derived Neurotrophic Factor. Growth Factors 2002, 22 (3), 123–131. 10.1080/08977190410001723308. PubMed DOI PMC
Laske C.; Stransky E.; Leyhe T.; Eschweiler G. W.; Wittorf A.; Richartz E.; Bartels M.; Buchkremer G.; Schott K. Stage-Dependent BDNF Serum Concentrations in Alzheimer’s Disease. J. Neural Transm. 2006, 113 (9), 1217–1224. 10.1007/s00702-005-0397-y. PubMed DOI
Laske C.; Stellos K.; Hoffmann N.; Stransky E.; Straten G.; Eschweiler G. W.; Leyhe T. Higher BDNF Serum Levels Predict Slower Cognitive Decline in Alzheimer’s Disease Patients. Int. J. Neuropsychopharmacol. 2011, 14 (3), 399–404. 10.1017/S1461145710001008. PubMed DOI
Laske C.; Stransky E.; Leyhe T.; Eschweiler G. W.; Maetzler W.; Wittorf A.; Soekadar S.; Richartz E.; Koehler N.; Bartels M.; Buchkremer G.; Schott K. BDNF Serum and CSF Concentrations in Alzheimer’s Disease, Normal Pressure Hydrocephalus and Healthy Controls. J. Psychiatr. Res. 2007, 41 (5), 387–394. 10.1016/j.jpsychires.2006.01.014. PubMed DOI
Hou S.-J.; Yen F.-C.; Tsai S.-J. Is Dysfunction of the Tissue Plasminogen Activator (TPA)-Plasmin Pathway a Link between Major Depression and Cardiovascular Disease?. Med. Hypotheses 2009, 72 (2), 166–168. 10.1016/j.mehy.2008.09.009. PubMed DOI
Geiser F.; Gessler K.; Conrad R.; Imbierowicz K.; Albus C.; Harbrecht U. Can Activation of Coagulation and Impairment of Fibrinolysis in Patients with Anxiety and Depression Be Reversed after Improvement of Psychiatric Symptoms? Results of a Pilot Study. J. Nerv. Ment. Dis. 2012, 200 (8), 721–723. 10.1097/NMD.0b013e3182613fa5. PubMed DOI
Gelle T.; Samey R. A.; Plansont B.; Bessette B.; Jauberteau-Marchan M.-O.; Lalloué F.; Girard M. BDNF and Pro-BDNF in Serum and Exosomes in Major Depression: Evolution after Antidepressant Treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 109, 11022910.1016/j.pnpbp.2020.110229. PubMed DOI
Hoirisch-Clapauch S. Mechanisms Affecting Brain Remodeling in Depression: Do All Roads Lead to Impaired Fibrinolysis?. Mol. Psychiatry 2022, 27 (1), 525–533. 10.1038/s41380-021-01264-1. PubMed DOI
Jiang H.; Li X.; Chen S.; Lu N.; Yue Y.; Liang J.; Zhang Z.; Yuan Y. Plasminogen Activator Inhibitor-1 in Depression: Results from Animal and Clinical Studies. Sci. Rep. 2016, 6, 30464.10.1038/srep30464. PubMed DOI PMC
Roth B.; Myllyvainio J.; D’Amato M.; Larsson E.; Ohlsson B.. A Starch- and Sucrose-Reduced Diet in Irritable Bowel Syndrome Leads to Lower Circulating Levels of PAI-1 and Visfatin: A Randomized Controlled Study. Nutrients 2022, 14 ( (9), ) 1688.10.3390/nu14091688. PubMed DOI PMC
Yarmolinsky J.; Bordin Barbieri N.; Weinmann T.; Ziegelmann P. K.; Duncan B. B.; Inês Schmidt M. Plasminogen Activator Inhibitor-1 and Type 2 Diabetes: A Systematic Review and Meta-Analysis of Observational Studies. Sci. Rep. 2016, 6, 17714.10.1038/srep17714. PubMed DOI PMC
Wu Q.; Zhao Z. Inhibition of PAI-1: A New Anti-Thrombotic Approach. Curr. Drug Targets. Cardiovasc. Haematol. Disord. 2002, 2 (1), 27–42. 10.2174/1568006023337727. PubMed DOI
Toribio-Fernandez R.; Ceron C.; Tristão-Pereira C.; Fernandez-Nueda I.; Perez-Castillo A.; Fernandez-Ferro J.; Moro M. A.; Ibañez B.; Fuster V.; Cortes-Canteli M. Oral Anticoagulants: A Plausible New Treatment for Alzheimer’s Disease?. Br. J. Pharmacol. 2023, 10.1111/bph.16032. PubMed DOI
Jiang H.; Chen S.; Li C.; Lu N.; Yue Y.; Yin Y.; Zhang Y.; Zhi X.; Zhang D.; Yuan Y. The Serum Protein Levels of the TPA–BDNF Pathway Are Implicated in Depression and Antidepressant Treatment. Transl. Psychiatry 2017, 7 (4), e1079–e1079. 10.1038/tp.2017.43. PubMed DOI PMC
Chen S.; Jiang H.; Liu Y.; Hou Z.; Yue Y.; Zhang Y.; Zhao F.; Xu Z.; Li Y.; Mou X.; Li L.; Wang T.; Zhao J.; Han C.; Sui Y.; Wang M.; Yang Z.; Lu Y.; Zhu Y.; Li J.; Shen X.; Sun F.; Chen Q.; Chen H.; Yuan Y.. Combined Serum Levels of Multiple Proteins in TPA-BDNF Pathway May Aid the Diagnosis of Five Mental Disorders. Sci. Rep. 2017, 7 ( (1), ) 6871.10.1038/s41598-017-06832-6. PubMed DOI PMC
Carey A.; Fossati S. Hypertension and Hyperhomocysteinemia as Modifiable Risk Factors for Alzheimer’s Disease and Dementia: New Evidence, Potential Therapeutic Strategies, and Biomarkers. Alzheimers. Dement. 2023, 19 (2), 671–695. 10.1002/alz.12871. PubMed DOI PMC
Jácomo R. H.; Santana-Lemos B. A.; Lima A. S. G.; Assis P. A.; Lange A. P. A.; Figueiredo-Pontes L. L.; Oliveira L. O.; Bassi S. C.; Benício M. T. L.; Baggio M. S.; Garcia A. B.; Falcão R. P.; Rego E. M. Methionine-Induced Hyperhomocysteinemia Reverts Fibrinolytic Pathway Activation in a Murine Model of Acute Promyelocytic Leukemia. Blood 2012, 120 (1), 207–213. 10.1182/blood-2011-04-347187. PubMed DOI
Hajjar K. A.; Mauri L.; Jacovina A. T.; Zhong F.; Mirza U. A.; Padovan J. C.; Chait B. T. Tissue Plasminogen Activator Binding to the Annexin II Tail Domain. Direct Modulation by Homocysteine. J. Biol. Chem. 1998, 273 (16), 9987–9993. 10.1074/jbc.273.16.9987. PubMed DOI
Zhang L.; Xie X.; Sun Y.; Zhou F. Blood and CSF Homocysteine Levels in Alzheimer’s Disease: A Meta-Analysis and Meta-Regression of Case-Control Studies. Neuropsychiatr. Dis. Treat. 2022, 18, 2391–2403. 10.2147/NDT.S383654. PubMed DOI PMC